Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[(8-aminoquinoline- $\left.\kappa^{2} N, N^{\prime}\right)$ -cadmium]-di- μ-thiocyanato- $\kappa^{2} N: S$;$\kappa^{2} S: N$-[(8-aminoquinoline- $\left.\kappa^{2} N, N^{\prime}\right)$ -cadmium]-di- μ-chlorido]

Heng Xu* and Chang Guo
Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
Correspondence e-mail: xuheng312@163.com

Received 21 November 2011; accepted 29 November 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.021 ; w R$ factor $=0.051 ;$ data-to-parameter ratio $=13.8$.

In the title compound, $\left[\mathrm{CdCl}(\mathrm{NCS})\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ atom is in a distorted octahedral coordination environment defined by two chloride anions, two N atoms from an 8 -aminoquinoline ligand, one N atom from one thiocyanate anion and one S atom from a symmetry-related thiocyanate anion. Two $\mathrm{Cd}^{\mathrm{II}}$ atoms are bridged by two chloride anions, forming an inversion-related $\mathrm{Cd}_{2} \mathrm{Cl}_{2}$ unit; these units are further linked through thiocyanate anions, leading to a chain structure extending parallel to [010]. Weak $\pi-\pi$ stacking interactions with centroid-centroid distances of 3.430 (4) \AA and an interplanar separation of 3.390 (3) \AA between the pyridine and benzene rings link the chains into a two-dimensional network parallel to (101). Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogenbonding interactions help to consolidate the crystal packing.

Related literature

For background and applications of 8-aminoquinoline and its derivatives, see: Fritsch et al. (2006); Kim et al. (2004); Li et al. (2005); Macias et al. (2003); Bortoluzzi et al. (2006); Tekwami \& Walker (2006).

Experimental

Crystal data

$\left[\mathrm{CdCl}(\mathrm{NCS})\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$	$b=8.6245(7) \AA$
$M_{r}=350.10$	$c=10.5247(12) \AA$
Triclinic, $P \overline{1}$	$\alpha=106.649(7)^{\circ}$
$a=7.4965(6) \AA$	$\beta=98.047(7)^{\circ}$

$\gamma=112.561(5)^{\circ}$
$\mu=2.28 \mathrm{~mm}^{-}$
$V=577.53(9) \AA^{3}$
$T=293 \mathrm{~K}$
$Z=2$
Mo $K \alpha$ radiation

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.635, T_{\text {max }}=0.685$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.051$
$S=1.04$
2104 reflections
153 parameters
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$

5150 measured reflections
2104 independent reflections
1961 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{N} 3^{\mathrm{i}}$	$2.311(2)$	$\mathrm{Cd} 1-\mathrm{Cl} 1$	$2.5495(8)$
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.322(2)$	$\mathrm{Cd} 1-\mathrm{S} 1$	$2.6413(8)$
$\mathrm{Cd} 1-\mathrm{N} 2$	$2.382(3)$	$\mathrm{Cd} 1-\mathrm{Cl} 1^{\mathrm{ii}}$	$2.8088(7)$
Symmetry codes: $(\mathrm{i})-x+1,-y-1,-z+1 ;$ (ii) $-x+1,-y,-z+1$			

Symmetry codes: (i) $-x+1,-y-1,-z+1$; (ii) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.93	2.84	$3.723(4)$	160

Symmetry code: (iii) $x, y, z+1$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Natural Science Foundation of Education Commission of Anhui Province (No. KJ2010A229)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2567).

References

Bortoluzzi, M., Paolucci, G., Pitteri, B. \& Vavasori, A. (2006). Inorg. Chem. Соттип. 9, 1301-1303.
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Fritsch, J. M., Thoreson, K. A. \& McNeill, K. (2006). Dalton Trans. pp. 4814 4820.

Kim, Y.-H., Youk, J.-S., Moon, S.-Y., Choe, J.-I. \& Chang, S.-K. (2004). Chem. Lett. 33, 702-703.
Li, X.-G., Hua, Y.-M. \& Huang, M.-R. (2005). Chem. Eur. J. 11, 4247-4256.
Macias, B., Garcia, I., Villa, M. V., Borras, J., Casiineiras, A. \& Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255-260.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tekwami, B. L. \& Walker, L. A. (2006). Curr. Opin. Infect. Dis. 19, 623-631.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m3 [doi:10.1107/S1600536811051373]

catena-Poly[[(8-aminoquinoline- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium $]$-di- μ-thiocyanato$\kappa^{2} N: S ; \kappa^{2} S: N-\left[\left(8\right.\right.$-aminoquinoline- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium $]$-di- μ-chlorido]

Heng Xu and Chang Guo

S1. Comment

8-aminoquinoline and its derivatives are systems that have been recently focused on, because of antiprotozal and other pharmaceutical properties (Tekwami \& Walker, 2006). They are also strongly fluorescent and have been employed in the analytical study of heavy metals (Fritsch et al., 2006; Macias et al., 2003). They also have been used to prepare highly conducting co-polymers (Li et al., 2005). Different functionalized molecules of 8-aminoquinoline have been recently reported (Kim et al., 2004). However, the coordination chemistry of 8 -aminoquinoline, as such, is scarce (Bortoluzzi et al., 2006). We report here the crystal structure of the title compound, $\left[\mathrm{CdCl}(\mathrm{SCN})\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, (I).
As shown in Fig. 1, the asymmetric unit of (I) contains one $\mathrm{Cd}^{\mathrm{II}}$ cation, one chloride anion and one thiocyanate anion. Each $\mathrm{Cd}^{\mathrm{II}}$ cation is in a distorted octahedral coordination environment defined by two chloride anions, two nitrogen atoms from one 8 -aminoquinoline ligand, one nitrogen atom from one thiocyanate anion and one sulfur atom from another thiocyanate anion. Two $\mathrm{Cd}^{\mathrm{II}}$ atoms are connected by two chloride anions to form a dimer and these dimers are further bridged through two thiocyanate anions, leading to a chain structure extending parallel to [010] (Fig. 2). Moreover, weak $\pi-\pi$ stacking interactions (centroid \cdots centroid distances of 3.430 (4) \AA and an interplanar separation of 3.390 (3) \AA between pyridyl rings and benzene rings) link the chains into a two-dimensional supramolecular network in the ($10 \overline{1}$) plane, which is further consolidated by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to genrate a three-dimensional supramolecular structure (Fig. 3). It is interesting to note that the amino hydrogen atoms are not involved in any hydrogen bonding interactions.

