organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[8-(4-Chlorobenzovl)-2,7-dimethoxynaphthalen-1-yl](2,4,6-trimethylphenyl)methanone

Toyokazu Muto, Kosuke Sasagawa, Akiko Okamoto,* Hideaki Oike and Noriyuki Yonezawa

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Received 14 February 2012; accepted 23 February 2012

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.131; data-to-parameter ratio = 13.6.

In the title compound, $C_{29}H_{25}ClO_4$, the dihedral angle between the benzene rings of the 2,4,6-trimethylbenzoyl group and the 4-chlorobenzovl group is $65.19(9)^{\circ}$. The dihedral angles between the naphthalene ring system and the benzene rings of the 2,4,6-trimethylbenzoyl group and the 4-chlorobenzoyl group are 85.66 (8) and 69.48 (8)°, respectively. In the crystal, two types of intermolecular $C-H \cdots O$ interactions and an intramolecular C-H···O interaction are observed. Moreover, there is a short intramolecular C=O···C=O contact of 2.614 (2) Å between the benzovl substituents.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Mitsui et al. (2008); Muto et al. (2011a,b, 2012); Nakaema et al. (2007).

Experimental

Crystal data

C29H25ClO4 $M_r = 472.94$ Monoclinic, $P2_1/c$ a = 11.6017 (2) Å b = 12.3381 (2) Å

c = 16.2825 (3) Å $\beta = 90.503 \ (1)^{\circ}$ V = 2330.64 (7) Å³ Z = 4Cu Ka radiation

 $\mu = 1.73 \text{ mm}^{-1}$ T = 193 K

Data collection

Rigaku R-AXIS RAPID	40504 measured reflections
diffractometer	4266 independent reflections
Absorption correction: numerical	3197 reflections with $I > 2\sigma($
(NUMABS; Higashi, 1999)	$R_{\rm int} = 0.054$
$T_{\min} = 0.625, \ T_{\max} = 0.846$	
(NUMABS; Higashi, 1999) $T_{min} = 0.625, T_{max} = 0.846$	$R_{\rm int} = 0.054$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.131$ S = 1.154266 reflections

 $> 2\sigma(I)$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

313 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C23 - H23 \cdots O2^{i}$ $C28 - H28A \cdots O1^{ii}$ $C29 - H29B \cdots O2$	0.95 0.98 0.98	2.54 2.56 2.42	3.413 (2) 3.418 (3) 3.349 (3)	154 147 157

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2460).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, 01278.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.
- Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.
- Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63. 04120.
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284
- Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o906 [doi:10.1107/S1600536812008112]

[8-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalen-1-yl](2,4,6-trimethylphenyl)methanone

Toyokazu Muto, Kosuke Sasagawa, Akiko Okamoto, Hideaki Oike and Noriyuki Yonezawa

S1. Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, *peri*-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui *et al.*, 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema *et al.*, 2007) and 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (Muto *et al.*, 2012). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected to the naphthalene rings in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the β -isomers of 3-monoaroylated derivatives have been also clarified such as 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui *et al.*, 2011*a*) and (3,6-dimethoxynaphthalen-2-yl) (2,4,6-trimethylphenyl)methanone (Muto *et al.*, 2011*a*).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, unsymmetrical *peri*-substituted naphthalene bearing 2,4,6-trimethylbenzoyl group and 4-chlorobenzoyl group, is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group and 4-chlorophenyl group are out of the plane of the naphthalene ring. Two kinds of phenyl rings make different dihedral angles with the naphthalene ring system, *i.e.*, the dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 85.66 (8)°, whereas, that between the best planes of the 4-chlorophenyl ring (C19—C24) and the naphthalene ring (C1—C10) is 69.48 (8)°. Each of dihedral angles is similar to that of the corresponding symmetric 1,8-diaroylnaphthalene. The dihedral angles between the best planes of the 2,4,6-trimethylphenyl rings and the naphthalene ring of 1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene are 81.58 (5) and 84.92 (6)° (Muto *et al.*, 2012). In addition, the dihedral angles between the best planes of the 4-chlorophenyl rings and the naphthalene ring of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene are 71.55 (7) and 71.98 (7)° (Nakaema *et al.*, 2007).

