Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Benzylisatin

M. Schutte, ${ }^{\text {a }}$ H. G. Visser, ${ }^{\text {a }}$ A. Roodt ${ }^{\text {a }}$ and H. Braband ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ${ }^{\mathbf{b}}$ Institute of Inorganic Chemistry, University of Zurich, Winterthurerestrasse 190, CH-8057 Zurich, Switzerland
Correspondence e-mail: schuttem@ufs.ac.za

Received 31 January 2012; accepted 14 February 2012

Key indicators: single-crystal X-ray study; $T=183 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.062 ; w R$ factor $=0.128 ;$ data-to-parameter ratio $=12.9$.

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$, two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed in the crystal structure, as well as $\pi-\pi$ stacking with a centroid-centroid distance of 3.623 (2) Å. The planarity of the two ring systems is illustrated by very small deviations of all the atoms from these planes [largest deviations $=0.003$ (3) and 0.010 (3) \AA for the phenyl and fused-benzene rings, respectively]. The dihedral angle between these two planes is $77.65(9)^{\circ}$.

Related literature

For literature regarding the biological properties of N benzylisatin, see: Palmer et al. (1987); Goldschmidt \& Llewellyn (1950); Wei et al. (2004); Frolova et al. (1988); Akkurt et al. (2006). For background regarding the functionalization of isatin, see: Schutte (2011). For a similar structure, see: Akkurt et al. (2006).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \\
& M_{r}=237.25 \\
& \text { Monoclinic, } P 2_{1} \\
& a=6.5766(5) \AA \\
& b=4.8777(4) \AA \\
& c=18.2211(13) \AA \\
& \beta=98.316(7)^{\circ}
\end{aligned}
$$

Data collection

Oxford Xcalibur Ruby CCD diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007)
$T_{\text {min }}=0.881, T_{\text {max }}=0.921$
5347 measured reflections 2095 independent reflections 1264 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.068$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062 \quad 1$ restraint
$w R\left(F^{2}\right)=0.128$
$S=0.99$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}_{\AA^{-3}}$
2095 reflections
163 parameters
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2}$	0.95	2.41	$3.213(5)$	143
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 9 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.59	$3.525(4)$	159

Symmetry codes: (i) $x+1, y+1, z$; (ii) $x+1, y, z$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Henrik Braband for the data collection, and the Department of Chemistry of the University of the Free State, the NRF and Sasol Ltd for funding. Special thanks go to Professor Roger Alberto from the ACI, University of Zurich.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2282).

References

Akkurt, M., Türktekin, S., Jarrahpour, A. A., Khalili, D. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o1575-o1577.

Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Frolova, N. A., Kravtsov, V. Kh., Biyushkin, V. N., Chumakov, Yu. M., Bel'kova, O. N. \& Malinovskii, T. I. (1988). Zh. Strukt. Khim. 29, 155-158.
Goldschmidt, G. H. \& Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Palmer, M. H., Blake, A. J. \& Gould, R. O. (1987). Chem. Phys. 115, 219-227.
Schutte, M. (2011). PhD thesis, University of the Free State, Bloemfontein, South Africa.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wei, H.-X., Zhou, C., Ham, S., White, J. M. \& Birney, D. M. (2004). Org. Lett. 6, 4289-4292.

supporting information

Acta Cryst. (2012). E68, o777 [doi:10.1107/S1600536812006575]

