organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-{[(4-methylphenyl)sulfonyl]amino}benzoate

Muhammad Sohail,^a Muhammad Nadeem Asghar,^a M. Nawaz Tahir,^b* Muhammad Shafique^c and Muhammad Ashfaq^d

^aForman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^cDepartment of Chemistry, GC University, Lahore 54000, Pakistan, and ^dDepartment of Chemistry, University of Gujrat, Gujrat, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 2 February 2012; accepted 3 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.113; data-to-parameter ratio = 13.9.

In the molecule of the title compound, $C_{15}H_{15}NO_4S$, the dihedral angle between the two rings is 88.05 (7)°. The methyl ester group is nearly coplanar with the adjacent ring [dihedral angle = 2.81 (10)°], whereas it is oriented at 86.90 (9)° with respect to the plane of the ring attached to the $-SO_2$ - group. Weak intramolecular C-H···O hydrogen bonding completes S(5) and S(6) ring motifs. The molecules form one-dimensional polymeric C(8) chains along the [010] direction due to N-H···O hydrogen bonding and these chains are linked by C-H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For related crystal structures, see: Mustafa *et al.* (2011); Nan & Xing (2006); Xing & Nan (2005). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data C₁₅H₁₅NO₄S

```
M_r = 305.34
Monoclinic, P2_1/n
a = 7.9332 (2) Å
b = 8.2265 (2) Å
```

c = 22.7419 (5) Å $\beta = 92.769 (1)^{\circ}$ $V = 1482.46 (6) \text{ Å}^3$ Z = 4Mo K α radiation Cro

 $0.35 \times 0.25 \times 0.22 \text{ mm}$

11165 measured reflections 2677 independent reflections 2234 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.020$

 $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\rm min} = 0.915, T_{\rm max} = 0.938$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 192 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.28$ e Å $^{-3}$ 2677 reflections $\Delta \rho_{min} = -0.27$ e Å $^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1 \cdots O3^{i}$	0.86	2.1800	2.878 (2)	138
$C2-H2 \cdot \cdot \cdot O1$	0.93	2.5200	2.898 (3)	105
C3−H3···O2 ⁱⁱ	0.93	2.5500	3.431 (3)	159
$C7 - H7C \cdots O1^{iii}$	0.96	2.5700	3.396 (3)	145
C9−H9···O1	0.93	2.3600	3.009 (3)	126
$C10-H10\cdots O2^{iv}$	0.93	2.5400	3.456 (2)	166
$C15-H15A\cdotsO1^{v}$	0.96	2.5300	3.463 (3)	162

Symmetry codes: (i) x, y + 1, z; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) x, y - 1, z; (v) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement for this work by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2337).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.
- Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xing, J.-D. & Nan, Z.-H. (2005). Acta Cryst. E61, 04320-04321.

supporting information

Acta Cryst. (2012). E68, o666 [doi:10.1107/S160053681200476X]

Methyl 4-{[(4-methylphenyl)sulfonyl]amino}benzoate

Muhammad Sohail, Muhammad Nadeem Asghar, M. Nawaz Tahir, Muhammad Shafique and Muhammad Ashfaq

S1. Comment

The title compound (I), (Fig. 1) has been synthesized as a part of the series of new sulfonamide derivatives. The aim of our research work is to find the potential sulfonamide derivatives possessing anti-microbial *etc*.

The crystal structures of (II) *i.e*, 4-(((4-methylphenyl)sulfonyl)amino)benzoic acid (Mustafa *et al.* 2011; Nan & Xing, 2006) and (III) *i.e. N*-(4-(ethoxycarbonyl)phenyl)-*p*-tolylsulfonamide (Xing & Nan, 2005) have been published which are related to (I).

