

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-μ-chlorido-bis{bis[4-(adamantan-1ylcarbamoyl)pyridine-κN]chloridocopper(II)} hemihydrate

Ying-Chun Wang

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: wangyc33@yahoo.com.cn

Received 31 December 2011; accepted 7 January 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.069; wR factor = 0.197; data-to-parameter ratio = 16.7.

In the centrosymmetric dimeric title compound, $[Cu_2Cl_4(C_{16}H_{20}N_2O)_4]\cdot 0.5H_2O$, the Cu^{II} atom is in a distorted trigonal-bipyramidal environment defined by two bridging Cl atoms, one terminal Cl atom and two N atoms from two monodentate 4-(adamantan-1-ylcarbamoyl)pyridine ligands. The amine N atoms are involved in intramolecular N-H···O and intermolecular N-H···Cl hydrogen bonds. The latter hydrogen bonds link the complex molecules into a ribbon along [010]. The uncoordinated water molecule is 0.25occupied.

Related literature

For the structures of related amino compounds, see: Fu *et al.* (2007, 2008, 2009); Fu & Xiong (2008). For the ferroelectric properties of related amino derivatives, see: Fu *et al.* (2011a,b,c).

Experimental

Crystal data [Cu₂Cl₄(C₁₆H₂₀N₂O)₄]·0.5H₂O

 $M_r = 1303.25$

Triclinic, $P\overline{1}$	$V = 1616.6 (16) \text{ Å}^3$
a = 6.739 (4) Å	Z = 1
b = 11.149 (6) Å	Mo $K\alpha$ radiation
c = 21.814 (12) Å	$\mu = 0.88 \text{ mm}^{-1}$
$\alpha = 92.221 \ (6)^{\circ}$	T = 295 K
$\beta = 95.993 \ (8)^{\circ}$	$0.30 \times 0.25 \times 0.15 \text{ mm}$
$\gamma = 96.727 \ (9)^{\circ}$	

Data collection

16110 measured reflections
6320 independent reflections
4988 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.054$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	379 parameters
$wR(F^2) = 0.197$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.19 \text{ e } \text{\AA}^{-3}$
6320 reflections	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O1^{i}$ $N2 - H2A \cdots Cl1^{ii}$	0.86 0.86	2.35 2.66	2.969 (5) 3.499 (4)	129 165
Symmetry codes: -x + 1, -y + 2, -z +	(i) $-x, -y$	+1, -z +1;	(ii) $-x, -y+2$, -z + 1; (iii)

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL* and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Doctoral Foundation of SEU, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2504).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). *Inorg. Chem. Commun.* 12, 994–997.

Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.

Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.

Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011a). Adv. Mater. 23, 5658–5662.

Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011b). J. Am. Chem. Soc. 133, 12780–12786.

Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011c). Angew. Chem. Int. Ed. 50, 11947–11951.
 Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.
 Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m147 [doi:10.1107/S1600536812000670]

Di- μ -chlorido-bis{bis[4-(adamantan-1-ylcarbamoyl)pyridine- κN]chloridocopper(II)} hemihydrate

Ying-Chun Wang

S1. Comment

Amino compounds have attracted more attention as phase transition dielectric materials for their applications in memory storage (Fu *et al.*, 2007, 2008, 2009; Fu & Xiong, 2008). With the purpose of obtaining phase transition crystals of amino compounds, various amines have been studied and a series of new materials with this organic molecules have been elaborated (Fu *et al.*, 2011*a*,b,c). In this study, we describe the crystal structure of the title compound.

The asymmetric unit is composed of two 4-[(1-adamantyl)carbamoyl]pyridine ligands, two Cl⁻ anions, one Cu^{II} ion and a quarter of water molecule (Fig. 1). The two pyridine rings are twisted from each other by a dihedral angle of $11.14 (1)^{\circ}$. The dimeric complex molecule is centrosymmetric. The distorted trigonal-bipyramidal environment around the Cu^{II} ion is defined by two bridging Cl atoms, one terminal Cl atom and two N atoms from two monodentate organic ligands. The geometric parameters in the title compound are in a normal range.

In the crystal, the amino N atoms are involved in an intramolecular N—H…O hydrogen bond and an intermolecular N—H…Cl hydrogen bond. These hydrogen bonds link the complex molecules into a one-dimensional ribbon along [0 1 0] (Table 1 and Fig. 2).

S2. Experimental

CuCl₂.6H₂O (2 mmol) and 4-[(1-adamantyl)carbamoyl]pyridine (2 mmol) were dissolved in 70% aqueous methanol solution, and then 2 ml HCl was added. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of the solution at room temperature after two weeks.

S3. Refinement

H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.98 Å (methine) and N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$. H atoms bonded to O atom were located in a difference Fourier map and restrained with H—O = 0.82 (1) Å. In the last stage of refinement, they were treated as riding atoms with $U_{iso}(H) = 1.5U_{eq}(O)$. The highest residual electron density was found at 0.97 Å from C11 atom and the deepest hole at 0.80 Å from C11 atom.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) -x, 1-y, 1-z.]

