Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

10,16-Dichloro-6,20-dioxa-3,23-diazatetracyclo[23.3.1.0^{7,12}.0^{14,19}]nonacosa-1(29),7,9,11,14(19),15,17,25,27-nonaene-4,22-dione methanol monosolvate

Michaela Pojarová,^a* Michal Dušek,^a Zdeňka Sedláková^b and Emanuel Makrlík^c

^aInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic, ^bInstitue of Macromolecular Chemistry, ASCR v.v.i., Heyrovského nám. 2, 16202 Prague 6, Czech Republic, and ^cFaculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6, Czech Republic Correspondence e-mail: pojarova@fzu.cz

Received 6 February 2012; accepted 16 February 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.033; wR factor = 0.082; data-to-parameter ratio = 12.6.

In the title compound, $C_{25}H_{22}Cl_2N_2O_4$ ·CH₃OH, the macrocyclic molecule adopts a slightly distorted C_2 -symmetric conformation. The macrocyclic molecules are linked *via* N-H···O hydrogen bonds between the amide groups into chains extending along the [010] direction. The methanol molecules bridge these chains *via* N-H···O and O-H···O hydrogen bonds with the formation of a two-dimensional polymetric structure parallel to (001). The methanol molecule is disordered over two positions with the occupancy ratio of 9:1. The disorder of the solvent molecule is caused by weak intermolecular C-H···Cl hydrogen bonding.

Related literature

For application of macrocycles, see: Hayvali & Hayvali (2005); Kleinpeter *et al.* (1997); Jaiyu *et al.* (2007); Christensen *et al.* (1997); Alexander (1995). For the synthetic procedure, see: Ertul *et al.* (2009).

 $V = 4802.29 (10) \text{ Å}^3$

 $0.30 \times 0.11 \times 0.08 \text{ mm}$

42959 measured reflections

4099 independent reflections

3364 reflections with $I > 2\sigma(I)$

Cu $K\alpha$ radiation $\mu = 2.78 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.070$

Z = 8

Experimental

Crystal data

$C_{25}H_{22}Cl_2N_2O_4\cdot CH_4O$
$M_r = 517.39$
Orthorhombic, Pbca
$a = 21.9905 (3) \text{\AA}$
b = 8.1864 (1) Å
c = 26.6760 (3) Å

Data collection

Oxford Diffraction Xcalibur A Gemini Ultra diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{min} = 0.826, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	4 restraints
$wR(F^2) = 0.082$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
4099 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
326 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1N1···O5	0.98	2.31	3.039 (3)	130
$N2-H1N2\cdotsO1^{i}$	0.93	2.20	2.860 (2)	128
O5−H1O5···O4 ⁱⁱ	0.82	2.05	2.789 (3)	150
$C26A - H26F \cdots Cl2^{iii}$	0.96	2.74	3.616 (3)	149
Symmetry codes: $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x + \frac{3}{2}, y$	$w - \frac{1}{2}, z;$ (ii)	-x + 2, -y, -y	-z + 1; (iii)

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

This study was financially supported by the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Science of the Czech Republic, the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 'Environmental Aspects of Sustainable Development of Society'), and the Czech Ministry of Education, Youth and Sports (Project MSM 6046137307).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2457).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Alexander, V. (1995). Chem. Rev. 95, 273-342.
- Christensen, A., Jensen, H. S., McKee, V., Mckenzie, C. J. & Munch, M. (1997). Inorg. Chem. 36, 6080–6085.

- Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). *Acta Chim. Slov.* **56**, 878–884.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hayvali, M. & Hayvali, Z. (2005). Synth. React. Inorg. Met. Org. Chem. 34, 713-732.
- Jaiyu, A., Rojanathanes, R. & Sukwattanasinitt, M. (2007). Tetrahedron Lett. 48, 1817–1821.
- Kleinpeter, E., Starke, I., Strohl, D. & Holdt, H. J. (1997). J. Mol. Struct. 404, 273–290.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* 39, 453–457.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o805–o806 [doi:10.1107/S1600536812007052]

10,16-Dichloro-6,20-dioxa-3,23-diazatetracyclo-[23.3.1.0^{7,12}.0^{14,19}]nonacosa-1(29),7,9,11,14(19),15,17,25,27-nonaene-4,22dione methanol monosolvate

Michaela Pojarová, Michal Dušek, Zdeňka Sedláková and Emanuel Makrlík

S1. Comment

Polyazalactones together with polyoxalactones and polyethers are studied for their ability to act as multidentate ligands to complex various cations. Polyazalactones can incorporate transition metals into their cavities *via* an ion-dipole interaction (Hayvali & Hayvali, 2005; Kleinpeter *et al.*, 1997). They are studied for their role in bioprocesses, catalysis, material science, transport and separation (Jaiyu *et al.*, 2007; Christensen *et al.*, 1997; Alexander, 1995). In this paper, we report the crystal structure of a lactam ionophore (Fig.1). The macrocycle consists of three benzene rings, two of them substituted with chlorine atom in *para* position to O atom. The neighboring molecules are connected *via* hydrogen bonds between amide groups (Table 1). The crystal contains methanol molecule disordered over two positions with partial occupancies of 0.90 and 0.10. The hydroxyl group of the solvent forms hydrogen bond to the oxygen atom of the amide group (Table 1). The methyl group of the methanol in second position is also weakly bound to the chlorine atoms of neighboring molecule. This weak interaction competes with the stronger hydrogen bond to amide group and causes the solvent disorder.

S2. Experimental

All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized according to the method reported by Ertul *et al.* (2009). Single crystals were prepared by slow evaporation of methanol solution.

S3. Refinement

Positions of disordered groups were found from electron density maps. The disordered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were restrained to 1.406 (20) Å. Site occupancies were refined for the different parts with the common displacement parameters for corresponding atoms in various fragments. At the end of the refinement, site occupancies were fixed at the values 0.9 and 0.1 and hydrogen atoms were placed in calculated positions. All hydrogen atoms of the macrocyclic molecule were found from electron density difference maps. H atoms attached to C atoms were placed in calculated positions. N—H distances were initially restrained to 1.00 Å with σ =0.02 and then fixed. The isotropic displacement parameters of H atoms were calculated as $1.2U_{eq}$ of the parent atom.

Figure 1

View of the asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level. Cbound H atoms have been omitted for clarity.

Figure 2

Projection along the *b* axis with highlighted hydrogen bonds between the molecules. Hydrogen atoms not involved in hydrgen bonding have been omitted.

10,16-Dichloro-6,20-dioxa-3,23- diazatetracyclo[23.3.1.0^{7,12}.0^{14,19}]nonacosa- 1(29),7,9,11,14 (19),15,17,25,27- nonaene-4,22-dione methanol monosolvate

Crystal data	
$C_{25}H_{22}Cl_2N_2O_4 \cdot CH_4O$ $M_r = 517.39$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ac 2ab $a = 21.9905 (3) \text{ Å}$ $b = 8.1864 (1) \text{ Å}$ $c = 26.6760 (3) \text{ Å}$ $V = 4802.29 (10) \text{ Å}^3$ $Z = 8$ $F(000) = 2160$	$D_x = 1.431 \text{ Mg m}^{-3}$ Melting point = 316–318 K Cu K α radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 6415 reflections $\theta = 3.3-67.1^{\circ}$ $\mu = 2.78 \text{ mm}^{-1}$ T = 120 K Prism, colourless $0.30 \times 0.11 \times 0.08 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur A Gemini Ultra diffractometer Radiation source: Enhance Ultra (Cu) X-ray Source Mirror monochromator Detector resolution: 10.3784 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2010)	$T_{\min} = 0.826, T_{\max} = 1.000$ 42959 measured reflections 4099 independent reflections 3364 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{\max} = 65.1^{\circ}, \theta_{\min} = 3.3^{\circ}$ $h = -22 \rightarrow 25$ $k = -9 \rightarrow 9$ $l = -29 \rightarrow 31$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.082$ S = 1.03 4099 reflections 326 parameters 4 restraints	 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0358P)^{2} + 2.1383P] \qquad \Delta \rho_{max} = 0$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = (\Delta/\sigma)_{max} = 0.002$