In (I), the phenyl rings A (C1–C6) and B (C8–C13) are planar with r.m.s. deviation of 0.0043 Å and 0.0039 Å, respectively. The dihedral angle between A/B is 88.05 (7)°. The methyl ester moiety C (O3/C14/O4/C15) is also planar with r.m.s. deviation of 0.0015 Å. The dihedral angle between A/C and B/C is 86.90 (9)° and 2.81 (10)°, respectively. There exist intramolecular H-bonding of C–H···O type (Table 1, Fig. 1) forming an S(5) and S(6) ring motifs (Bernstein *et al.*, 1995). There exist also intermolecular H-bondings of N–H···O type (Table 1, Fig. 2) due to which the molecules form C(8) one-dimensional polymeric chains extending along the [010] direction. There exist R_2^2 (9) ring motifs due to intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2). The other intermolecular H-bondings of C–H···O types (Table 1, Fig. 2).

S2. Experimental

2-(Diethylamino)ethyl 4-aminobenzoate hydrogen chloride (2.728 g, 10 mmol) was dissolved in distilled water (20 ml). The pH of the solution was maintained strictly at 8 to 9 using $1 M \text{Na}_2\text{CO}_3$ solution. 4-Methyl sulfonyl chloride (1.906 g, 10 mmol) was then added to the solution while stirring at room temperature. On completion of the reaction the pH was adjusted to 1–2, using 1 N HCl while stirring. The precipitates obtained were filtered off, washed with distilled water, dried and subjected to re-crystallization using methanol to afford colorless prisms of (I). m.p. 343 K.

S3. Refinement

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl groups and x = 1.2 for all H atoms.

Figure 1

View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form polymeric chains extending along [010] direction. The H atoms not involved in H-bondings are omitted for clarity.

Methyl 4-{[(4-methylphenyl)sulfonyl]amino}benzoate

Crystal data	
$C_{15}H_{15}NO_4S$	<i>b</i> = 8.2265 (2) Å
$M_r = 305.34$	c = 22.7419 (5) Å
Monoclinic, $P2_1/n$	$\beta = 92.769 \ (1)^{\circ}$
Hall symbol: -P 2yn	V = 1482.46 (6) Å ³
a = 7.9332 (2) Å	Z = 4

F(000) = 640 $D_x = 1.368 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2488 reflections $\theta = 2.6-25.3^{\circ}$

Data collection

Data collection	
Bruker Kappa APEXII CCD	11165 measured reflections
diffractometer	2677 independent reflections
Radiation source: fine-focus sealed tube	2234 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
Detector resolution: 8.00 pixels mm ⁻¹	$\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 2.6^\circ$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -9 \longrightarrow 9$
(SADABS; Bruker, 2005)	$l = -27 \rightarrow 27$
$T_{\min} = 0.915, \ T_{\max} = 0.938$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo
Least-squares matrix: full	man

 $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K

Prism, colourless

 $0.35 \times 0.25 \times 0.22 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
2677 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 0.5778P]$
192 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.44553 (6)	0.55050 (6)	0.13445 (2)	0.0511 (2)	
01	0.55975 (19)	0.43449 (19)	0.16030 (7)	0.0678 (5)	
O2	0.4968 (2)	0.71630 (18)	0.12957 (7)	0.0652 (5)	
03	0.2286 (2)	-0.24936 (18)	0.00003 (8)	0.0721 (6)	
04	0.1308 (2)	-0.11198 (18)	-0.07868 (7)	0.0622 (5)	
N1	0.3940 (2)	0.4952 (2)	0.06731 (7)	0.0521 (5)	
C1	0.2595 (2)	0.5454 (2)	0.17369 (8)	0.0449 (6)	
C2	0.2551 (3)	0.4587 (3)	0.22508 (10)	0.0659 (8)	
C3	0.1124 (3)	0.4643 (3)	0.25712 (10)	0.0711 (9)	
C4	-0.0272 (3)	0.5533 (3)	0.23879 (9)	0.0552 (7)	
C5	-0.0206 (3)	0.6378 (3)	0.18633 (9)	0.0586 (7)	
C6	0.1211 (3)	0.6352 (3)	0.15395 (9)	0.0538 (6)	