Figure 2

The crystal packing of the title compound viewed along the *a* axis, showing the hydrogen bonded ribbon. H atoms not involved in hydrogen bonds (dashed line) have been omitted for clarity.

Di-μ-chlorido-bis{bis[4-(adamantan-1-ylcarbamoyl)pyridine- κN]chloridocopper(II)} hemihydrate

Crystal data	
$[Cu_2Cl_4(C_{16}H_{20}N_2O)_4] \cdot 0.5H_2O$ $M_r = 1303.25$ Triclinic, <i>P</i> 1 Hall symbol: -P 1	Z = 1 F(000) = 683 $D_x = 1.339$ Mg m ⁻³ Mo Kα radiation, $\lambda = 0.71073$ Å
a = 6.739 (4) Å b = 11.149 (6) Å c = 21.814 (12) Å	Cell parameters from 4355 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$
$a = 92.221 (6)^{\circ}$ $\beta = 95.993 (8)^{\circ}$ $\gamma = 96.727 (9)^{\circ}$ $V = 1616.6 (16) \text{ Å}^{3}$	T = 295 K Block, colorless $0.30 \times 0.25 \times 0.15 \text{ mm}$

Data collection

Rigaku Mercury2 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{\min} = 0.779, T_{\max} = 0.880$	16110 measured reflections 6320 independent reflections 4988 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -13 \rightarrow 13$ $l = -26 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.197$ S = 1.06 6320 reflections 379 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1016P)^2 + 0.817P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.19$ e Å ⁻³ $\Delta\rho_{min} = -0.77$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.02209 (9)	0.63814 (5)	0.46299 (2)	0.0322 (2)	
Cl1	-0.0961 (3)	0.78238 (13)	0.40137 (6)	0.0589 (4)	
C12	-0.24643 (16)	0.45318 (10)	0.46545 (5)	0.0337 (3)	
01	-0.2052 (7)	0.8512 (3)	0.74349 (17)	0.0636 (12)	
02	0.6396 (5)	0.5226 (3)	0.24014 (16)	0.0496 (9)	
N1	0.3965 (6)	0.3694 (3)	0.20396 (17)	0.0331 (9)	
H1A	0.2815	0.3324	0.2100	0.040*	
N2	-0.1049 (7)	1.0381 (3)	0.71060 (17)	0.0387 (10)	
H2A	-0.0776	1.0767	0.6785	0.046*	
N3	-0.0537 (6)	0.7312 (3)	0.53575 (17)	0.0366 (9)	
N4	0.1535 (6)	0.5718 (3)	0.39231 (16)	0.0334 (8)	
C1	0.3484 (7)	0.6058 (5)	0.3907 (2)	0.0396 (11)	
H1B	0.4175	0.6554	0.4232	0.048*	
C2	0.4541 (7)	0.5711 (4)	0.3431 (2)	0.0361 (11)	
H2B	0.5898	0.5987	0.3432	0.043*	
C3	0.3534 (7)	0.4941 (4)	0.29515 (19)	0.0282 (9)	