$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Positions of disordered groups were found from electron density maps. The disordered fragments were then placed in appropriate positions, and all distances between neighbouring atoms were fixed. Site occupancies were refined for the different parts with the same thermal parameters for same atoms in various fragments. At the end of the refinement, site occupancies were fixed at values 0.90 and 0.10 and hydrogen atoms were placed into calculated positions. All hydrogen atoms could be found from maps of difference electron density, but those, attached to carbon atoms, were placed into calculated positions. The distance between N and H atoms were restrained to 1.00 Å with σ =0.02. The isotropic temperature parameters of hydrogen atoms were calculated as $1.2*U_{eq}$ of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C11	1.11069 (2)	0.02416 (7)	0.213524 (18)	0.03911 (14)	
C12	0.84287 (2)	-0.21013 (7)	0.147714 (18)	0.03856 (14)	
01	0.70542 (6)	0.38705 (18)	0.40933 (5)	0.0367 (3)	
O2	0.80594 (5)	0.19883 (17)	0.32491 (5)	0.0305 (3)	
O3	0.96571 (6)	-0.16498 (18)	0.38954 (5)	0.0322 (3)	
O4	0.98144 (6)	-0.1787 (2)	0.52219 (5)	0.0406 (4)	
N1	0.80833 (7)	0.38887 (19)	0.40351 (6)	0.0277 (3)	
H1N2	0.8870	-0.1436	0.4391	0.033*	
N2	0.89913 (7)	-0.14110 (19)	0.47251 (5)	0.0262 (3)	
H1N1	0.8439	0.3425	0.3862	0.031*	
C1	0.81828 (9)	0.4614 (2)	0.45255 (7)	0.0315 (4)	
H1A	0.7853	0.5366	0.4597	0.038*	
H1B	0.8557	0.5239	0.4517	0.038*	
C2	0.75257 (8)	0.3497 (2)	0.38745 (7)	0.0266 (4)	
C3	0.74788 (8)	0.2590 (2)	0.33841 (7)	0.0265 (4)	
H3A	0.7195	0.1690	0.3417	0.032*	
H3B	0.7329	0.3318	0.3125	0.032*	
C4	0.81162 (8)	0.1097 (2)	0.28177 (6)	0.0240 (4)	
C5	0.76696 (8)	0.0977 (2)	0.24538 (7)	0.0267 (4)	
Н5	0.7306	0.1547	0.2489	0.032*	
C6	0.77682 (8)	0.0000 (2)	0.20357 (7)	0.0289 (4)	
H6	0.7472	-0.0093	0.1788	0.035*	
C7	0.83113 (8)	-0.0828 (2)	0.19935 (7)	0.0276 (4)	
C8	0.87611 (8)	-0.0703 (2)	0.23554 (7)	0.0255 (4)	
H8	0.9124	-0.1273	0.2317	0.031*	
C9	0.86718 (8)	0.0266 (2)	0.27735 (7)	0.0242 (4)	