N-Benzylisatin

M. Schutte, H. G. Visser, A. Roodt and H. Braband

S1. Comment

The molecule isatin has a variety of biological activities. It can cause anxiety but can also be used as a sedative. It can also act as an anticonvulsant agent and can block the binding of an agonist at the atrial natriuretic peptide receptors (Palmer et al., 1987; Goldschmidt \& Llewellyn, 1950; Wei et al., 2004; Frolova et al., 1988; Akkurt et al., 2006). Benzylisatin was synthesized to explore the reactivity of the amide group in the isatin molecule and to investigate its possible biological reactivity as free ligand or as bidentate ligand as part of the $\operatorname{Re}(\mathrm{I})$ tricarbonyl complex. The coordination of biand tridentate ligand systems to the $\operatorname{Re}(\mathrm{I})$ tricarbonyl synthon is part of an ongoing study. The amide group was functionalized in the isatin molecule to illustrate the pH dependent keto-enol tautomerisation of the molecule to coordinate in a bidentate fashion to the $\operatorname{Re}(\mathrm{I})$ metal centre. By functionalizing the amide, keto-enol tautomerisation is no longer possible and the derivatized isatin cannot coordinate to the $\operatorname{Re}(\mathrm{I})$ core (Schutte, 2011).
The title compound, N-benzylisatin, crystallized in the monoclinic spacegroup $\mathrm{P} 2_{1}$ with one molecule in the asymmetric unit. The carbonyl carbon to oxygen distances of 1.221 (5) \AA and 1.209 (4) \AA compare well with the structure of Akkurt et al. (2006) of $1.2061(18) \AA$ and 1.2091 (17) \AA, and the rest of the bond distances and angles of the two structures are also similar. The torsion angles $\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1$ and $\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 2$ are $57.0(5)^{\circ}$ and $0.5(6)^{\circ}$ for this structure and $53.41(16)^{\circ}$ and $1.7(2)^{\circ}$ for the reported structure by Akkurt et al. (2006), respectively. The planarity of the two ring systems, $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$, are illustrated by very small deviations of all the atoms from these planes, with the largest deviations 0.003 (3) \AA for C 13 and 0.010 (3) for C4 respectively. The isatin group in the structure of Akkurt et al. is almost planar, with a maximum deviation of 0.058 (1) \AA for atom O2. The dihedral angle between the two planes is calculated as $77.65(9)^{\circ}$ in this structure and 87.08 (5) ${ }^{\circ}$ in the structure of Akkurt et al..
The main difference between the structure of N-benzylisatin reported here and that by Akkurt et al. is the packing as a result of the different space groups, $P 2_{1}$ and $P 2_{1} / \mathrm{c}$, respectively. In this structure report, the benzylisatin molecules pack in a head-to-toe fashion along the a axis and in layers when viewed along the b axis (Figure 2). In the structure by Akkurt et al. the molecules pack in a staggered head-to-head fashion when viewed along the c axis.
Three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed in the structure of N-benzylisatin. One is an intramolecular hydrogen bond and the other two are intermolecular hydrogen bonds to two neighbouring molecules. Some π-stacking is observed in the crystal structure of N-benzylisatin between neighbouring molecules, with a centroid-to-centroid distance of 3.623 (2) \AA. This is illustrated in Figure 3.

S2. Experimental

The preparation was performed under strict Schlenk conditions. Isatin ($0.2 \mathrm{~g}, 1.36 \mathrm{mmol}$) was dissolved in dry dimethylformamide (3 ml). Powdered calcium hydride ($0.191 \mathrm{~g}, 4.54 \mathrm{mmol}$) was added to the mixture and stirred at $45^{\circ} \mathrm{C}$ for 30 minutes. Benzylchloride ($0.258 \mathrm{ml}, 2.04 \mathrm{mmol}$) was added to the mixture and stirred at room temperature for 16 h . The
reaction mixture was dried, dissolved in ethylacetate and washed three times with water. The combined ethylacetate layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified with column chromatography with $\mathrm{DCM}: H e x 1: 1$ as eluent and monitored with TLC. The resulting orange product was dried under vacuum. Orange crystals were grown from a methanol solution of the product.

S3. Refinement

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent) of the parent atom with a $\mathrm{C}-\mathrm{H}$ distance of 0.95 . The methene H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and at a distance of $0.99 \AA$.

Figure 1

Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50\% probability).

Figure 2
Packing of the title compound in the unit cell.

Figure 3

Observed $\pi-\pi$ stacking in the crystal structure, indicated by dashed lines (hydrogen atoms omitted for clarity).

1-benzylindoline-2,3-dione

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$
$M_{r}=237.25$
Monoclinic, $P 2_{1}$
$a=6.5766$ (5) Å
$b=4.8877$ (4) \AA
$c=18.2211(13) \AA$
$\beta=98.316(7)^{\circ}$
$\begin{aligned} \mu & =0.09 \mathrm{~mm}^{-1} \\ T & =183 \mathrm{~K}\end{aligned}$

Data collection

Oxford Xcalibur Ruby CCD
diffractometer
Graphite monochromator
Detector resolution: 10.4498 pixels mm^{-1}
o oscillation scan
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
$T_{\text {min }}=0.881, T_{\text {max }}=0.921$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.128$
$S=0.99$
2095 reflections
163 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Plate, orange
$0.34 \times 0.07 \times 0.02 \mathrm{~mm}$

5347 measured reflections
2095 independent reflections
1264 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-7 \rightarrow 7$
$k=-5 \rightarrow 5$
$l=-21 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0406 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.15$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Special details