C7	-0.1815 (3)	0.5595 (4)	0.27480 (11)	0.0781 (10)
C8	0.3434 (2)	0.3396 (2)	0.04751 (8)	0.0451 (6)
C9	0.3805 (3)	0.1972 (3)	0.07832 (10)	0.0588 (7)
C10	0.3323 (3)	0.0495 (2)	0.05412 (9)	0.0574 (7)
C11	0.2481 (2)	0.0400 (2)	-0.00030 (8)	0.0466 (6)
C12	0.2112 (3)	0.1827 (3)	-0.03051 (9)	0.0536 (6)
C13	0.2571 (3)	0.3307 (2)	-0.00672 (9)	0.0525 (6)
C14	0.2038 (3)	-0.1214 (3)	-0.02501 (9)	0.0520(7)
C15	0.0800 (3)	-0.2637 (3)	-0.10630 (12)	0.0721 (9)
H1	0.39816	0.56949	0.04082	0.0625*
H2	0.34755	0.39672	0.23815	0.0791*
Н3	0.11033	0.40628	0.29218	0.0853*
Н5	-0.11403	0.69750	0.17272	0.0703*
H6	0.12372	0.69359	0.11898	0.0645*
H7A	-0.22071	0.66961	0.27694	0.1174*
H7B	-0.15350	0.52002	0.31379	0.1174*
H7C	-0.26853	0.49272	0.25664	0.1174*
H9	0.43730	0.20136	0.11503	0.0705*
H10	0.35718	-0.04558	0.07491	0.0688*
H12	0.15469	0.17832	-0.06728	0.0642*
H13	0.22991	0.42566	-0.02725	0.0630*
H15A	0.17843	-0.32685	-0.11387	0.1082*
H15B	0.01810	-0.24183	-0.14275	0.1082*
H15C	0.00991	-0.32322	-0.08062	0.1082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0506 (3)	0.0488 (3)	0.0540 (3)	-0.0005 (2)	0.0037 (2)	-0.0092 (2)
O1	0.0567 (8)	0.0731 (10)	0.0721 (10)	0.0153 (7)	-0.0114 (7)	-0.0152 (8)
O2	0.0702 (9)	0.0558 (9)	0.0707 (10)	-0.0156 (7)	0.0161 (8)	-0.0158 (7)
O3	0.0901 (12)	0.0417 (9)	0.0834 (12)	-0.0012 (8)	-0.0057 (9)	0.0020 (8)
O4	0.0744 (10)	0.0548 (9)	0.0572 (9)	-0.0059 (7)	0.0018 (7)	-0.0106 (7)
N1	0.0674 (10)	0.0418 (9)	0.0478 (9)	-0.0040 (8)	0.0107 (8)	-0.0028 (7)
C1	0.0516 (10)	0.0397 (10)	0.0432 (10)	-0.0008 (8)	0.0008 (8)	-0.0022 (8)
C2	0.0750 (14)	0.0629 (14)	0.0600 (13)	0.0175 (11)	0.0052 (11)	0.0180 (11)
C3	0.0922 (17)	0.0678 (15)	0.0543 (13)	0.0031 (13)	0.0145 (12)	0.0197 (11)
C4	0.0620 (12)	0.0560 (12)	0.0480 (11)	-0.0152 (10)	0.0081 (9)	-0.0109 (9)
C5	0.0540 (11)	0.0682 (14)	0.0534 (12)	0.0063 (10)	0.0005 (9)	0.0017 (10)
C6	0.0584 (11)	0.0590 (12)	0.0439 (10)	0.0046 (10)	0.0018 (9)	0.0095 (9)
C7	0.0740 (15)	0.097 (2)	0.0652 (15)	-0.0211 (14)	0.0218 (12)	-0.0148 (14)
C8	0.0479 (10)	0.0424 (10)	0.0460 (10)	0.0000 (8)	0.0127 (8)	-0.0030 (8)
C9	0.0733 (14)	0.0487 (12)	0.0532 (12)	0.0034 (10)	-0.0090 (10)	-0.0004 (9)
C10	0.0723 (13)	0.0408 (11)	0.0583 (12)	0.0038 (9)	-0.0037 (10)	0.0050 (9)
C11	0.0484 (10)	0.0434 (10)	0.0486 (10)	0.0000 (8)	0.0082 (8)	-0.0015 (8)
C12	0.0671 (12)	0.0503 (11)	0.0431 (10)	-0.0013 (10)	0.0005 (9)	0.0009 (9)
C13	0.0678 (12)	0.0420 (10)	0.0478 (11)	0.0007 (9)	0.0039 (9)	0.0050 (9)
C14	0.0512 (11)	0.0482 (12)	0.0573 (12)	-0.0006 (9)	0.0095 (9)	-0.0038 (10)