C10	0.91217 (8)	0.0476 (3)	0.31990 (7)	0.0338 (5)	
H10A	0.9167	0.1636	0.3263	0.041*	
H10B	0.8947	-0.0011	0.3498	0.041*	
C11	0.97467 (8)	-0.0239(2)	0.31231 (7)	0.0283 (4)	
C12	1.00962 (8)	0.0216 (2)	0.27119 (7)	0.0296 (4)	
H12	0.9936	0.0927	0.2474	0.035*	
C13	1.06813 (8)	-0.0383 (2)	0.26540 (7)	0.0298 (4)	
C14	1.09288 (8)	-0.1440 (3)	0.29985 (7)	0.0317 (4)	
H14	1.1320	-0.1849	0.2953	0.038*	
C15	1.05893 (9)	-0.1890 (3)	0.34134 (7)	0.0313 (4)	
H15	1.0753	-0.2604	0.3649	0.038*	
C16	1.00041 (8)	-0.1277 (2)	0.34793 (7)	0.0275 (4)	
C17	0.99810 (9)	-0.1964 (3)	0.43499 (7)	0.0345 (5)	
H17A	1.0330	-0.1243	0.4370	0.041*	
H17B	1.0128	-0.3081	0.4348	0.041*	
C18	0.95804 (9)	-0.1705 (2)	0.48030 (7)	0.0291 (4)	
C19	0.85686 (9)	-0.1157 (2)	0.51386 (7)	0.0287 (4)	
H19A	0.8741	-0.1632	0.5440	0.034*	
H19B	0.8194	-0.1736	0.5066	0.034*	
C20	0.84194 (8)	0.0621 (2)	0.52404 (7)	0.0261 (4)	
C21	0.82821 (8)	0.1118 (3)	0.57256 (7)	0.0307 (4)	
H21	0.8297	0.0368	0.5987	0.037*	
C22	0.81235 (9)	0.2726 (3)	0.58206 (7)	0.0350 (5)	
H22	0.8037	0.3052	0.6147	0.042*	
C23	0.80922 (8)	0.3850 (3)	0.54350 (8)	0.0321 (4)	
H23	0.7985	0.4927	0.5503	0.039*	
C24	0.82213 (8)	0.3373 (2)	0.49450 (7)	0.0271 (4)	
C25	0.83856 (8)	0.1760 (2)	0.48543 (7)	0.0264 (4)	
H25	0.8475	0.1435	0.4528	0.032*	
O5	0.94522 (11)	0.3414 (4)	0.40875 (11)	0.0418 (7)	0.90
H1O5	0.9545	0.2931	0.4346	0.050*	0.90
C26	0.99892 (15)	0.3791 (5)	0.38117 (9)	0.0415 (7)	0.90
H26A	0.9904	0.4652	0.3578	0.050*	0.90
H26B	1.0123	0.2838	0.3633	0.050*	0.90
H26C	1.0303	0.4138	0.4039	0.050*	0.90
O5A	0.9587 (14)	0.374 (5)	0.4090 (12)	0.0418 (7)	0.10
H2O5	0.9634	0.2905	0.4254	0.050*	0.10
C26A	0.9961 (18)	0.367 (6)	0.3651 (11)	0.0415 (7)	0.10
H26D	0.9888	0.4625	0.3449	0.050*	0.10
H26E	0.9863	0.2711	0.3462	0.050*	0.10
H26F	1.0381	0.3642	0.3748	0.050*	0.10

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0270 (2)	0.0524 (3)	0.0380 (3)	-0.0081 (2)	0.00832 (19)	-0.0091 (2)
Cl2	0.0337 (3)	0.0480 (3)	0.0339 (3)	-0.0041 (2)	0.00026 (19)	-0.0116 (2)
01	0.0250 (7)	0.0434 (9)	0.0417 (8)	0.0047 (6)	0.0079 (6)	-0.0067 (7)