Besides, an intramolecular C—H···O interaction between methyl group and carbonyl group is observed (C29—H29b···O2 = 2.42 Å; Fig. 1 and Table 1).

The crystal packing is additionally stabilized by an intermolecular C—H···O interaction between the oxygen atom (O2) of the carbonyl group and one hydrogen atom (H23) on 4-chlorophenyl group of the adjacent molecule along the *b* axis (C23—H23···O2ⁱ; Fig. 2 and Table 1). Furthermore, an intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H28*a*) of the 4-methyl group on 2,4,6-trimethylphenyl ring of the adjacent molecule along the *b* axis is observed (C28—H28*a*···O1ⁱⁱ; Fig. 3 and Table 1).

S2. Experimental

To a 10 ml flask, 4-chlorobenzoyl chloride (0.40 mmol, 0.070 g), titanium chloride (1.20 mmol, 0.228 g) and methylene chloride (0.50 ml) were placed and stirred at rt. To the reaction mixture thus obtained, 1-(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene (0.20 mmol, 0.067 g) was added. After the reaction mixture was stirred at rt for 9 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with $CHCl_3$ (10 ml \times 3). The combined extracts were washed with 2 *M* aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give cake (quant.). The crude product was purified by recrystallization from hexane and CHCl₃ (yield 2%).

¹H NMR δ (300 MHz, CDCl₃); 2.16 (6*H*, s), 2.25 (3*H*, s), 3.47 (3*H*, s), 3.68 (3*H*, s), 6.77 (2*H*, s), 7.10 (1*H*, d, *J* = 9.0 Hz), 7.23 (1*H*, d, *J* = 9.3 Hz), 7.34 (2*H*, d, *J* = 8.7 Hz), 7.74 (2*H*, d, *J* = 8.7 Hz), 7.92 (1*H*, d, *J* = 8.7 Hz), 7.94 (1*H*, d, *J* = 9.0 Hz) p.p.m.

¹³C NMR δ (125 MHz, CDCl₃); 21.11, 21.35, 56.27, 56.83, 111.13, 112.39, 121.13, 124.87, 125.72, 128.13, 129.26, 129.57, 130.13, 132.43, 133.27, 137.88, 138.37, 138.57, 139.21, 157.20, 157.94, 195.83, 199.69 p.p.m..

IR (KBr); 1656 (C=O), 1607, 1514, 1457(Ar, naphthalene), 1271 (=C-O-C) cm⁻¹.

HRMS (m/z); $[M + Na]^+$ Calcd for C₂₉H₂₅ClO₄Na, 495.1370; found, 495.1339.

m.p. = 503.0–505.0 K.

S3. Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

Molecular structure with displacement ellipsoids at 50% probability and a weak intramolecular C—H…O interactions.

Figure 2

Intermolecular C23—H23···O2ⁱ interactions, viewed along the *c* axis [symmetry code: (i) -x + 1, y + 1/2, -z + 1/2].

Figure 3

A packing diagram of the title compound, showing intermolecular C28—H28a···O1 ⁱⁱ interactions [symmetry code: (ii) – x, y - 1/2, -z + 1/2].