C4	0.1504 (7)	0.4574 (4)	0.29694 (19)	0.0325 (10)
H4A	0.0793	0.4052	0.2658	0.039*
C5	0.0534 (7)	0.4988 (4)	0.34532 (19)	0.0321 (10)
H5A	-0.0838	0.4758	0.3454	0.038*
C6	0.4783 (7)	0.4621 (4)	0.2442 (2)	0.0321 (10)
C7	0.4921 (6)	0.3277 (4)	0.15020 (18)	0.0259 (9)
C8	0.3411 (6)	0.2306 (4)	0.1135 (2)	0.0307 (10)
H8A	0.2182	0.2645	0.1006	0.037*
H8B	0.3085	0.1640	0.1395	0.037*
С9	0.5378 (7)	0.4319 (4)	0.1079 (2)	0.0347 (10)
H9A	0.4147	0.4651	0.0944	0.042*
H9B	0.6302	0.4957	0.1305	0.042*
C10	0.6852 (7)	0.2739 (5)	0.1707(2)	0.0373 (11)
H10A	0.6559	0.2074	0.1970	0.045*
H10B	0.7807	0.3349	0.1942	0.045*
C11	0.6269 (8)	0.1311 (4)	0.0778 (2)	0.0441 (13)
H11A	0.5975	0.0639	0.1037	0.053*
H11B	0.6850	0.1012	0.0422	0.053*
C12	0.4312 (7)	0.1841 (4)	0.0564 (2)	0.0391 (11)
H12A	0.3350	0.1212	0.0335	0.047*
C13	0.4807 (8)	0.2882 (4)	0.0147 (2)	0.0411 (11)
H13A	0.3589	0.3220	0.0004	0.049*
H13B	0.5385	0.2587	-0.0210	0.049*
C14	0.6310(7)	0.3860 (4)	0.0516(2)	0.0328 (10)
H14A	0.6630	0.4534	0.0254	0.039*
C15	0.8239 (7)	0.3321 (4)	0.0733 (2)	0.0403 (11)
H15A	0.8838	0.3034	0.0378	0.048*
H15B	0.9199	0.3938	0.0961	0.048*
C16	0.7755 (7)	0.2287 (5)	0.1139 (2)	0.0414 (12)
H16A	0.8994	0.1945	0.1273	0.050*
C17	0.0825 (9)	0.8159 (5)	0.5631 (3)	0.0540 (15)
H17A	0.2040	0.8309	0.5465	0.065*
C18	0.0550 (9)	0.8840(5)	0.6154 (2)	0.0527 (14)
H18A	0.1539	0.9448	0.6324	0.063*
C19	-0.1204 (8)	0.8601 (4)	0.6415 (2)	0.0392 (11)
C20	-0.2667 (8)	0.7724 (4)	0.6124 (2)	0.0401 (11)
H20A	-0.3891	0.7557	0.6284	0.048*
C21	-0.2304(7)	0.7102 (4)	0.5598 (2)	0.0394 (11)
H21A	-0.3299	0.6522	0.5404	0.047*
C22	-0.1500(9)	0.9173 (4)	0.7036 (2)	0.0435 (12)
C23	-0.0991 (7)	1.1090 (4)	0.76943 (19)	0.0312 (10)
C24	-0.3064(7)	1.0948 (4)	0.7938 (2)	0.0378(11)
H24A	-0.4059	1.1214	0.7636	0.045*
H24B	-0.3466	1.0104	0.8007	0.045*
C25	-0.0430 (8)	1.2429 (4)	0.7573 (2)	0.0371 (11)
H25A	-0.1427	1.2686	0.7269	0.045*
H25B	0.0862	1.2536	0.7411	0.045*
C26	0.0598 (7)	1.0685 (4)	0.8172 (2)	0.0362 (10)
		· /	、 /	· · /

H26A	0.1899	1.0776	0.8015	0.043*		
H26B	0.0251	0.9840	0.8249	0.043*		
C27	0.1282 (8)	1.2794 (4)	0.8652 (2)	0.0430 (12)		
H27A	0.2582	1.2893	0.8494	0.052*		
H27B	0.1380	1.3287	0.9033	0.052*		
C28	-0.0326 (8)	1.3205 (4)	0.8176 (2)	0.0383 (11)		
H28A	0.0036	1.4058	0.8097	0.046*		
C29	-0.2370 (8)	1.3047 (4)	0.8434 (2)	0.0456 (13)		
H29A	-0.3384	1.3326	0.8143	0.055*		
H29B	-0.2292	1.3527	0.8818	0.055*		
C30	-0.2954 (8)	1.1707 (5)	0.8546 (2)	0.0437 (12)		
H30A	-0.4264	1.1604	0.8707	0.052*		
C31	-0.1339 (9)	1.1290 (4)	0.9021 (2)	0.0471 (13)		
H31A	-0.1282	1.1756	0.9409	0.057*		
H31B	-0.1692	1.0444	0.9096	0.057*		
C32	0.0700 (8)	1.1463 (4)	0.8777 (2)	0.0413 (12)		
H32A	0.1715	1.1203	0.9082	0.050*		
O1W	0.500 (3)	0.9159 (17)	0.4447 (12)	0.125 (11)	0.25	
H1WA	0.5145	0.9475	0.4800	0.187*	0.25	
H1WB	0.3799	0.8940	0.4340	0.187*	0.25	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cu1	0.0445 (4)	0.0306 (3)	0.0236 (3)	0.0077 (2)	0.0115 (2)	-0.0042 (2)
C11	0.0939 (12)	0.0497 (8)	0.0404 (8)	0.0268 (8)	0.0188 (7)	0.0097 (6)
Cl2	0.0341 (6)	0.0375 (6)	0.0288 (6)	0.0025 (5)	0.0040 (4)	-0.0028 (4)
01	0.123 (4)	0.0302 (19)	0.039 (2)	-0.006 (2)	0.039 (2)	-0.0058 (16)
O2	0.044 (2)	0.055 (2)	0.046 (2)	-0.0154 (17)	0.0200 (16)	-0.0178 (17)
N1	0.036 (2)	0.032 (2)	0.031 (2)	-0.0051 (16)	0.0170 (16)	-0.0065 (16)
N2	0.068 (3)	0.026 (2)	0.023 (2)	-0.0004 (19)	0.0162 (18)	-0.0035 (15)
N3	0.049 (2)	0.031 (2)	0.031 (2)	0.0095 (18)	0.0103 (18)	-0.0014 (16)
N4	0.040(2)	0.035 (2)	0.026 (2)	0.0097 (17)	0.0078 (16)	-0.0021 (15)
C1	0.040 (3)	0.049 (3)	0.028 (2)	0.002 (2)	0.006 (2)	-0.010 (2)
C2	0.036 (2)	0.043 (3)	0.028 (2)	-0.004 (2)	0.0075 (19)	-0.0079 (19)
C3	0.037 (2)	0.027 (2)	0.022 (2)	0.0064 (18)	0.0099 (17)	0.0005 (17)
C4	0.035 (2)	0.037 (3)	0.025 (2)	0.002 (2)	0.0053 (18)	-0.0101 (18)
C5	0.031 (2)	0.042 (3)	0.024 (2)	0.000 (2)	0.0089 (17)	-0.0023 (18)
C6	0.038 (2)	0.035 (2)	0.024 (2)	0.002 (2)	0.0110 (18)	-0.0039 (18)
C7	0.030(2)	0.027 (2)	0.022 (2)	0.0042 (18)	0.0085 (16)	-0.0023 (16)
C8	0.029 (2)	0.033 (2)	0.031 (2)	0.0011 (19)	0.0078 (18)	-0.0048 (18)
C9	0.045 (3)	0.028 (2)	0.034 (3)	0.010 (2)	0.012 (2)	0.0000 (19)
C10	0.034 (2)	0.048 (3)	0.032 (3)	0.011 (2)	0.0015 (19)	0.006 (2)
C11	0.060 (3)	0.028 (2)	0.050 (3)	0.013 (2)	0.027 (3)	0.002 (2)
C12	0.045 (3)	0.036 (3)	0.035 (3)	-0.003 (2)	0.011 (2)	-0.011 (2)
C13	0.053 (3)	0.045 (3)	0.026 (2)	0.008 (2)	0.008 (2)	-0.003 (2)
C14	0.045 (3)	0.028 (2)	0.028 (2)	0.005 (2)	0.014 (2)	0.0065 (18)
C15	0.035 (3)	0.044 (3)	0.045 (3)	0.006 (2)	0.018 (2)	0.002 (2)