Acta Cryst. (2012). E68, o805–o806

supporting information

O2	0.0183 (6)	0.0437 (8)	0.0294 (7)	0.0064 (6)	0.0010 (5)	-0.0059 (6)
03	0.0221 (6)	0.0499 (9)	0.0245 (6)	0.0021 (6)	-0.0020 (5)	-0.0013 (6)
04	0.0343 (8)	0.0595 (10)	0.0279 (7)	0.0096 (7)	-0.0066 (6)	0.0019 (7)
N1	0.0236 (8)	0.0284 (8)	0.0311 (8)	0.0029 (7)	0.0014 (6)	0.0015 (7)
N2	0.0254 (8)	0.0302 (9)	0.0230 (7)	0.0009 (7)	-0.0009 (6)	-0.0013 (6)
C1	0.0290 (10)	0.0283 (10)	0.0372 (11)	0.0017 (8)	-0.0014 (8)	-0.0044 (8)
C2	0.0242 (9)	0.0240 (10)	0.0315 (9)	0.0042 (8)	0.0035 (8)	0.0059 (8)
C3	0.0185 (8)	0.0298 (10)	0.0313 (9)	0.0057 (8)	0.0024 (7)	0.0050 (8)
C4	0.0216 (9)	0.0264 (9)	0.0241 (9)	-0.0010 (8)	0.0028 (7)	0.0051 (7)
C5	0.0184 (9)	0.0314 (10)	0.0302 (10)	0.0002 (8)	0.0002 (7)	0.0092 (8)
C6	0.0232 (9)	0.0359 (11)	0.0276 (10)	-0.0049 (8)	-0.0033 (7)	0.0064 (8)
C7	0.0261 (9)	0.0306 (10)	0.0260 (9)	-0.0053 (8)	0.0020 (7)	0.0013 (8)
C8	0.0208 (9)	0.0279 (10)	0.0277 (9)	-0.0002 (8)	0.0029 (7)	0.0043 (8)
C9	0.0194 (8)	0.0284 (10)	0.0247 (9)	-0.0012 (8)	0.0021 (7)	0.0058 (7)
C10	0.0218 (9)	0.0515 (13)	0.0280 (10)	0.0097 (9)	-0.0010 (8)	-0.0040 (9)
C11	0.0196 (9)	0.0398 (11)	0.0256 (9)	0.0026 (8)	-0.0024 (7)	-0.0082 (8)
C12	0.0233 (9)	0.0364 (11)	0.0290 (9)	0.0024 (8)	-0.0018 (8)	-0.0056 (8)
C13	0.0212 (9)	0.0383 (11)	0.0300 (10)	-0.0042 (8)	0.0019 (7)	-0.0109 (8)
C14	0.0186 (9)	0.0406 (12)	0.0359 (10)	0.0022 (8)	-0.0019 (8)	-0.0131 (9)
C15	0.0248 (10)	0.0374 (11)	0.0317 (10)	0.0055 (8)	-0.0048 (8)	-0.0076 (8)
C16	0.0207 (9)	0.0356 (11)	0.0262 (9)	-0.0002 (8)	-0.0017 (7)	-0.0074 (8)
C17	0.0294 (10)	0.0463 (13)	0.0278 (10)	0.0091 (9)	-0.0037 (8)	-0.0014 (9)
C18	0.0291 (10)	0.0313 (11)	0.0271 (10)	0.0028 (8)	-0.0027 (8)	0.0004 (8)
C19	0.0264 (9)	0.0326 (11)	0.0270 (9)	-0.0017 (8)	0.0027 (7)	0.0020 (8)
C20	0.0177 (8)	0.0335 (10)	0.0271 (9)	-0.0020 (8)	-0.0015 (7)	-0.0035 (8)
C21	0.0236 (9)	0.0434 (12)	0.0251 (9)	-0.0008 (9)	-0.0002 (7)	0.0004 (8)
C22	0.0286 (10)	0.0494 (13)	0.0271 (10)	0.0025 (9)	0.0009 (8)	-0.0109 (9)
C23	0.0235 (9)	0.0346 (11)	0.0383 (11)	0.0034 (9)	-0.0017 (8)	-0.0098 (9)
C24	0.0176 (9)	0.0334 (11)	0.0301 (10)	-0.0008 (8)	-0.0022 (7)	-0.0048 (8)
C25	0.0215 (9)	0.0334 (11)	0.0245 (9)	-0.0007 (8)	0.0011 (7)	-0.0047 (8)
05	0.0243 (15)	0.0620 (19)	0.0390 (8)	0.0036 (10)	-0.0010 (10)	0.0116 (10)
C26	0.0367 (13)	0.0549 (17)	0.0330 (17)	-0.0057 (12)	-0.0024 (16)	0.0023 (19)
O5A	0.0243 (15)	0.0620 (19)	0.0390 (8)	0.0036 (10)	-0.0010 (10)	0.0116 (10)
C26A	0.0367 (13)	0.0549 (17)	0.0330 (17)	-0.0057 (12)	-0.0024 (16)	0.0023 (19)