C15	0.0735 (15)	0.0665 (15)	0.0773 (16)	-0.0151 (12)	0.0126 (12)	-0.0254 (13)
Geome	tric parameters (A	Î, ?)				
S1-0	1	1.4234 (16)	C10—C11		1.380 (3)
S102	2	1.4292 (16)	C11—C14		1.478 (3)
S1—N	1	1.6264 (17)	C11—C12		1.384 (3)
S1—C1	1	1.7617 (17)	C12—C13		1.374 (3)
03—С	14	1.208 (3)	C2—H2		0.9300
O4—C	14	1.328 (3)	С3—Н3		0.9300
O4—C	15	1.446 (3)	С5—Н5		0.9300
N1—C	8	1.409 (2)	С6—Н6		0.9300
N1—H	1	0.8600		C7—H7A		0.9600
C1—C	6	1.380 (3)	С7—Н7В		0.9600
C1—C2	2	1.371 (3)	C7—H7C		0.9600
C2—C	3	1.376 (3)	С9—Н9		0.9300
C3—C4	4	1.375 (3)	C10—H10		0.9300
C4—C'	7	1.506 (3)	C12—H12		0.9300
C4—C	5	1.384 (3)	C13—H13		0.9300
С5—С	6	1.374 (3)	C15—H15A		0.9600
С8—С	13	1.383 (3)	C15—H15B		0.9600
C8-C9	9	1.389 (3)	C15—H15C		0.9600
С9—С	10	1.380 (3)			
01—S	1—02	119.61 (9)	O3—C14—O4		122.5 (2)
01—S	1—N1	109.05 (9)	O3—C14—C11		124.98 (19)
01—S	1—C1	107.88 (9)	C1—C2—H2		120.00
O2—S	1—N1	104.69 (9)	С3—С2—Н2		120.00
O2—S	1—C1	108.10 (9)	С2—С3—Н3		119.00
N1-S	1—C1	106.87 (8)	С4—С3—Н3		119.00
C14—0	D4—C15	116.68 (18)	C4—C5—H5		119.00
S1-N	1—C8	127.52 (13)	С6—С5—Н5		119.00
S1-N	1—H1	116.00		C1—C6—H6		120.00
C8—N	1—H1	116.00		С5—С6—Н6		120.00
S1—C1	l—C2	120.04 (15)	С4—С7—Н7А		109.00
С2—С	1—C6	120.20 (18)	С4—С7—Н7В		109.00
S1C1	l—C6	119.68 (15)	С4—С7—Н7С		109.00
C1—C2	2—С3	119.3 (2))	H7A—C7—H7B		109.00
C2—C	3—C4	121.9 (2)	H7A—C7—H7C		110.00
C5-C4	4—C7	121.2 (2)	Н7В—С7—Н7С		109.00
C3—C4	4—C5	117.7 (2))	С8—С9—Н9		120.00
C3—C4	4—C7	121.1 (2)	С10—С9—Н9		120.00
C4—C	5—C6	121.4 (2)	С9—С10—Н10		119.00
C1C	6—C5	119.5 (2))	C11—C10—H10		119.00
N1-C	8—C13	117.01 (15)	C11—C12—H12		120.00
С9—С	8—C13	119.26 (17)	С13—С12—Н12		120.00
N1-C	8—C9	123.70 (17)	С8—С13—Н13		120.00
C8-C9	9—C10	119.6 (2)	C12—C13—H13		120.00