supporting information

C16	0.031 (2)	0.048 (3)	0.052 (3)	0.023 (2)	0.016 (2)	0.014 (2)
C17	0.064 (4)	0.042 (3)	0.058 (4)	-0.006 (3)	0.034 (3)	-0.014 (3)
C18	0.063 (3)	0.043 (3)	0.049 (3)	-0.012 (3)	0.021 (3)	-0.019 (2)
C19	0.063 (3)	0.028 (2)	0.029 (2)	0.006 (2)	0.017 (2)	-0.0049 (19)
C20	0.054 (3)	0.038 (3)	0.031 (3)	0.008 (2)	0.018 (2)	-0.010 (2)
C21	0.041 (3)	0.040 (3)	0.035 (3)	0.008 (2)	-0.001 (2)	-0.008 (2)
C22	0.073 (4)	0.026 (2)	0.032 (3)	0.000 (2)	0.020 (2)	-0.007 (2)
C23	0.045 (3)	0.024 (2)	0.025 (2)	0.0017 (19)	0.0082 (19)	-0.0059 (17)
C24	0.042 (3)	0.035 (3)	0.035 (3)	0.000 (2)	0.008 (2)	-0.009 (2)
C25	0.058 (3)	0.027 (2)	0.027 (2)	0.006 (2)	0.007 (2)	-0.0005 (18)
C26	0.045 (3)	0.029 (2)	0.037 (3)	0.013 (2)	0.008 (2)	0.0047 (19)
C27	0.052 (3)	0.036 (3)	0.037 (3)	-0.002 (2)	0.002 (2)	-0.008 (2)
C28	0.061 (3)	0.022 (2)	0.032 (3)	0.002 (2)	0.009 (2)	-0.0041 (18)
C29	0.058 (3)	0.031 (3)	0.051 (3)	0.013 (2)	0.013 (3)	-0.010 (2)
C30	0.045 (3)	0.045 (3)	0.043 (3)	0.003 (2)	0.023 (2)	-0.012 (2)
C31	0.082 (4)	0.034 (3)	0.026 (3)	0.003 (3)	0.015 (2)	-0.004 (2)
C32	0.050 (3)	0.038 (3)	0.034 (3)	0.009 (2)	-0.005 (2)	0.000 (2)
O1W	0.074 (13)	0.072 (13)	0.23 (3)	-0.003 (11)	0.064 (16)	-0.097 (16)

Geometric parameters (Å, °)

