metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imidazole- κN^3 }bis(3,5-dicarboxybenzoato- κO^1)zinc octahydrate

Lei Zhao,^a Bingtao Liu,^b Ting Li^c and Xiangru Meng^c*

^aSchool of Chemical and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China, ^bSchool of Environmental and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, People's Republic of China, and ^cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China Correspondence e-mail: mxr@zzu.edu.cn

Received 11 January 2012; accepted 12 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.158; data-to-parameter ratio = 13.1.

In the title complex, $[Zn(C_9H_5O_6)_2(C_{11}H_{10}N_4)_2]$ ·8H₂O, the Zn^{II} ion exhibits site symmetry 2. It shows a distorted tetrahedral coordination defined by two N atoms from two symmetry-related 1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imid-azole ligands and by two O atoms from two symmetry-related monodeprotonated 3,5-dicarboxybenzoate anions. In the crystal, complex molecules and solvent water molecules are linked through intermolecular O-H···O, O-H···N, and N-H···O hydrogen bonds into a three-dimensional network.

Related literature

For background information on Zn^{II} complexes constructed from both aromatic carboxylates and *N*-heterocyclic ligands, see: Lin *et al.* (2008); Tian *et al.* (2010).

Z = 4

T = 293 K

 $R_{\rm int} = 0.031$

V = 4567.9 (16) Å³

Mo $K\alpha$ radiation $\mu = 0.63 \text{ mm}^{-1}$

 $0.18 \times 0.15 \times 0.14~\rm{mm}$

15325 measured reflections

4127 independent reflections

3898 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $[Zn(C_9H_5O_6)_2(C_{11}H_{10}N_4)_2] \cdot 8H_2O$ $M_r = 1024.22$ Monoclinic, C2/c a = 20.870 (4) Å b = 15.008 (3) Å c = 15.472 (3) Å $\beta = 109.51$ (3)°

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2004) $T_{min} = 0.896, T_{max} = 0.917$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	314 parameters
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 1.08 \ {\rm e} \ {\rm \AA}^{-3}$
4127 reflections	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O8−H8A…O9	0.85	2.22	2.936 (8)	142
O9−H9A…O4	0.85	2.15	2.634 (7)	115
O9−H9B···O10	0.85	2.24	2.783 (12)	122
O10−H10A···O9	0.85	1.93	2.783 (12)	179
$N4 - H4 \cdots O7^{i}$	0.86	1.97	2.808 (4)	163
O3−H3···O10 ⁱⁱ	0.82	2.56	3.341 (10)	159
O5−H5···N3 ⁱⁱⁱ	0.82	1.77	2.577 (3)	165
$O7 - H7A \cdots O2^{iv}$	0.85	1.98	2.784 (4)	156
$O7 - H7B \cdots O8^{v}$	0.85	1.95	2.796 (5)	179
$O8-H8B\cdots O6^{vi}$	0.85	2.02	2.799 (6)	152
$O10-H10B\cdots O6^{vii}$	0.85	2.03	2.728 (9)	139

Symmetry codes: (i) x + 1, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iv) x - 1, -y + 1, $z - \frac{1}{2}$; (v) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (vi) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (vii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, $z - \frac{1}{2}$; (vi)

Data collection: *CrystalClear* (Rigaku/MSC, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We gratefully acknowledge financial support by the National Natural Science Foundation of China (No. J0830412).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2052).

References

Lin, J.-D., Cheng, J.-W. & Du, S.-W. (2008). Cryst. Growth Des. 9, 3345–3353. Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tian, L., Yang, N. & Zhao, G.-Y. (2010). Inorg. Chem. Commun. 13, 1497–1500. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2012). E68, m162 [doi:10.1107/S160053681200147X]

Bis{1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imidazole- κN^3 }bis(3,5-dicarboxy-benzoato- κO^1)zinc octahydrate