Experimental. CrysAlis Pro (Oxford Diffraction Ltd, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C8	$0.7610(6)$	$-0.1172(9)$	$0.7201(2)$	$0.0419(11)$
C7	$0.6174(6)$	$0.0052(8)$	$0.6537(2)$	$0.0398(10)$
C6	$0.7413(5)$	$0.2130(8)$	$0.6238(2)$	$0.0356(10)$
C5	$0.6944(5)$	$0.3865(8)$	$0.5635(2)$	$0.0396(10)$
H5	0.5629	0.3827	0.534	0.048^{*}
C4	$0.8453(6)$	$0.5654(8)$	$0.5477(2)$	$0.0406(11)$
H4	0.8183	0.6855	0.5065	0.049^{*}
C3	$1.0351(6)$	$0.5702(8)$	$0.5917(2)$	$0.0395(10)$
H3	1.1357	0.6967	0.5804	0.047^{*}
C2	$1.0833(6)$	$0.3952(8)$	$0.6520(2)$	$0.0371(10)$
H2	1.2146	0.3986	0.6815	0.045^{*}
C1	$0.9315(5)$	$0.2159(9)$	$0.6670(2)$	$0.0339(10)$

C9	$1.1290(5)$	$-0.0424(8)$	$0.7759(2)$	$0.0395(10)$
H9A	1.2449	-0.0664	0.7473	0.047^{*}
H9B	1.1091	-0.2179	0.8011	0.047^{*}
C10	$1.1851(6)$	$0.1760(8)$	$0.8340(2)$	$0.0358(10)$
C11	$1.3769(6)$	$0.2963(9)$	$0.8421(2)$	$0.0456(11)$
H11	1.4729	0.2444	0.8104	0.055^{*}
C12	$1.4297(7)$	$0.4925(10)$	$0.8963(3)$	$0.0543(13)$
H12	1.5617	0.575	0.9013	0.065^{*}
C13	$1.2940(8)$	$0.5685(9)$	$0.9425(2)$	$0.0561(13)$
H13	1.3316	0.7019	0.9799	0.067^{*}
C14	$1.1016(7)$	$0.4498(10)$	$0.9345(2)$	$0.0550(12)$
H14	1.0056	0.5023	0.9661	0.066^{*}
C15	$1.0489(6)$	$0.2540(8)$	$0.8801(2)$	$0.0451(11)$
H15	0.9164	0.1727	0.8747	0.054^{*}
N1	$0.9447(4)$	$0.0189(6)$	$0.72476(17)$	$0.0355(9)$
O1	$0.7208(4)$	$-0.2996(6)$	$0.76148(16)$	$0.0584(9)$
O2	$0.4417(4)$	$-0.0659(6)$	$0.63438(16)$	$0.0561(9)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C8	$0.052(3)$	$0.036(3)$	$0.040(3)$	$0.004(2)$	$0.013(2)$	$-0.007(2)$
C7	$0.039(2)$	$0.040(3)$	$0.042(3)$	$0.000(2)$	$0.012(2)$	$-0.012(2)$
C6	$0.038(2)$	$0.035(2)$	$0.032(3)$	$0.006(2)$	$-0.0002(19)$	$-0.005(2)$
C5	$0.034(2)$	$0.044(3)$	$0.039(3)$	$0.001(2)$	$-0.0022(18)$	$-0.009(2)$
C4	$0.051(3)$	$0.036(3)$	$0.033(3)$	$0.000(2)$	$0.000(2)$	$-0.001(2)$
C3	$0.054(3)$	$0.028(2)$	$0.038(3)$	$-0.001(2)$	$0.013(2)$	$-0.007(2)$
C2	$0.046(2)$	$0.035(2)$	$0.031(2)$	$0.004(2)$	$0.0050(18)$	$-0.003(2)$
C1	$0.040(2)$	$0.034(2)$	$0.029(2)$	$0.001(2)$	$0.0087(19)$	$-0.008(2)$
C9	$0.045(2)$	$0.038(2)$	$0.034(2)$	$0.006(2)$	$0.0028(18)$	$-0.001(2)$
C10	$0.045(2)$	$0.032(2)$	$0.028(3)$	$0.006(2)$	$-0.0017(19)$	$0.007(2)$
C11	$0.045(3)$	$0.046(3)$	$0.043(3)$	$0.004(2)$	$0.000(2)$	$0.003(2)$
C12	$0.059(3)$	$0.048(3)$	$0.050(3)$	$-0.002(2)$	$-0.011(2)$	$0.010(3)$
C13	$0.084(4)$	$0.044(3)$	$0.035(3)$	$-0.004(3)$	$-0.010(3)$	$-0.003(2)$
C14	$0.080(3)$	$0.046(3)$	$0.041(3)$	$0.005(3)$	$0.014(2)$	$-0.004(3)$
C15	$0.060(3)$	$0.039(3)$	$0.037(3)$	$-0.005(2)$	$0.009(2)$	$-0.001(2)$
N1	$0.0379(18)$	$0.036(2)$	$0.032(2)$	$-0.0020(17)$	$0.0025(15)$	$0.0040(18)$
O1	$0.071(2)$	$0.0487(19)$	$0.058(2)$	$-0.0078(18)$	$0.0194(16)$	$0.008(2)$
O2	$0.0411(16)$	$0.057(2)$	$0.071(2)$	$-0.0102(16)$	$0.0099(14)$	$-0.0093(18)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 8-\mathrm{O} 1$	$1.221(5)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.449(4)$
$\mathrm{C} 8-\mathrm{N} 1$	$1.371(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.511(5)$
$\mathrm{C} 8-\mathrm{C} 7$	$1.544(5)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.99
$\mathrm{C} 7-\mathrm{O} 2$	$1.209(4)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.99
$\mathrm{C} 7-\mathrm{C} 6$	$1.457(5)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.368(5)$
$\mathrm{C} 6-\mathrm{C} 1$	$1.379(5)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.380(5)$