[8-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalen-1-yl](2,4,6- trimethylphenyl)methanone

Crystal data

C₂₉H₂₅ClO₄ $M_r = 472.94$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 11.6017 (2) Å b = 12.3381 (2) Å c = 16.2825 (3) Å $\beta = 90.503$ (1)° V = 2330.64 (7) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: rotating anode Graphite monochromator Detector resolution: 10.000 pixels mm⁻¹ ω scans F(000) = 992 $D_x = 1.348 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 30848 reflections $\theta = 3.6-68.2^{\circ}$ $\mu = 1.73 \text{ mm}^{-1}$ T = 193 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{min} = 0.625$, $T_{max} = 0.846$ 40504 measured reflections 4266 independent reflections 3197 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$

$\theta_{\rm max} = 68.2^\circ, \ \theta_{\rm min} = 3.8^\circ$	$k = -14 \rightarrow 14$
$h = -13 \rightarrow 13$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 0.4811P]$
S = 1.15	where $P = (F_o^2 + 2F_c^2)/3$
4266 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
313 parameters	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc $^{2}\lambda^{3}$ /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0019 (2)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.69235 (5)	0.10716 (5)	0.47771 (3)	0.0588 (2)
01	0.20277 (12)	0.08172 (12)	0.27478 (9)	0.0481 (4)
O2	0.33992 (13)	-0.06714 (11)	0.17961 (9)	0.0507 (4)
O3	-0.02500 (13)	0.23149 (13)	0.17441 (10)	0.0584 (4)
O4	0.55327 (12)	0.05151 (12)	0.09221 (9)	0.0492 (4)
C1	0.15846 (17)	0.16470 (15)	0.14692 (12)	0.0393 (5)
C2	0.06994 (18)	0.23511 (17)	0.12574 (13)	0.0454 (5)
C3	0.07890 (19)	0.30891 (17)	0.06063 (13)	0.0489 (5)
Н3	0.0164	0.3555	0.0470	0.059*
C4	0.17854 (19)	0.31268 (17)	0.01738 (13)	0.0480 (5)
H4	0.1846	0.3618	-0.0273	0.058*
C5	0.27304 (18)	0.24567 (15)	0.03717 (12)	0.0411 (5)
C6	0.37374 (19)	0.25238 (17)	-0.01035 (12)	0.0453 (5)
H6	0.3761	0.3020	-0.0549	0.054*
C7	0.46715 (18)	0.19001 (17)	0.00576 (12)	0.0459 (5)
H7	0.5338	0.1948	-0.0275	0.055*
C8	0.46389 (17)	0.11829 (16)	0.07222 (12)	0.0416 (5)
С9	0.36732 (17)	0.10735 (15)	0.12160 (12)	0.0379 (4)
C10	0.26600 (17)	0.17072 (15)	0.10417 (12)	0.0382 (4)
C11	0.13588 (17)	0.08802 (15)	0.21667 (13)	0.0402 (5)
C12	0.02723 (16)	0.02178 (15)	0.21450 (12)	0.0389 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C13	-0.05043 (17)	0.03204 (16)	0.28009 (12)	0.0424 (5)
C14	-0.15272 (17)	-0.02578 (16)	0.27704 (12)	0.0436 (5)
H14	-0.2059	-0.0179	0.3207	0.052*
C15	-0.18025 (17)	-0.09461 (16)	0.21268 (13)	0.0414 (5)
C16	-0.10099 (17)	-0.10558 (16)	0.14962 (13)	0.0421 (5)
H16	-0.1179	-0.1536	0.1055	0.050*
C17	0.00221 (17)	-0.04836 (16)	0.14928 (12)	0.0404 (5)
C18	0.38091 (16)	0.02322 (15)	0.18818 (12)	0.0394 (5)
C19	0.45487 (16)	0.04930 (15)	0.26164 (12)	0.0388 (4)
C20	0.46449 (18)	-0.02682 (16)	0.32407 (12)	0.0449 (5)
H20	0.4207	-0.0918	0.3211	0.054*
C21	0.53713 (18)	-0.00905 (17)	0.39053 (13)	0.0476 (5)
H21	0.5439	-0.0617	0.4329	0.057*
C22	0.59999 (17)	0.08638 (17)	0.39460 (13)	0.0446 (5)
C23	0.59021 (17)	0.16476 (17)	0.33401 (12)	0.0442 (5)
H23	0.6331	0.2302	0.3376	0.053*
C24	0.51680 (17)	0.14576 (16)	0.26821 (12)	0.0416 (5)
H24	0.5084	0.1994	0.2267	0.050*
C25	-0.1238 (2)	0.2937 (2)	0.15477 (17)	0.0650 (7)
H25A	-0.1048	0.3710	0.1584	0.078*
H25B	-0.1854	0.2768	0.1935	0.078*
H25C	-0.1496	0.2765	0.0988	0.078*
C26	0.66420 (18)	0.0740 (2)	0.05727 (15)	0.0569 (6)
H26A	0.6843	0.1501	0.0671	0.068*
H26B	0.6614	0.0602	-0.0020	0.068*
H26C	0.7224	0.0272	0.0829	0.068*
C27	-0.0277 (2)	0.1066 (2)	0.35151 (15)	0.0607 (6)
H27A	-0.0005	0.1767	0.3312	0.073*
H27B	0.0312	0.0746	0.3876	0.073*
H27C	-0.0990	0.1170	0.3823	0.073*
C28	-0.29352 (17)	-0.15531 (17)	0.21101 (14)	0.0465 (5)
H28A	-0.2807	-0.2295	0.1916	0.056*
H28B	-0.3477	-0.1185	0.1739	0.056*
H28C	-0.3256	-0.1573	0.2665	0.056*
C29	0.08631 (19)	-0.06858 (19)	0.07974 (14)	0.0513 (5)
H29A	0.0572	-0.1274	0.0448	0.062*
H29B	0.1616	-0.0889	0.1027	0.062*
H29C	0.0942	-0.0025	0.0469	0.062*