Cu1—N3	2.006 (4)	C13—H13B	0.9700
Cu1—N4	2.015 (4)	C14—C15	1.533 (7)
Cu1—Cl1	2.2961 (16)	C14—H14A	0.9800
Cu1—Cl2 ⁱ	2.3978 (15)	C15—C16	1.507 (7)
Cu1—Cl2	2.5854 (16)	C15—H15A	0.9700
O1—C22	1.222 (6)	C15—H15B	0.9700
O2—C6	1.223 (5)	C16—H16A	0.9800
N1—C6	1.355 (6)	C17—C18	1.387 (7)
N1—C7	1.480 (5)	C17—H17A	0.9300
N1—H1A	0.8600	C18—C19	1.368 (7)
N2—C22	1.344 (6)	C18—H18A	0.9300
N2—C23	1.476 (5)	C19—C20	1.389 (7)
N2—H2A	0.8600	C19—C22	1.516 (6)
N3—C17	1.315 (7)	C20—C21	1.375 (6)
N3—C21	1.350 (6)	C20—H20A	0.9300
N4—C1	1.328 (6)	C21—H21A	0.9300
N4—C5	1.353 (6)	C23—C26	1.534 (6)
C1—C2	1.387 (6)	C23—C25	1.536 (6)
C1—H1B	0.9300	C23—C24	1.539 (6)
C2—C3	1.392 (6)	C24—C30	1.535 (6)
C2—H2B	0.9300	C24—H24A	0.9700
C3—C4	1.386 (6)	C24—H24B	0.9700
C3—C6	1.519 (5)	C25—C28	1.536 (6)
C4—C5	1.390 (6)	C25—H25A	0.9700
C4—H4A	0.9300	C25—H25B	0.9700
С5—Н5А	0.9300	C26—C32	1.542 (6)
C7—C10	1.528 (6)	C26—H26A	0.9700

~= ~~			
C7—C8	1.534 (6)	C26—H26B	0.9700
С7—С9	1.534 (6)	C27—C32	1.532 (7)
C8—C12	1.539 (6)	C27—C28	1.543 (7)
C8—H8A	0.9700	C27—H27A	0.9700
C8—H8B	0.9700	C27—H27B	0.9700
C9—C14	1.534 (6)	C28—C29	1.535(7)
С9—Н9А	0.9700	C28—H28A	0.9800
C9_H9B	0.9700	C_{29} C_{30}	1.535(7)
	1.530 (6)	C20 H20A	0.0700
C_{10} H_{10A}	1.550 (0)	C_{29} H_{29} C_{20} H_{20} H_{20}	0.9700
	0.9700	C29—H29B	0.9700
CI0—HI0B	0.9700	C30-C31	1.548 (8)
C11—C16	1.524 (7)	C30—H30A	0.9800
C11—C12	1.543 (7)	C31—C32	1.519 (7)
C11—H11A	0.9700	C31—H31A	0.9700
C11—H11B	0.9700	C31—H31B	0.9700
C12—C13	1.530(7)	C32—H32A	0.9800
C12—H12A	0.9800	O1W—H1WA	0.8258
C13—C14	1.538(7)	O1W—H1WB	0.8262
C13—H13A	0.9700		
	0.9700		
N3—Cu1—N4	167 22 (17)	C16—C15—H15A	109 7
$N_3 Cu1 Cu1$	88 13 (12)	C14 $C15$ $H15A$	109.7
$N_{4} = Cu_{1} = Cl_{1}$	00.15(12)	$C_{14} = C_{15} = H_{15}R$	109.7
N4 - Cu1 - CI1	90.00 (12)	C10-C15-H15B	109.7
$N_3 - Cu_1 - Cl_2^2$	87.18 (12)	C14—C15—H15B	109.7
N4—Cu1—Cl2 ¹	89.94 (12)	H15A—C15—H15B	108.2
Cl1—Cu1—Cl2 ¹	158.66 (6)	C15—C16—C11	109.7 (4)
N3—Cu1—Cl2	96.71 (12)	C15—C16—C10	110.0 (4)
N4—Cu1—Cl2	95.73 (12)	C11—C16—C10	109.7 (4)
Cl1—Cu1—Cl2	111.32 (7)	C15—C16—H16A	109.1
Cl2 ⁱ —Cu1—Cl2	89.91 (5)	C11—C16—H16A	109.1
Cu1 ⁱ —Cl2—Cu1	90.09 (5)	C10-C16-H16A	109.1
C6—N1—C7	124.3 (4)	N3—C17—C18	123.6 (5)
C6—N1—H1A	117.9	N3—C17—H17A	118.2
C7—N1—H1A	117.8	C18—C17—H17A	118.2
C^{22} N2 C^{23}	124 6 (4)	C19-C18-C17	118.2
$C_{22} = N_2 = C_{23}$	124.0 (4)	C19 C18 H18A	120.6
C_{22} N_2 H_{2A}	117.7	C17 C18 U18A	120.0
C_{23} N_{2} N_{2} C_{21}	11/./	C1/-C10-HI A	120.0
C1/-N3-C21	118.0 (4)		118.0 (4)
C17—N3—Cu1	117.1 (3)	C18—C19—C22	122.0 (5)
C21—N3—Cu1	124.9 (3)	C20—C19—C22	119.7 (4)
C1—N4—C5	118.3 (4)	C21—C20—C19	119.8 (5)
C1—N4—Cu1	117.8 (3)	C21—C20—H20A	120.1
C5—N4—Cu1	123.9 (3)	C19—C20—H20A	120.1
N4C2	123.4 (4)	N3—C21—C20	121.6 (5)
N4—C1—H1B	118.3	N3—C21—H21A	119.2
C2—C1—H1B	118.3	C20—C21—H21A	119.2
C1—C2—C3	118.8 (4)	O1—C22—N2	125.3 (4)
C1—C2—H2B	120.6	O1—C22—C19	118.4 (4)
			~·· (· /