Geometric parameters (Å, °)

Cl1—C13	1.7470 (19)	C11—C16	1.395 (3)	
Cl2—C7	1.7466 (19)	C12—C13	1.386 (3)	
O1—C2	1.229 (2)	C12—H12	0.9300	
O2—C4	1.368 (2)	C13—C14	1.375 (3)	
O2—C3	1.415 (2)	C14—C15	1.385 (3)	
O3—C16	1.381 (2)	C14—H14	0.9300	
O3—C17	1.430 (2)	C15—C16	1.392 (3)	
O4—C18	1.232 (2)	C15—H15	0.9300	
N1—C2	1.338 (2)	C17—C18	1.511 (3)	
N1—C1	1.453 (2)	C17—H17A	0.9700	
N1—H1N1	0.9840	C17—H17B	0.9700	

N2—C18	1.334 (2)	C19—C20	1.517 (3)
N2—C19	1.458 (2)	С19—Н19А	0.9700
N2—H1N2	0.9295	C19—H19B	0.9700
C1—C24	1.514 (3)	C20—C21	1.390 (3)
C1—H1A	0.9700	C20—C25	1.391 (3)
C1—H1B	0.9700	C21—C22	1.385 (3)
C2—C3	1.507 (3)	C21—H21	0.9300
С3—НЗА	0.9700	C22—C23	1.382 (3)
С3—НЗВ	0.9700	С22—Н22	0.9300
C4—C5	1.384 (3)	C23—C24	1.394 (3)
C4—C9	1.404 (3)	C23—H23	0.9300
C5—C6	1.389 (3)	C24—C25	1.391 (3)
С5—Н5	0.9300	C25—H25	0.9300
C6—C7	1.378 (3)	05-C26	1.425 (3)
С6—Н6	0.9300	05—H105	0.8200
C7—C8	1 386 (3)	C26—H26A	0.9600
C8-C9	1 383 (3)	C26—H26B	0.9600
C8—H8	0.9300	C_{26} H26D	0.9600
C9-C10	1 516 (3)	05A - C26A	1430(19)
C10-C11	1.508 (3)	05A_H205	0.8200
C10-H10A	0.9700	C_{264} H26D	0.8200
C10_H10B	0.9700	C_{26A} H26E	0.9600
C_{11} C_{12}	1 390 (3)	C_{26A} H26E	0.9600
011-012	1.590 (5)	C20/A-11201	0.9000
C4—O2—C3	118.82 (14)	C14—C13—C12	121.06 (18)
C16—O3—C17	116.49 (14)	C14—C13—C11	120.10 (14)
C2—N1—C1	121.63 (16)	C12—C13—C11	118.83 (16)
C2—N1—H1N1	119.0	C13—C14—C15	119.22 (17)
C1—N1—H1N1	117.4	C13—C14—H14	120.4
C18—N2—C19	121.82 (15)	C15—C14—H14	120.4
C18—N2—H1N2	115.1	C14—C15—C16	120.21 (19)
C19—N2—H1N2	123.0	C14—C15—H15	119.9
N1—C1—C24	113.56 (16)	C16—C15—H15	119.9
N1—C1—H1A	108.9	O3—C16—C15	122.18 (17)
C24—C1—H1A	108.9	O3—C16—C11	117.25 (16)
N1—C1—H1B	108.9	C15—C16—C11	120.58 (18)
C24—C1—H1B	108.9	O3—C17—C18	111.27 (15)
H1A—C1—H1B	107.7	O3—C17—H17A	109.4
01—C2—N1	124.17 (18)	C18—C17—H17A	109.4
O1—C2—C3	118.49 (17)	O3—C17—H17B	109.4
N1—C2—C3	117.30 (16)	C18—C17—H17B	109.4
O2—C3—C2	109.29 (15)	H17A—C17—H17B	108.0
O2—C3—H3A	109.8	O4—C18—N2	123.83 (18)
С2—С3—НЗА	109.8	O4—C18—C17	118.33 (17)
O2—C3—H3B	109.8	N2—C18—C17	117.84 (16)
С2—С3—Н3В	109.8	N2—C19—C20	114.22 (15)
НЗА—СЗ—НЗВ	108.3	N2—C19—H19A	108.7
O2—C4—C5	124.25 (16)	C20—C19—H19A	108.7
	· /		