Atomic displacement parameters $(Å^2)$

J ¹¹	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
.0508 (3)	0.0793 (4)	0.0463 (3)	0.0077 (3)	-0.0052 (3)	-0.0046 (3)
.0416 (8)	0.0590 (9)	0.0436 (9)	-0.0052 (7)	-0.0041 (7)	0.0070 (7)
.0572 (9)	0.0425 (8)	0.0525 (9)	-0.0051 (7)	-0.0018 (7)	0.0016 (6)
.0450 (8)	0.0610 (10)	0.0693 (11)	0.0130 (7)	0.0078 (8)	0.0100 (8)
.0459 (8)	0.0531 (8)	0.0487 (9)	0.0059 (7)	0.0125 (7)	0.0070 (7)
.0413 (11)	0.0385 (10)	0.0381 (11)	-0.0018 (8)	-0.0014 (9)	-0.0014 (8)
	0508 (3) 0416 (8) 0572 (9) 0450 (8) 0459 (8) 0413 (11)	U U^{22} 0508 (3)0.0793 (4)0416 (8)0.0590 (9)0572 (9)0.0425 (8)0450 (8)0.0610 (10)0459 (8)0.0531 (8)0413 (11)0.0385 (10)	U U^{22} U^{33} 0508 (3)0.0793 (4)0.0463 (3)0416 (8)0.0590 (9)0.0436 (9)0572 (9)0.0425 (8)0.0525 (9)0450 (8)0.0610 (10)0.0693 (11)0459 (8)0.0531 (8)0.0487 (9)0413 (11)0.0385 (10)0.0381 (11)	U^{11} U^{22} U^{33} U^{12} 0508 (3)0.0793 (4)0.0463 (3)0.0077 (3)0416 (8)0.0590 (9)0.0436 (9) -0.0052 (7)0572 (9)0.0425 (8)0.0525 (9) -0.0051 (7)0450 (8)0.0610 (10)0.0693 (11)0.0130 (7)0459 (8)0.0531 (8)0.0487 (9)0.0059 (7)0413 (11)0.0385 (10)0.0381 (11) -0.0018 (8)	U^{11} U^{22} U^{33} U^{12} U^{13} 0508 (3)0.0793 (4)0.0463 (3)0.0077 (3) $-0.0052 (3)$ 0416 (8)0.0590 (9)0.0436 (9) $-0.0052 (7)$ $-0.0041 (7)$ 0572 (9)0.0425 (8)0.0525 (9) $-0.0051 (7)$ $-0.0018 (7)$ 0450 (8)0.0610 (10)0.0693 (11)0.0130 (7)0.0078 (8)0459 (8)0.0531 (8)0.0487 (9)0.0059 (7)0.0125 (7)0413 (11)0.0385 (10)0.0381 (11) $-0.0018 (8)$ $-0.0014 (9)$