supporting information

C9—C10—C11	121.35 (18)	O4—C15—H15A	109.00
C10-C11-C12	118.60 (17)	O4—C15—H15B	109.00
C12—C11—C14	122.18 (18)	O4—C15—H15C	109.00
C10-C11-C14	119.21 (16)	H15A—C15—H15B	109.00
C11—C12—C13	120.68 (19)	H15A—C15—H15C	109.00
C8—C13—C12	120.54 (17)	H15B—C15—H15C	110.00
O4—C14—C11	112.48 (19)		
01—S1—N1—C8	47.14 (18)	C2—C3—C4—C7	-179.3 (2)
O2—S1—N1—C8	176.25 (15)	C3—C4—C5—C6	-0.9 (4)
C1—S1—N1—C8	-69.23 (17)	C7—C4—C5—C6	178.7 (2)
O1—S1—C1—C2	9.46 (19)	C4—C5—C6—C1	0.6 (4)
O1—S1—C1—C6	-173.61 (16)	N1-C8-C9-C10	-177.01 (19)
O2—S1—C1—C2	-121.20 (17)	C13—C8—C9—C10	0.7 (3)
O2—S1—C1—C6	55.73 (18)	N1-C8-C13-C12	176.58 (19)
N1—S1—C1—C2	126.60 (17)	C9—C8—C13—C12	-1.2 (3)
N1—S1—C1—C6	-56.47 (18)	C8—C9—C10—C11	0.2 (3)
C15—O4—C14—O3	0.5 (3)	C9—C10—C11—C12	-0.4 (3)
C15—O4—C14—C11	-178.99 (17)	C9—C10—C11—C14	178.2 (2)
S1—N1—C8—C9	-21.7 (3)	C10-C11-C12-C13	-0.2 (3)
S1—N1—C8—C13	160.56 (16)	C14—C11—C12—C13	-178.7 (2)
S1—C1—C2—C3	175.92 (17)	C10-C11-C14-O3	3.6 (3)
C6—C1—C2—C3	-1.0 (3)	C10-C11-C14-O4	-176.90 (19)
S1—C1—C6—C5	-176.55 (17)	C12—C11—C14—O3	-177.8 (2)
C2-C1-C6-C5	0.4 (3)	C12-C11-C14-O4	1.7 (3)
C1—C2—C3—C4	0.7 (4)	C11—C12—C13—C8	1.0 (3)
C2—C3—C4—C5	0.3 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N1— $H1$ ···O3 ⁱ	0.86	2.1800	2.878 (2)	138
C2—H2…O1	0.93	2.5200	2.898 (3)	105
С3—Н3…О2 ^{іі}	0.93	2.5500	3.431 (3)	159
C7—H7 <i>C</i> ···O1 ⁱⁱⁱ	0.96	2.5700	3.396 (3)	145
С9—Н9…О1	0.93	2.3600	3.009 (3)	126
C10—H10…O2 ^{iv}	0.93	2.5400	3.456 (2)	166
C15—H15A····O1 ^v	0.96	2.5300	3.463 (3)	162

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1/2, *y*–1/2, –*z*+1/2; (iii) *x*–1, *y*, *z*; (iv) *x*, *y*–1, *z*; (v) –*x*+1, –*y*, –*z*.