O2—C4—C9	114.12 (15)	N2—C19—H19B	108.7
C5—C4—C9	121.62 (17)	C20—C19—H19B	108.7
C4—C5—C6	119.53 (17)	H19A—C19—H19B	107.6
С4—С5—Н5	120.2	C21—C20—C25	118.80 (18)
С6—С5—Н5	120.2	C21—C20—C19	119.64 (17)
C7—C6—C5	118.96 (17)	C25—C20—C19	121.47 (16)
С7—С6—Н6	120.5	C22—C21—C20	120.21 (19)
С5—С6—Н6	120.5	C22—C21—H21	119.9
C6—C7—C8	121.69 (18)	C20—C21—H21	119.9
C6—C7—Cl2	119.10 (14)	C23—C22—C21	120.62 (18)
C8—C7—Cl2	119.19 (15)	С23—С22—Н22	119.7
C9—C8—C7	120.19 (17)	C21—C22—H22	119.7
С9—С8—Н8	119.9	C22—C23—C24	120.08 (19)
С7—С8—Н8	119.9	С22—С23—Н23	120.0
C8—C9—C4	118.01 (16)	С24—С23—Н23	120.0
C8—C9—C10	125.23 (16)	C25—C24—C23	118.84 (18)
C4—C9—C10	116.75 (16)	C25—C24—C1	121.56 (17)
C11—C10—C9	116.76 (16)	C23—C24—C1	119.60 (18)
C11—C10—H10A	108.1	C24—C25—C20	121.43 (17)
C9—C10—H10A	108.1	С24—С25—Н25	119.3
C11—C10—H10B	108.1	С20—С25—Н25	119.3
C9—C10—H10B	108.1	C26—O5—H1O5	109.5
H10A—C10—H10B	107.3	C26A—O5A—H2O5	109.5
C12—C11—C16	118.45 (17)	O5A—C26A—H26D	109.5
C12—C11—C10	120.39 (18)	O5A—C26A—H26E	109.5
C16—C11—C10	121.00 (17)	H26D—C26A—H26E	109.5
C13—C12—C11	120.43 (19)	O5A—C26A—H26F	109.5
C13—C12—H12	119.8	H26D—C26A—H26F	109.5
C11—C12—H12	119.8	H26E—C26A—H26F	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
N1—H1 <i>N</i> 1…O5	0.98	2.31	3.039 (3)	130
N2—H1N2····O1 ⁱ	0.93	2.20	2.860 (2)	128
O5—H1 <i>O</i> 5…O4 ⁱⁱ	0.82	2.05	2.789 (3)	150
C26A—H26F···Cl2 ⁱⁱⁱ	0.96	2.74	3.616 (3)	149

Symmetry codes: (i) -x+3/2, y-1/2, z; (ii) -x+2, -y, -z+1; (iii) -x+2, y+1/2, -z+1/2.