C2	0.0439 (11)	0.0458 (11)	0.0464 (12)	0.0012 (9)	-0.0032 (10)	-0.0028 (9)
C3	0.0529 (13)	0.0435 (11)	0.0502 (13)	0.0031 (10)	-0.0098 (10)	0.0025 (9)
C4	0.0599 (14)	0.0418 (11)	0.0421 (12)	-0.0030 (10)	-0.0105 (10)	0.0039 (9)
C5	0.0487 (11)	0.0386 (10)	0.0360 (11)	-0.0062 (9)	-0.0068 (9)	-0.0005 (8)
C6	0.0552 (13)	0.0460 (11)	0.0346 (11)	-0.0099 (10)	-0.0017 (9)	0.0028 (9)
C7	0.0501 (12)	0.0498 (12)	0.0380 (11)	-0.0078 (10)	0.0043 (9)	-0.0002 (9)
C8	0.0456 (11)	0.0418 (11)	0.0375 (11)	-0.0019 (9)	0.0019 (9)	-0.0014 (8)
C9	0.0410 (10)	0.0393 (10)	0.0336 (10)	-0.0020 (8)	0.0020 (8)	-0.0001 (8)
C10	0.0439 (11)	0.0362 (10)	0.0345 (10)	-0.0054 (8)	-0.0036 (8)	-0.0023 (8)
C11	0.0393 (11)	0.0408 (10)	0.0405 (12)	0.0016 (8)	0.0024 (9)	-0.0011 (8)
C12	0.0370 (10)	0.0415 (10)	0.0381 (11)	0.0017 (8)	-0.0005 (8)	0.0014 (8)
C13	0.0436 (11)	0.0451 (11)	0.0384 (11)	-0.0003 (9)	0.0027 (9)	-0.0040 (9)
C14	0.0419 (11)	0.0477 (11)	0.0414 (11)	-0.0003 (9)	0.0054 (9)	0.0010 (9)
C15	0.0380 (11)	0.0413 (11)	0.0449 (12)	0.0024 (8)	-0.0031 (9)	0.0036 (9)
C16	0.0429 (11)	0.0429 (11)	0.0404 (11)	0.0016 (9)	-0.0041 (9)	-0.0031 (9)
C17	0.0414 (11)	0.0433 (10)	0.0366 (11)	0.0032 (8)	0.0010 (9)	0.0012 (8)
C18	0.0375 (10)	0.0388 (10)	0.0419 (11)	0.0021 (8)	0.0061 (9)	0.0003 (8)
C19	0.0372 (10)	0.0410 (10)	0.0382 (11)	0.0038 (8)	0.0063 (8)	0.0013 (8)
C20	0.0496 (12)	0.0416 (11)	0.0437 (12)	0.0002 (9)	0.0054 (10)	0.0058 (9)
C21	0.0534 (12)	0.0499 (12)	0.0394 (12)	0.0087 (10)	0.0028 (10)	0.0069 (9)
C22	0.0404 (11)	0.0547 (12)	0.0387 (12)	0.0088 (9)	0.0043 (9)	-0.0031 (9)
C23	0.0420 (11)	0.0475 (11)	0.0431 (12)	-0.0004 (9)	0.0061 (9)	-0.0040 (9)
C24	0.0433 (11)	0.0425 (11)	0.0391 (11)	0.0034 (9)	0.0052 (9)	0.0038 (9)
C25	0.0433 (13)	0.0658 (15)	0.0857 (19)	0.0084 (11)	-0.0070 (12)	-0.0008 (13)
C26	0.0432 (12)	0.0672 (15)	0.0605 (15)	-0.0001 (10)	0.0090 (11)	0.0034 (11)
C27	0.0555 (14)	0.0743 (16)	0.0526 (14)	-0.0118 (12)	0.0093 (11)	-0.0193 (12)
C28	0.0417 (11)	0.0487 (12)	0.0491 (13)	-0.0067 (9)	-0.0024 (9)	0.0026 (9)
C29	0.0477 (12)	0.0623 (14)	0.0439 (13)	-0.0021 (10)	0.0040 (10)	-0.0099 (10)