Lei Zhao, Bingtao Liu, Ting Li and Xiangru Meng

S1. Comment

It is well known that the Zn^{II} ion is able to coordinate simultaneously to both oxygen-containing and nitrogen-containing ligands and the final products can exhibit attractive structures and useful functional properties. A great number of Zn^{II} complexes containing both aromatic carboxylates and N-heterocyclic ligands have been reported (Lin *et al.*, 2008; Tian *et al.*, 2010). In order to further explore such compounds with new structures, we selected 1-((1*H*-benzimidazol-1-yl)methyl)-1*H*-imidazole and 1,3,5-benzenetricarboxylic acid as ligands to self-assemble with Zn(NO₃)₂ and obtained the title complex, {[Zn(C₉H₅O₆)₂(C₁₁H₁₀N₄)₂] (H₂O)₈}, the crystal structure of which is reported herein. As shown in Figure 1, two 1-((1*H*-benzimidazol-1-yl)methyl)-1*H*-imidazole ligands and two monodeprotonated 1,3,5-benzenetricarboxylic acid anions coordinate to the Zn^{II} ion which is located on a twofold rotation axis. The Zn—O bond length is slightly shorter than the Zn—N bond length. The environment around the Zn^{II} ion can be best described as distorted tetrahedral. O—H···O, O—H···N, and N—H···O hydrogen bonds between solvent water/water molecules, between carboxyl groups and benzimidazole N atoms, between benzimidazole units and solvent water molecules of adjacent molecules consolidate the crystal packing (Figure 2).

S2. Experimental

A mixture of $Zn(NO_3)_2$ (0.1 mmol), 1-((1*H*-benzimidazol-1-yl)methyl)-1*H*-imidazole (0.1 mmol), 1,3,5-benzenetricarboxylic acid (0.1 mmol) and water (10 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 120 °C for 72 h, then cooled to room temperature. Colourless crystals were obtained from the filtrate and dried in air.

S3. Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) Å and 0.97 (CH₂) Å. H atoms bound to N and O atoms were found from difference maps and refined with distance restraints of N-H = 0.86 Å and O-H = 0.82 (OH) Å and O-H = 0.85 (H₂O) Å. All H atoms were refined with $U_{iso}(H) = 1.2 U_{eq}(C,N,O)$.

Figure 1

View of the title complex showing labeling and 30% probability displacement ellipsolids. H atoms are omitted for clarity. [Symmetry code A: -x + 2, +y, -z + 1.5.]

Figure 2

View of the crystal packing of the title complex, showing the three-dimensional structure stabilized by hydrogen bonds.

Bis{1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imidazole- κN^3 }bis(3,5-dicarboxybenzoato- κO^1)zinc octahydrate

Crystal data	
$[Zn(C_9H_5O_6)_2(C_{11}H_{10}N_4)_2]\cdot 8H_2O$	$\beta = 109.51 \ (3)^{\circ}$
$M_r = 1024.22$	V = 4567.9 (16) Å ³
Monoclinic, $C2/c$	Z = 4
Hall symbol: -C 2yc	F(000) = 2128
a = 20.870 (4) Å	$D_{\rm x} = 1.489 {\rm Mg} {\rm m}^{-3}$
b = 15.008 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 15.472 (3) Å	Cell parameters from 6831 reflections

 $\theta = 1.7-27.9^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku Saturn diffractometer	15325 measured reflections 4127 independent reflections
Radiation source: fine-focus sealed tube	3898 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.031$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
ω scans	$h = -25 \rightarrow 25$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2004) $T_{\min} = 0.896, T_{\max} = 0.917$	$k = -17 \rightarrow 18$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier

Prism, colourless

 $0.18 \times 0.15 \times 0.14 \text{ mm}$

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 1.07	H-atom parameters constrained
4127 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0953P)^2 + 7.0031P]$
314 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	1.0000	0.47361 (3)	0.7500	0.02673 (18)	
N1	1.00685 (12)	0.54973 (17)	0.85945 (17)	0.0303 (5)	
N2	1.04718 (12)	0.60129 (16)	0.99936 (16)	0.0295 (5)	
N3	1.20973 (13)	0.63838 (16)	1.09909 (17)	0.0323 (6)	
N4	1.15439 (13)	0.75634 (17)	1.11874 (19)	0.0368 (6)	
H4	1.1219	0.7891	1.1235	0.044*	
01	0.91112 (10)	0.41744 (14)	0.70946 (15)	0.0353 (5)	
O2	0.95138 (12)	0.31291 (17)	0.64061 (18)	0.0486 (6)	
O3	0.67237 (16)	0.42512 (17)	0.6806 (3)	0.0685 (9)	
Н3	0.6539	0.4603	0.6391	0.082*	
O4	0.60726 (13)	0.3058 (2)	0.6317 (3)	0.0730 (10)	
05	0.70841 (13)	0.02986 (15)	0.5653 (3)	0.0604 (8)	
Н5	0.7129	-0.0244	0.5703	0.073*	