С3—С2—Н2В	120.6	N2—C22—C19	116.2 (4)
C4—C3—C2	118.0 (4)	N2—C23—C26	109.8 (4)
C4—C3—C6	126.2 (4)	N2—C23—C25	108.0 (3)
C2—C3—C6	115.7 (4)	C26—C23—C25	109.5 (4)
C3—C4—C5	119.8 (4)	N2—C23—C24	110.9 (4)
C3—C4—H4A	120.1	C26—C23—C24	110.2 (4)
C5—C4—H4A	120.1	C25—C23—C24	108.4 (4)
N4—C5—C4	121.6 (4)	C30—C24—C23	109.5 (4)
N4—C5—H5A	119.2	C30—C24—H24A	109.8
C4—C5—H5A	119.2	C23—C24—H24A	109.8
O2—C6—N1	124.1 (4)	C30—C24—H24B	109.8
$0^{2}-C6-C3$	119.4 (4)	C23—C24—H24B	109.8
N1 - C6 - C3	116 4 (4)	H24A—C24—H24B	108.2
N1 - C7 - C10	111.2 (4)	C_{23} C_{25} C_{28}	109.2
N1	107.4(3)	C23—C25—H25A	109.7
$C_{10} - C_{7} - C_{8}$	107.1(3) 109.5(4)	C_{28} C_{25} H_{25A}	109.7
N1 - C7 - C9	109.3(1) 110.7(3)	C_{23} C_{25} H_{25R}	109.7
$C_{10} - C_{7} - C_{9}$	109.8(4)	C28-C25-H25B	109.7
$C_{8}^{-}C_{7}^{-}C_{9}^{0}$	109.3(4) 108 1 (4)	H25A_C25_H25B	109.7
C7 - C8 - C12	100.1(4) 110.0(3)	C_{23} C_{26} C_{32}	100.2 109.4(4)
C7 - C8 - C12	100.7	C23-C26-H26A	109.4 (4)
$C_1^2 = C_8 = H_8 \Delta$	109.7	$C_{23} = C_{26} = H_{26A}$	109.8
C7 - C8 - H8B	109.7	C23_C26_H26B	109.8
$C_1^2 = C_8^2 = H_8B$	109.7	C32_C26_H26B	109.8
H8A = C8 = H8B	109.7	$H_{26} = C_{26} = H_{26} = H_{26}$	109.8
$C_{14} - C_{9} - C_{7}$	100.2	C_{32} C_{27} C_{28}	100.2 109.3 (4)
C14-C9-H9A	109.9 (3)	$C_{32} = C_{27} = C_{26}$	109.5 (4)
C7 - C9 - H9A	109.7	$C_{22} = C_{27} = H_{27} A$	109.8
$C_1 = C_2 = H_2 R$	109.7	$C_{20} = C_{27} = H_{27}R$	109.8
C7 - C9 - H9B	109.7	C28_C27_H27B	109.8
$H_{0}A = C_{0} = H_{0}B$	109.7	H27A - C27 - H27B	109.8
C7-C10-C16	100.2 109 5 (4)	C_{29} C_{28} C_{25}	100.5 110.0(4)
C7 - C10 - H10A	109.5 (4)	C_{29} C_{28} C_{27}	100.0(4)
C_16 C_10 H_{10A}	109.8	$C_{25} = C_{26} = C_{27}$	109.2 (4) 109.0 (4)
C7 $C10$ $H10B$	109.8	$C_{29} C_{28} H_{28}$	109.0 (4)
$C_16-C_10-H_10B$	109.8	$C_{25} = C_{26} = H_{26} A$	109.6
H_{10A} C_{10} H_{10B}	109.8	$C_{23} = C_{23} = H_{23} = H_{23}$	109.6
$C_{16} C_{11} C_{12}$	108.2	$C_{27} = C_{20} = H_{20} = H_{20}$	109.0 109.5 (4)
$C_{10} = C_{11} = C_{12}$	109.0 (4)	$C_{28} = C_{29} = C_{30}$	109.5 (4)
C_{12} C_{11} H_{11A}	109.8	$C_{20} = C_{29} = H_{29A}$	109.8
C16 C11 H11R	109.8	$C_{20} = C_{20} = H_{20R}$	109.8
C_{12} C_{11} H_{11}	109.8	$C_{20} = C_{20} = H_{20B}$	109.8
	109.8	$H_{20A} = C_{20} = H_{20B}$	109.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2
$C_{13} = C_{12} = C_{0}$	10.1(+) 108.8(4)	$C_{29} = C_{30} = C_{24}$	109.0 (4)
$C_{13} - C_{12} - C_{11}$	100.0(4) 108.0(4)	$C_{29} - C_{30} - C_{31}$	100.9(4) 100.2(4)
$C_{12} = C_{12} = C_{11}$	100.9 (4)	$C_{24} = C_{30} = C_{31}$	109.3 (4)
С13—С12—1112А С8—С12_ Ц12А	109.7	$C_{29} - C_{30} - H_{30A}$	109.0
$\nabla 0 = \nabla 1 \Delta = \Pi 1 \Delta \Lambda$	102./	$\mathcal{L}_{\mathcal{I}}$	102.0