Geometric parameters (Å, °)

Cl1—C22	1.738 (2)	C15—C16	1.391 (3)	
01—C11	1.221 (2)	C15—C28	1.513 (3)	
O2—C18	1.220 (2)	C16—C17	1.390 (3)	
O3—C2	1.363 (2)	C16—H16	0.9500	
O3—C25	1.414 (3)	C17—C29	1.522 (3)	
O4—C8	1.362 (2)	C18—C19	1.501 (3)	
O4—C26	1.439 (2)	C19—C20	1.388 (3)	
C1—C2	1.386 (3)	C19—C24	1.394 (3)	
C1-C10	1.436 (3)	C20—C21	1.383 (3)	
C1-C11	1.503 (3)	C20—H20	0.9500	
С2—С3	1.402 (3)	C21—C22	1.386 (3)	
C3—C4	1.360 (3)	C21—H21	0.9500	
С3—Н3	0.9500	C22—C23	1.385 (3)	
C4—C5	1.408 (3)	C23—C24	1.383 (3)	
C4—H4	0.9500	С23—Н23	0.9500	
С5—С6	1.409 (3)	C24—H24	0.9500	
C5—C10	1.433 (3)	C25—H25A	0.9800	

C6—C7	1.353 (3)	С25—Н25В	0.9800
С6—Н6	0.9500	С25—Н25С	0.9800
C7—C8	1.399 (3)	C26—H26A	0.9800
С7—Н7	0.9500	C26—H26B	0.9800
C8—C9	1.391 (3)	С26—Н26С	0.9800
C9—C10	1,438 (3)	С27—Н27А	0.9800
C9—C18	1.508 (3)	С27—Н27В	0.9800
C11—C12	1 502 (3)	C_{27} H27C	0.9800
C12 - C17	1.302(3)	C28—H28A	0.9800
C12 - C13	1.090(3)	C28—H28B	0.9800
C12 $C13$ $C14$	1.385 (3)	C28 H28C	0.9800
$C_{13} = C_{14}$	1.505(3)	C20 H20A	0.9800
$C_{13} = C_{27}$	1.304(3)	C20 H20P	0.9800
C14 - C13	1.364 (3)	C29—H29B	0.9800
С14—п14	0.9300	С29—п29С	0.9800
C2—O3—C25	120.54 (18)	C12—C17—C29	122.43 (18)
C8—O4—C26	118.07 (16)	O2—C18—C19	120.45 (18)
C2-C1-C10	119.46 (18)	O2—C18—C9	120.58 (18)
C2-C1-C11	116.67 (17)	C19—C18—C9	118.73 (16)
C10-C1-C11	123 84 (17)	C_{20} C_{19} C_{24}	118 92 (19)
03-C2-C1	115 81 (18)	C_{20} C_{19} C_{21}	118 71 (18)
03 - C2 - C3	121 77 (19)	C_{24} C_{19} C_{18}	122 35 (18)
$C_1 - C_2 - C_3$	122.37(19)	$C_{21} - C_{20} - C_{19}$	122.33(10) 120.7(2)
$C_{1}^{-}C_{2}^{-}C_{3}^{-}C$	122.37(17) 118.9(2)	$C_{21} = C_{20} = C_{12}$	110 7
$C_4 = C_3 = C_2$	120.6	$C_{21} = C_{20} = H_{20}$	119.7
C_{1} C_{2} C_{3} H_{3}	120.6	$C_{19} = C_{20} = C_{120}$	119.7
$C_2 = C_3 = H_3$	120.0 121.7(2)	$C_{20} = C_{21} = C_{22}$	119.20 (19)
$C_3 = C_4 = C_3$	121.7(2)	$C_{20} = C_{21} = H_{21}$	120.4
$C_5 = C_4 = 114$	119.2	$C_{22} = C_{21} = H_{21}$	120.4
C_{3}	119.2	$C_{23} = C_{22} = C_{21}$	121.3(2)
C4 - C5 - C10	119.17(19) 120.24(19)	$C_{23} = C_{22} = C_{11}$	119.84(17)
C4 - C3 - C10	120.24 (18)	$C_{21} = C_{22} = C_{11}$	118.89 (17)
$C_{6} - C_{5} - C_{10}$	120.59 (19)	$C_{24} = C_{23} = C_{22}$	118.64 (19)
$C/-C_{0}$	121.//(19)	C24—C23—H23	120.7
С/—С6—Н6	119.1	C22—C23—H23	120.7
С5—С6—Н6	119.1	C23—C24—C19	121.19 (19)
C6-C/-C8	118.87 (19)	C23—C24—H24	119.4
С6—С7—Н7	120.6	С19—С24—Н24	119.4
С8—С7—Н7	120.6	O3—C25—H25A	109.5
04—C8—C9	114.75 (17)	O3—C25—H25B	109.5
O4—C8—C7	122.82 (17)	H25A—C25—H25B	109.5
C9—C8—C7	122.40 (19)	O3—C25—H25C	109.5
C8—C9—C10	119.62 (18)	H25A—C25—H25C	109.5
C8—C9—C18	113.73 (17)	H25B—C25—H25C	109.5
C10—C9—C18	126.60 (16)	O4—C26—H26A	109.5
C5-C10-C1	117.25 (18)	O4—C26—H26B	109.5
C5—C10—C9	116.69 (17)	H26A—C26—H26B	109.5
C1—C10—C9	126.05 (17)	O4—C26—H26C	109.5
O1-C11-C12	120.73 (17)	H26A—C26—H26C	109.5