06	0.81799 (15)	0.02479 (16)	0.5819(3)	0.0655 (9)
07	0.03572 (17)	0.8297 (2)	0.1368 (3)	0.0841 (11)
H7A	0.0096	0.7939	0.1517	0.101*
H7B	0.0500	0.8761	0.1688	0.101*
08	0.5834 (2)	0.5183 (3)	0.7433 (3)	0.1037 (14)
H8A	0.5724	0.4636	0.7401	0.124*
H8B	0.6017	0.5138	0.8011	0.124*
09	0.4962 (3)	0.3677 (5)	0.6555 (6)	0.214 (4)
H9A	0.5130	0.3746	0.6129	0.256*
H9B	0.4592	0.3966	0.6428	0.256*
010	0.4214 (6)	0.4833 (11)	0.5182 (7)	0.417 (11)
H10A	0 4442	0 4475	0 5597	0 501*
H10R	0.3822	0.4733	0.5214	0.501*
C1	1 05420 (15)	0.53995 (19)	0.9405(2)	0.0303 (6)
HIA	1.0878	0.4964	0.9546	0.036*
C^2	0.96815 (16)	0.4204	0.8680 (2)	0.030 0.0381(7)
H2A	0.9311	0.6451	0.8215	0.0361 (7)
C3	0.99263 (16)	0.6536(2)	0.0213 0.9542 (2)	0.040
НЗА	0.9758	0.0000 (2)	0.9342 (2)	0.0390 (8)
	1 00106 (16)	0.7015	1.09/82	0.048 0.0344(7)
Нил	1.09100 (10)	0.5531	1.0948 (2)	0.0344(7)
H/B	1.1005	0.6377	1.1204	0.041
C5	1.0050	0.0377	1.1298	0.041
C5	1.13138(15) 1.21887(16)	0.0000(2) 0.7856(2)	1.10402(19) 1.1250(2)	0.0302(0)
C0 C7	1.21867 (10)	0.7850(2)	1.1230(2) 1.1402(3)	0.0347(7)
	1.24808 (19)	0.8092 (2)	1.1402 (5)	0.0483 (9)
	1.2231 1.2160 (2)	0.9194	1.1400 1.1421(2)	0.038°
	1.3100 (2)	0.0734 (3)	1.1451 (5)	0.0519 (9)
	1.3301	0.9282	1.1329	0.062°
	1.33128 (18)	0.7980 (3)	1.1318 (3)	0.0300 (9)
H9C	1.3904	0.8037	1.1555	0.001*
	1.32114(17)	0.7154(2)	1.1157 (2)	0.0419 (8)
HIUC	1.5440	0.0055	1.10/4	0.050*
	1.25365(15)	0.7105(2)	1.1124(2)	0.0327(7)
C12	0.90560 (15)	0.3445 (2)	0.6650 (2)	0.0314 (6)
C13	0.83856 (15)	0.29/6 (2)	0.64489 (19)	0.0297 (6)
C14	0.78386 (15)	0.3418 (2)	0.6558 (2)	0.0332(7)
HI4A	0.7884	0.4009	0.6749	0.040*
C15	0.72163 (16)	0.2984 (2)	0.6385 (2)	0.0357 (7)
C16	0.71589 (16)	0.2091 (2)	0.6120 (2)	0.0363 (7)
HI6A	0.6747	0.1797	0.6007	0.044*
C17	0.77091 (16)	0.1639 (2)	0.6024 (2)	0.0346 (7)
C18	0.83224 (16)	0.2091 (2)	0.6178 (2)	0.0344 (7)
H18A	0.8691	0.1796	0.6098	0.041*
C19	0.66265 (17)	0.3463 (2)	0.6498 (3)	0.0439 (8)
C20	0.76632 (18)	0.0659 (2)	0.5806 (3)	0.0435 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0215 (3)	0.0258 (3)	0.0320 (3)	0.000	0.0078 (2)	0.000
N1	0.0237 (12)	0.0282 (12)	0.0380 (14)	-0.0005 (10)	0.0089 (10)	-0.0032 (11)
N2	0.0276 (12)	0.0287 (12)	0.0324 (13)	-0.0035 (10)	0.0104 (10)	-0.0038 (10)
N3	0.0291 (13)	0.0262 (12)	0.0383 (14)	-0.0012 (10)	0.0070 (11)	0.0028 (11)