C11—C12—H12A	109.7	С31—С30—Н30А	109.6
C12—C13—C14	108.9 (4)	C32—C31—C30	109.9 (4)
С12—С13—Н13А	109.9	С32—С31—Н31А	109.7
C14—C13—H13A	109.9	C30—C31—H31A	109.7
C12—C13—H13B	109.9	C32—C31—H31B	109.7
C14—C13—H13B	109.9	C_{30} C_{31} H_{31B}	109.7
H13A-C13-H13B	108.3	H_{31A} C_{31} H_{31B}	108.2
C9-C14-C15	109.4(4)	$C_{31} - C_{32} - C_{27}$	1105(4)
C_{0} C_{14} C_{13}	109.1(1) 109.4(4)	$C_{31} = C_{32} = C_{26}$	108.9(4)
C_{15} C_{14} C_{13}	109.4(4)	C_{27} C_{32} C_{20} C_{20}	100.3(4)
C_{0} C_{14} H_{14A}	109.4 (4)	C_{21} C_{32} C_{20}	109.3 (4)
$C_{2} = C_{14} = III_{4}$	109.5	C_{31} C_{32} C_{32} C_{32} C_{32} C_{33} C	109.3
C12 C14 III4A	109.5	$C_2/-C_{32}$ -II32A	109.3
C16 - C15 - C14	109.5	C_{20} C_{52} C	109.5
010-013-014	109.7 (4)	HIWA—OIW—HIWB	109.0
N3—Cu1—Cl2—Cu1 ⁱ	-87.15 (12)	C12—C13—C14—C9	-59.6 (5)
N4—Cu1—Cl2—Cu1 ⁱ	89.93 (12)	C12—C13—C14—C15	60.3 (5)
Cl1—Cu1—Cl2—Cu1 ⁱ	-177.76 (5)	C9—C14—C15—C16	59.7 (5)
Cl2 ⁱ —Cu1—Cl2—Cu1 ⁱ	0.000 (2)	C13—C14—C15—C16	-60.2 (5)
N4—Cu1—N3—C17	-7.0 (9)	C14—C15—C16—C11	60.1 (5)
Cl1—Cu1—N3—C17	-89.0 (4)	C14—C15—C16—C10	-60.6(5)
Cl2 ⁱ —Cu1—N3—C17	70.1 (4)	C12—C11—C16—C15	-60.4(5)
Cl2—Cu1—N3—C17	159.7 (4)	C12—C11—C16—C10	60.5 (5)
N4—Cu1—N3—C21	175.6 (6)	C7—C10—C16—C15	60.2 (5)
Cl1-Cu1-N3-C21	93.6 (4)	C7-C10-C16-C11	-60.6(5)
$C12^{i}$ $Cu1 N3 C21$	-1072(4)	$C_{1} = 0.00 - 0.00 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.00000 - 0.00000 - 0.0000 - 0.0000- 0.0000 0000 0.0000 0.0000 00$	0.4(8)
C12 - Cu1 - N3 - C21	-177(4)	Cu1 - N3 - C17 - C18	-177.2(5)
$N_3 = C_{11} = N_4 = C_1$	167(9)	N_{3} C_{17} C_{18} C_{19}	21(9)
C_{11} C_{11} N_{1} N_{1} N_{1} N_{1} C_{1}	985(4)	C_{17} C_{18} C_{19} C_{20}	-32(8)
$C12^{i}$ $C11$ $N4$ $C1$	-60.2(3)	C17 C18 C19 C20	170.9(5)
$C_{12} - C_{11} - N_4 - C_1$	-1501(3)	C17 - C18 - C19 - C22	170.9(3)
$N_2 = C_{11} = N_4 = C_1$	-160.5(6)	$C_{10} = C_{10} = C_{20} = C_{21}$	-1724(4)
N_{3} C_{11} C_{21} N_{4} C_{5}	-78.8(4)	$C_{22} = C_{13} = C_{20} = C_{21}$	1/2.4(4)
C12i $Cu1$ $N4$ $C5$	-70.0(4)	$C_{1} = N_{3} = C_{2} = C_{2} = C_{2}$	-1.0(7)
C12 - Cu1 - N4 - C5	122.0(4)	$C_{11} = N_{3} = C_{21} = C_{20}$	1/3.0(4)
C_{12} — C_{11} — N_{4} — C_{3}	52.7(4)	C19 - C20 - C21 - N3	0.7(8)
$C_3 = N_4 = C_1 = C_2$	0.3(7)	$C_{23} = N_2 = C_{22} = C_{10}$	3.3 (9)
CuI = N4 = CI = C2	-1/6.9(4)	C_{23} N2 C_{22} C_{19}	-1/2.0(5)
N4—C1—C2—C3	-1.8 (8)	C18—C19—C22—O1	-127.1 (6)
C1 - C2 - C3 - C4	1.0 (7)	C_{20} C_{19} C_{22} O_{1}	46.9 (8)
C1—C2—C3—C6	178.9 (4)	C18—C19—C22—N2	50.4 (7)
C2—C3—C4—C5	0.8 (7)	C20—C19—C22—N2	-135.6 (5)
C6—C3—C4—C5	-176.8 (4)	C22—N2—C23—C26	61.0 (6)
C1—N4—C5—C4	1.4 (7)	C22—N2—C23—C25	-179.7 (5)
Cu1—N4—C5—C4	178.6 (3)	C22—N2—C23—C24	-61.0 (6)
C3—C4—C5—N4	-2.1 (7)	N2-C23-C24-C30	-179.4 (4)
C7—N1—C6—O2	0.7 (7)	C26—C23—C24—C30	58.8 (5)
C7—N1—C6—C3	177.9 (4)	C25—C23—C24—C30	-61.0 (5)
C4—C3—C6—O2	162.0 (5)	N2-C23-C25-C28	-179.4 (4)