01—C11—C1	120.79 (18)	H26B—C26—H26C	109.5
C12—C11—C1	118.45 (18)	C13—C27—H27A	109.5
C17—C12—C13	120.09 (18)	С13—С27—Н27В	109.5
C17—C12—C11	121.53 (17)	H27A—C27—H27B	109.5
C13—C12—C11	118.38 (17)	С13—С27—Н27С	109.5
C14—C13—C12	118.68 (18)	H27A—C27—H27C	109.5
C14—C13—C27	119.13 (18)	H27B—C27—H27C	109.5
C12—C13—C27	122.15 (18)	C15—C28—H28A	109.5
C15—C14—C13	122.35 (19)	C15—C28—H28B	109.5
C15—C14—H14	118.8	H28A—C28—H28B	109.5
C13—C14—H14	118.8	C15—C28—H28C	109.5
C14—C15—C16	117.96 (18)	H28A—C28—H28C	109.5
C14—C15—C28	120.80 (18)	H28B—C28—H28C	109.5
C16—C15—C28	121.23 (19)	С17—С29—Н29А	109.5
C17—C16—C15	121.92 (19)	С17—С29—Н29В	109.5
C17—C16—H16	119.0	H29A—C29—H29B	109.5
С15—С16—Н16	119.0	С17—С29—Н29С	109.5
C16—C17—C12	118.97 (18)	H29A—C29—H29C	109.5
$C_{16} - C_{17} - C_{29}$	118 54 (18)	H29B-C29-H29C	109.5
	11010 (10)		10,10
C25—O3—C2—C1	-175.14 (19)	O1—C11—C12—C17	-123.9(2)
C25—O3—C2—C3	7.5 (3)	C1—C11—C12—C17	58.0 (3)
C10-C1-C2-O3	-173.78 (17)	O1—C11—C12—C13	56.4 (3)
C11—C1—C2—O3	4.2 (3)	C1—C11—C12—C13	-121.7 (2)
C10—C1—C2—C3	3.6 (3)	C17—C12—C13—C14	-2.0 (3)
C11—C1—C2—C3	-178.48 (19)	C11—C12—C13—C14	177.67 (18)
O3—C2—C3—C4	176.24 (19)	C17—C12—C13—C27	-179.8 (2)
C1—C2—C3—C4	-0.9 (3)	C11—C12—C13—C27	-0.1 (3)
C2—C3—C4—C5	-1.0 (3)	C12—C13—C14—C15	1.2 (3)
C3—C4—C5—C6	179.39 (19)	C27—C13—C14—C15	179.0 (2)
C3—C4—C5—C10	0.2 (3)	C13—C14—C15—C16	0.4 (3)
C4—C5—C6—C7	-179.97 (19)	C13—C14—C15—C28	-179.21 (19)
C10—C5—C6—C7	-0.8 (3)	C14—C15—C16—C17	-1.2 (3)
C5—C6—C7—C8	-1.0 (3)	C28—C15—C16—C17	178.41 (19)
C26—O4—C8—C9	-166.11 (18)	C15—C16—C17—C12	0.4 (3)
C26—O4—C8—C7	15.8 (3)	C15—C16—C17—C29	177.52 (19)
C6—C7—C8—O4	179.09 (18)	C13—C12—C17—C16	1.3 (3)
C6—C7—C8—C9	1.1 (3)	C11—C12—C17—C16	-178.42 (18)
O4—C8—C9—C10	-177.55 (17)	C13—C12—C17—C29	-175.75 (19)
C7—C8—C9—C10	0.6 (3)	C11—C12—C17—C29	4.5 (3)
O4—C8—C9—C18	0.2 (3)	C8—C9—C18—O2	-99.7 (2)
C7—C8—C9—C18	178.27 (18)	C10-C9-C18-O2	77.8 (3)
C4—C5—C10—C1	2.4 (3)	C8—C9—C18—C19	74.7 (2)
C6—C5—C10—C1	-176.82 (18)	C10-C9-C18-C19	-107.8(2)
C4—C5—C10—C9	-178.44 (18)	O2-C18-C19-C20	-7.5 (3)
C6—C5—C10—C9	2.4 (3)	C9—C18—C19—C20	178.04 (17)
C2—C1—C10—C5	-4.1 (3)	O2—C18—C19—C24	170.53 (18)
C11—C1—C10—C5	178.04 (17)	C9—C18—C19—C24	-3.9 (3)
			(-)