N4	0.0317 (14)	0.0321 (14)	0.0479 (16)	-0.0030 (11)	0.0152 (12)	-0.0087 (12)
01	0.0294 (11)	0.0326 (11)	0.0417 (12)	-0.0077 (9)	0.0090 (9)	-0.0042 (9)
O2	0.0372 (13)	0.0513 (15)	0.0651 (16)	-0.0110 (11)	0.0276 (12)	-0.0135 (12)
O3	0.0585 (18)	0.0375 (15)	0.119 (3)	-0.0020 (13)	0.0428 (18)	-0.0142 (16)
O4	0.0347 (14)	0.0558 (17)	0.129 (3)	-0.0097 (13)	0.0275 (16)	-0.0182 (18)
O5	0.0418 (15)	0.0241 (12)	0.111 (3)	-0.0081 (10)	0.0193 (15)	-0.0041 (13)
O6	0.0515 (17)	0.0367 (15)	0.115 (3)	-0.0043 (12)	0.0364 (17)	-0.0187 (14)
O7	0.078 (2)	0.065 (2)	0.129 (3)	-0.0150 (17)	0.060 (2)	-0.018 (2)
08	0.100 (3)	0.089 (3)	0.111 (3)	0.001 (2)	0.020 (3)	0.001 (2)
09	0.117 (5)	0.204 (7)	0.321 (10)	0.020 (5)	0.074 (6)	-0.060(7)
O10	0.317 (14)	0.76 (3)	0.254 (12)	0.332 (17)	0.204 (12)	0.243 (16)
C1	0.0241 (14)	0.0280 (15)	0.0376 (16)	-0.0019 (11)	0.0087 (12)	-0.0011 (12)
C2	0.0307 (16)	0.0373 (17)	0.0415 (18)	0.0074 (13)	0.0055 (13)	-0.0038 (14)
C3	0.0378 (17)	0.0364 (17)	0.0443 (18)	0.0087 (14)	0.0135 (15)	-0.0062 (14)
C4	0.0345 (16)	0.0372 (16)	0.0318 (15)	-0.0090 (13)	0.0113 (13)	-0.0024 (13)
C5	0.0302 (15)	0.0292 (15)	0.0298 (15)	-0.0035 (12)	0.0083 (12)	-0.0002 (12)
C6	0.0341 (16)	0.0323 (16)	0.0349 (16)	-0.0050 (13)	0.0077 (13)	-0.0040 (13)
C7	0.053 (2)	0.0324 (18)	0.060 (2)	-0.0087 (16)	0.0192 (18)	-0.0079 (16)
C8	0.051 (2)	0.043 (2)	0.058 (2)	-0.0209 (18)	0.0141 (18)	-0.0030 (17)
C9	0.0346 (18)	0.061 (2)	0.053 (2)	-0.0129 (17)	0.0102 (16)	0.0041 (18)
C10	0.0336 (17)	0.0413 (19)	0.049 (2)	0.0004 (14)	0.0110 (15)	0.0042 (15)
C11	0.0312 (15)	0.0283 (15)	0.0347 (16)	-0.0033 (12)	0.0059 (12)	0.0020 (12)
C12	0.0313 (15)	0.0315 (15)	0.0306 (15)	-0.0058 (12)	0.0092 (12)	0.0026 (12)
C13	0.0292 (15)	0.0295 (15)	0.0282 (14)	-0.0068 (12)	0.0065 (12)	0.0010 (12)
C14	0.0341 (16)	0.0243 (14)	0.0388 (17)	-0.0066 (12)	0.0092 (13)	-0.0024 (12)
C15	0.0303 (16)	0.0310 (16)	0.0436 (18)	-0.0041 (13)	0.0093 (13)	-0.0014 (13)
C16	0.0304 (16)	0.0294 (16)	0.0460 (18)	-0.0070 (13)	0.0084 (13)	0.0007 (13)
C17	0.0315 (16)	0.0273 (15)	0.0429 (18)	-0.0067 (12)	0.0097 (13)	-0.0013 (13)
C18	0.0309 (16)	0.0330 (16)	0.0405 (17)	-0.0047 (13)	0.0137 (13)	-0.0020 (13)
C19	0.0345 (18)	0.0325 (17)	0.063 (2)	-0.0033 (14)	0.0139 (16)	-0.0040 (16)
C20	0.0409 (19)	0.0302 (17)	0.058 (2)	-0.0065 (15)	0.0153 (16)	-0.0036 (15)