C6-C5	1.386 (5)
C5-C4	1.384 (5)
C5-H5	0.95
C4-C3	1.382 (5)
C4-H4	0.95
C3-C2	1.392 (5)
C3-H3	0.95
C2-C1	1.385 (5)
C2-H2	0.95
C1-N1	1.420 (5)
O1-C8-N1	125.7 (4)
O1-C8-C7	127.2 (4)
N1-C8-C7	107.1 (4)
O2-C7-C6	130.8 (4)
O2-C7-C8	124.6 (4)
C6-C7-C8	104.6 (3)
C1-C6-C5	121.7 (4)
C1-C6-C7	107.7 (4)
C5-C6-C7	130.6 (4)
C4-C5-C6	117.9 (4)
C4-C5-H5	121.1
C6-C5-H5	121.1
C3-C4-C5	120.3 (4)
C3-C4-H4	119.8
C5-C4-H4	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.0 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119
C2-C3-H3	119
C1-C2-C3	117.2 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.4
C3-C2-H2	121.4
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.9 (4)
C6- $\mathrm{C} 1-\mathrm{N} 1$	111.7 (3)
C2-C1-N1	127.4 (3)
N1-C9-C10	113.6 (3)
N1-C9-H9A	108.8
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 2$	0.5 (6)
N1-C8-C7-O2	-179.1 (4)
O1-C8-C7-C6	-179.8 (4)
N1-C8-C7-C6	0.6 (4)
O2-C7-C6-C1	179.0 (4)
C8-C7-C6-C1	-0.7 (4)
O2-C7-C6-C5	-1.2 (7)
C8-C7-C6-C5	179.1 (4)
C1-C6-C5-C4	-0.1 (6)
C7-C6-C5-C4	-179.8 (4)

$\mathrm{C} 11-\mathrm{C} 12$	$1.384(6)$
$\mathrm{C} 11-\mathrm{H} 11$	0.95
$\mathrm{C} 12-\mathrm{C} 13$	$1.364(6)$
$\mathrm{C} 12-\mathrm{H} 12$	0.95
$\mathrm{C} 13-\mathrm{C} 14$	$1.380(6)$
$\mathrm{C} 13-\mathrm{H} 13$	0.95
$\mathrm{C} 14-\mathrm{C} 15$	$1.385(6)$
$\mathrm{C} 14-\mathrm{H} 14$	0.95
$\mathrm{C} 15-\mathrm{H} 15$	0.95

C10-C9-H9A	108.8
N1-C9-H9B	108.8
C10-C9-H9B	108.8
H9A-C9-H9B	107.7
C15-C10-C11	$119.0(4)$
C15-C10-C9	$120.8(4)$
C11-C10-C9	$120.2(4)$
C10-C11-C12	$120.2(4)$
C10-C11-H11	119.9
C12-C11-H11	119.9

120.7 (5)
119.7
119.7
119.4 (4)
120.3
120.3
119.8 (4)
120.1
120.1
120.9 (4)
119.6
119.6
108.9 (3)
125.9 (3)
124.9 (3)
-124.2 (4)
$\begin{array}{ll}\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 & -124.2 \\ \mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 & 0.1(6)\end{array}$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12 \quad-178.7$ (4)
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 \quad 0.3$ (6)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14 \quad-0.6$ (7)
C12-C13-C14-C15 0.5 (6)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14 \quad-0.2(6)$
C9-C10-C15-C14 178.6 (4)
C13-C14-C15-C10 0.0 (6)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1 \quad-180.0(4)$

$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-0.7(6)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$1.1(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$-0.7(5)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$0.4(6)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$-179.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$-179.3(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$0.5(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$-0.1(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$179.6(4)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$	$57.0(5)$

$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$	$-0.4(4)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$5.0(6)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$-175.4(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$-0.1(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$-179.8(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$175.0(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$-4.7(6)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8$	$-111.7(4)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	$74.0(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.41	$3.213(5)$	143
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.59	$3.525(4)$	159
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{O} 1$	0.99	2.58	$2.941(5)$	101

Symmetry codes: (i) $x+1, y+1, z$; (ii) $x+1, y, z$.