C2—C1—C10—C9	176.74 (18)	C24—C19—C20—C21	-2.1(3)
C11—C1—C10—C9	-1.1 (3)	C18—C19—C20—C21	176.06 (17)
C8—C9—C10—C5	-2.2 (3)	C19—C20—C21—C22	0.5 (3)
C18—C9—C10—C5	-179.63 (18)	C20—C21—C22—C23	0.9 (3)
C8—C9—C10—C1	176.87 (18)	C20—C21—C22—Cl1	-179.21 (15)
C18—C9—C10—C1	-0.5 (3)	C21—C22—C23—C24	-0.6 (3)
C2-C1-C11-O1	-127.5 (2)	Cl1—C22—C23—C24	179.47 (14)
C10-C1-C11-O1	50.4 (3)	C22—C23—C24—C19	-1.0 (3)
C2-C1-C11-C12	50.6 (2)	C20—C19—C24—C23	2.3 (3)
C10—C1—C11—C12	-131.50 (19)	C18—C19—C24—C23	-175.70 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
C23—H23…O2 ⁱ	0.95	2.54	3.413 (2)	154	
C28—H28A…O1 ⁱⁱ	0.98	2.56	3.418 (3)	147	
C29—H29 <i>B</i> ···O2	0.98	2.42	3.349 (3)	157	

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2.