Geometric parameters (Å, °)

Zn1—01	1.941 (2)	C1—H1A	0.9300	
Zn1—O1 ⁱ	1.941 (2)	C2—C3	1.344 (5)	
Zn1—N1	2.008 (2)	C2—H2A	0.9300	
Zn1—N1 ⁱ	2.008 (2)	С3—Н3А	0.9300	
N1C1	1.320 (4)	C4—C5	1.493 (4)	
N1—C2	1.385 (4)	C4—H4A	0.9700	
N2-C1	1.338 (4)	C4—H4B	0.9700	

N2—C3	1.367 (4)	С6—С7	1.384 (5)
N2—C4	1.463 (4)	C6—C11	1.390 (4)
N3—C5	1.322 (4)	C7—C8	1.392 (5)
N3—C11	1.388 (4)	C7—H7C	0.9300
N4—C5	1.334 (4)	C8—C9	1.392 (6)
N4—C6	1.388 (4)	C8—H8C	0.9300
N4—H4	0.8600	C9—C10	1.375 (5)
O1—C12	1.278 (4)	С9—Н9С	0.9300
O2—C12	1.233 (4)	C10—C11	1.394 (5)
Q3—C19	1.266 (4)	C10—H10C	0.9300
03—H3	0.8200	C12—C13	1 503 (4)
04-C19	1 253 (4)	C13 - C14	1 378 (4)
05-020	1.233(1) 1.272(4)	C13 - C18	1.376(1) 1 386(4)
05 H5	1.272(4)	C14 - C15	1.306 (4)
06 C20	1.226(4)	C14 - C15	0.0200
00-020	1.230 (4)	C14 $- R14A$	0.9300
07—П/А	0.8300	C13-C10	1.393 (4)
0/—H/B	0.8492		1.485 (5)
U8—H8A	0.8501		1.384 (5)
O8—H8B	0.8502	Cl6—Hl6A	0.9300
09—Н9А	0.8500	C17—C18	1.397 (4)
O9—H9B	0.8501	C17—C20	1.505 (4)
O10—H10A	0.8502	C18—H18A	0.9300
O10—H10B	0.8498		
O1—Zn1—O1 ⁱ	128.52 (13)	N4—C6—C11	105.8 (3)
O1—Zn1—N1	108.11 (10)	C6—C7—C8	116.0 (3)
Ol ⁱ —Zn1—N1	100.57 (10)	C6—C7—H7C	122.0
O1—Zn1—N1 ⁱ	100.57 (10)	C8—C7—H7C	122.0
$O1^{i}$ —Zn1—N1 ⁱ	108.11 (10)	C7—C8—C9	121.9 (3)
$N1$ — $Zn1$ — $N1^{i}$	110.65 (15)	C7—C8—H8C	119.0
C1-N1-C2	105.8 (3)	C9—C8—H8C	119.0
C1 - N1 - Zn1	123.9(2)	C10-C9-C8	121.8 (3)
$C_2 = N_1 = Z_{n_1}$	120.3(2)	C10 - C9 - H9C	119.1
C1 - N2 - C3	108.0(2)	C8 - C9 - H9C	119.1
C1 N2 C4	100.0(2) 125.0(3)	$C_0 = C_1 = C_1 = C_1$	119.1 116.7(3)
$C_1 = N_2 = C_4$	125.9(3) 126.2(3)	C_{9} C_{10} H_{10}	110.7 (3)
$C_{5} N_{2} - C_{4}$	120.2(3)	C_{2}	121.0
$C_{2} = N_{3} = C_{11}$	107.3 (3)		121.6
C5—N4—C6	108.1 (3)	N3-C11-C6	107.7 (3)
C5—N4—H4	125.9	N3—C11—C10	131.0 (3)
C6—N4—H4	125.9	C6—C11—C10	121.3 (3)
C12—O1—Zn1	116.8 (2)	O2—C12—O1	123.7 (3)
С19—О3—Н3	109.5	O2—C12—C13	121.3 (3)
С20—О5—Н5	109.5	O1—C12—C13	115.0 (3)
H7A—O7—H7B	119.4	C14—C13—C18	119.9 (3)
H8A—O8—H8B	90.1	C14—C13—C12	120.1 (3)
Н9А—О9—Н9В	109.5	C18—C13—C12	119.9 (3)
H10A—O10—H10B	98.7	C13—C14—C15	120.5 (3)
N1—C1—N2	110.7 (3)	C13—C14—H14A	119.7