C2—C3—C6—O2	-15.7 (6)	C26—C23—C25—C28	-59.8 (5)
C4—C3—C6—N1	-15.3 (7)	C24—C23—C25—C28	60.5 (5)
C2-C3-C6-N1	167.1 (4)	N2-C23-C26-C32	178.0 (4)
C6—N1—C7—C10	65.9 (5)	C25—C23—C26—C32	59.6 (5)
C6—N1—C7—C8	-174.3 (4)	C24—C23—C26—C32	-59.6 (5)
C6—N1—C7—C9	-56.5 (6)	C23—C25—C28—C29	-59.7 (5)
N1-C7-C8-C12	179.5 (4)	C23—C25—C28—C27	60.0 (5)
C10—C7—C8—C12	-59.6 (5)	C32—C27—C28—C29	59.7 (5)
C9—C7—C8—C12	60.0 (5)	C32—C27—C28—C25	-60.5 (5)
N1-C7-C9-C14	-178.4 (4)	C25—C28—C29—C30	58.4 (5)
C10—C7—C9—C14	58.4 (5)	C27—C28—C29—C30	-61.1 (5)
C8—C7—C9—C14	-61.0 (5)	C28—C29—C30—C24	-59.1 (6)
N1-C7-C10-C16	178.4 (4)	C28—C29—C30—C31	60.6 (5)
C8—C7—C10—C16	59.8 (5)	C23—C24—C30—C29	60.8 (5)
C9—C7—C10—C16	-58.7 (5)	C23—C24—C30—C31	-58.5 (5)
C7—C8—C12—C13	-60.1 (5)	C29—C30—C31—C32	-59.4 (5)
C7—C8—C12—C11	59.1 (5)	C24—C30—C31—C32	60.5 (5)
C16—C11—C12—C13	60.5 (5)	C30—C31—C32—C27	59.1 (5)
C16—C11—C12—C8	-59.5 (5)	C30—C31—C32—C26	-61.1 (5)
C8—C12—C13—C14	59.0 (5)	C28—C27—C32—C31	-59.1 (5)
C11—C12—C13—C14	-60.3 (5)	C28—C27—C32—C26	60.8 (5)
C7—C9—C14—C15	-58.5 (5)	C23—C26—C32—C31	60.5 (5)
C7—C9—C14—C13	61.4 (5)	C23—C26—C32—C27	-60.4 (5)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A	
N1—H1A····O1 ⁱ	0.86	2.35	2.969 (5)	129	
N2—H2A···Cl1 ⁱⁱ	0.86	2.66	3.499 (4)	165	
O1W— $H1WA$ ···O $1W$ ⁱⁱⁱ	0.83	2.22	3.00 (4)	159	

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1.