N1—C1—H1A	124.7	C15—C14—H14A	119.7
N2—C1—H1A	124.7	C16—C15—C14	119.2 (3)
C3—C2—N1	109.3 (3)	C16—C15—C19	120.4 (3)
С3—С2—Н2А	125.4	C14—C15—C19	120.4 (3)
N1—C2—H2A	125.4	C17—C16—C15	120.6 (3)
C2—C3—N2	106.3 (3)	C17—C16—H16A	119.7
С2—С3—НЗА	126.9	C15—C16—H16A	119.7
N2—C3—H3A	126.9	C16—C17—C18	119.3 (3)
N2—C4—C5	112.4 (2)	C16—C17—C20	120.7 (3)
N2-C4-H4A	109.1	C18 - C17 - C20	119.9 (3)
C5-C4-H4A	109.1	C_{13} C_{18} C_{17}	1204(3)
$N_2 - C_4 - H_4 B$	109.1	C_{13} C_{18} H_{18A}	119.8
$C_5 C_4 H_{4B}$	109.1	C_{17} C_{18} H_{18A}	110.8
$H_{AA} = C_{A} = H_{AB}$	107.0	$O_{1} = C_{10} = M_{10}$	119.0 123.0(3)
$N_2 C_5 N_4$	107.9 111 1 (2)	04 - C19 - C15	123.9(3)
$N_2 = C_5 = C_4$	111.1(3)	04 - 019 - 015	117.5(3)
$N_3 = C_5 = C_4$	124.1(3)	03-019-015	117.5 (3)
N4—C5—C4	124.8 (3)	06-020-05	124.1 (3)
C/C6N4	132.0 (3)	06-020-017	119.6 (3)
C/C6C11	122.2 (3)	O5—C20—C17	116.3 (3)
Ol—Znl—Nl—Cl	121.9 (2)	C5—N3—C11—C10	178.6 (3)
$O1^{1}$ —Zn1—N1—C1	-14.8 (3)	C7—C6—C11—N3	179.9 (3)
$N1^{i}$ —Zn1—N1—C1	-128.9 (3)	N4—C6—C11—N3	0.0 (3)
O1— $Zn1$ — $N1$ — $C2$	-60.7 (3)	C7—C6—C11—C10	0.8 (5)
$O1^{i}$ —Zn1—N1—C2	162.6 (3)	N4—C6—C11—C10	-179.1 (3)
$N1^{i}$ — $Zn1$ — $N1$ — $C2$	48.5 (3)	C9—C10—C11—N3	-178.9 (3)
O1 ⁱ —Zn1—O1—C12	-34.72 (19)	C9—C10—C11—C6	-0.1 (5)
N1—Zn1—O1—C12	-155.2 (2)	Zn1—O1—C12—O2	-6.1 (4)
N1 ⁱ —Zn1—O1—C12	88.8 (2)	Zn1—O1—C12—C13	172.90 (18)
C2—N1—C1—N2	0.5 (3)	O2—C12—C13—C14	-166.9 (3)
Zn1—N1—C1—N2	178.40 (19)	O1—C12—C13—C14	14.1 (4)
C3—N2—C1—N1	-0.2 (3)	O2—C12—C13—C18	14.9 (4)
C4—N2—C1—N1	-179.1(3)	O1—C12—C13—C18	-164.2(3)
C1—N1—C2—C3	-0.6(4)	C18—C13—C14—C15	-0.9 (5)
Zn1-N1-C2-C3	-178.3(2)	C12-C13-C14-C15	-179.2(3)
N1-C2-C3-N2	0.5 (4)	C_{13} C_{14} C_{15} C_{16}	1.5 (5)
C1 - N2 - C3 - C2	-0.2(4)	C_{13} C_{14} C_{15} C_{19}	-179.6(3)
$C_{1} = N_{2} = C_{3} = C_{2}$	1787(3)	C_{14} C_{15} C_{16} C_{17}	-0.4(5)
$C_1 = N_2 = C_3 = C_2$	26 6 (A)	$C_{10} = C_{10} = C_{10} = C_{17}$	-170.3(3)
$C_1 = N_2 = C_4 = C_5$	-021(4)	$C_{15} = C_{16} = C_{17} = C_{18}$	-12(5)
$C_{3} = N_{2} = C_{4} = C_{3}$	92.1(4)	$C_{15} = C_{16} = C_{17} = C_{18}$	1.2(3)
C11 - N3 - C5 - C4	0.7(3)	C13 - C10 - C17 - C20	173.3(3)
$CII = N_3 = C_3 = C_4$	-1/8.9(3)	C12 - C13 - C18 - C17	-0.7(5)
C = 104 - C5 - C4	-0.8(4)	$C_{12} - C_{13} - C_{16} - C_{17}$	1//.3(3)
10 - 104 - 103 - 104	1/8.9 (3)	10 - 17 - 18 - 13	1.8 (5)
N2-C4-C5-N3	-8/.7(4)	C20—C17—C18—C13	-175.0(3)
N2-C4-C5-N4	92.7 (4)	C16—C15—C19—O4	-2.6 (5)
C5—N4—C6—C7	-179.5 (4)	C14—C15—C19—O4	178.5 (3)
C5—N4—C6—C11	0.5 (3)	C16—C15—C19—O3	174.8 (4)

N4—C6—C7—C8	179.3 (3)	C14—C15—C19—O3	-4.1 (5)
C11—C6—C7—C8	-0.6 (5)	C16—C17—C20—O6	-172.3 (4)
C6—C7—C8—C9	-0.3 (6)	C18—C17—C20—O6	4.4 (5)
C7—C8—C9—C10	1.0 (6)	C16—C17—C20—O5	4.9 (5)
C8—C9—C10—C11	-0.8 (5)	C18—C17—C20—O5	-178.4 (3)
C5—N3—C11—C6	-0.4 (3)		

Symmetry code: (i) -x+2, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
08—H8A…O9	0.85	2.22	2.936 (8)	142
O9—H9A…O4	0.85	2.15	2.634 (7)	115
O9—H9 <i>B</i> ···O10	0.85	2.24	2.783 (12)	122
O10—H10A····O9	0.85	1.93	2.783 (12)	179
N4—H4···O7 ⁱⁱ	0.86	1.97	2.808 (4)	163
O3—H3…O10 ⁱⁱⁱ	0.82	2.56	3.341 (10)	159
O5—H5…N3 ^{iv}	0.82	1.77	2.577 (3)	165
O7— $H7A$ ···O2 ^v	0.85	1.98	2.784 (4)	156
O7— $H7B$ ···O8 ^{vi}	0.85	1.95	2.796 (5)	179
O8—H8 <i>B</i> ···O6 ^{vii}	0.85	2.02	2.799 (6)	152
O10—H10 <i>B</i> ····O6 ^{viii}	0.85	2.03	2.728 (9)	139

Symmetry codes: (ii) x+1, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) x-1/2, -y+1/2, z-1/2; (v) x-1, -y+1, z-1/2; (vi) x-1/2, -y+3/2, z-1/2; (vii) -x+3/2, y+1/2, -z+3/2; (viii) x-1/2, -y+1/2, z-1/2; (vi) x-1/2, -y+3/2, z-1/2; (vii) -x+3/2, y+1/2, z-1/2; (vii) -x+3/2, y+1/2; (vii) -x+3/2; (vii) -x+3/2;