S2. Experimental

8 -aminoquinoline (1 mmol) and potassium thiocyanate $(1 \mathrm{mmol})$ in 20 ml methanol were added to a clear solution of cadmium chloride (1 mmol) in 20 ml methanol. Stirring was continued for 1 h ; the colour changed to light yellow. The volume of the solution was reduced to 10 ml , filtered and kept for crystallization after addition of 2 drops of 2-methoxy ethanol. Colorless block-like crystals were obtained by slow evaporation of the solvent. Yield: 59\%.

S3. Refinement

All hydrogen atoms bonded to carbon were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ \AA and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The amino H atoms were found from difference maps and were refined with distance restraint of $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Figure 1
The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) $-x+1,-y-1,-z+1$; (ii) $-x+1,-y,-z+1$.]

Figure 2
The crystal packing of the title compound, showing the chain structure extending parallel to [010].

Figure 3
A view showing part of the three-dimensional supramolecular network linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and weak $\pi-$ π stacking interactions. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(8-aminoquinoline- $\left.\kappa^{2} N, N^{\prime}\right)$ cadmium $]$ - di- μ-thiocyanato $-\kappa^{2} N: S ; \kappa^{2} S: N-[(8$ - aminoquinoline$\left.\kappa^{2} N, N^{\prime}\right)$ cadmium]-di- μ-chlorido]

Crystal data

$\left[\mathrm{CdCl}(\mathrm{NCS})\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=350.10$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.4965$ (6) \AA
$b=8.6245$ (7) \AA
$c=10.5247(12) \AA$
$\alpha=106.649(7)^{\circ}$
$\beta=98.047$ (7) ${ }^{\circ}$
$\gamma=112.561(5)^{\circ}$
$V=577.53$ (9) \AA^{3}

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.635, T_{\text {max }}=0.685$
$Z=2$
$F(000)=340$
$D_{\mathrm{x}}=2.013 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5150 reflections
$\theta=2.1-25.5^{\circ}$
$\mu=2.28 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$

5150 measured reflections
2104 independent reflections
1961 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.051$
$S=1.04$
2104 reflections
153 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0243 P)^{2}+0.2713 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=0.74 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd1	$0.62856(3)$	$-0.10583(2)$	$0.594940(19)$	$0.03402(8)$
C11	$0.56554(12)$	$-0.11665(9)$	$0.34743(7)$	$0.04336(17)$
N1	$0.7549(3)$	$0.0017(3)$	$0.8336(2)$	$0.0356(5)$
N2	$0.9449(5)$	$0.1523(4)$	$0.6597(3)$	$0.0515(7)$
N3	$0.2515(4)$	$-0.6802(3)$	$0.4552(3)$	$0.0456(6)$
S1	$0.26442(11)$	$-0.34111(9)$	$0.57610(9)$	$0.0464(2)$
C1	$0.6679(4)$	$-0.0751(4)$	$0.9132(3)$	$0.0431(7)$
H1	0.5546	-0.1865	0.8719	0.052^{*}
C2	$0.7371(5)$	$0.0024(5)$	$1.0580(3)$	$0.0518(8)$
H2	0.6710	-0.0569	1.1110	0.062^{*}
C3	$0.9004(5)$	$0.1638(5)$	$1.1190(3)$	$0.0525(8)$
H3	0.9471	0.2172	1.2149	0.063^{*}
C4	$1.0010(4)$	$0.2524(4)$	$1.0383(3)$	$0.0425(7)$
C5	$1.1737(5)$	$0.4201(4)$	$1.0939(3)$	$0.0576(9)$
H5	1.2259	0.4794	1.1893	0.069^{*}
C6	$1.2648(5)$	$0.4961(4)$	$1.0102(4)$	$0.0610(9)$
H6	1.3781	0.6077	1.0487	0.073^{*}
C7	$1.1906(5)$	$0.4087(4)$	$0.8661(4)$	$0.0526(8)$
H7	1.2563	0.4622	0.8101	0.063^{*}
C8	$1.0226(4)$	$0.2458(4)$	$0.8069(3)$	$0.0394(6)$
C9	$0.9235(4)$	$0.1647(3)$	$0.8922(3)$	$0.0322(6)$
C10	$0.2613(4)$	$-0.5392(4)$	$0.5052(3)$	$0.0344(6)$
H8A	$0.925(7)$	$0.225(6)$	$0.623(5)$	$0.097(16)^{*}$
H8B	$1.026(8)$	$0.108(7)$	$0.629(5)$	$0.110(19)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.03527(12)$	$0.03000(12)$	$0.02813(13)$	$0.01083(9)$	$0.00321(9)$	$0.00685(9)$
C11	$0.0617(4)$	$0.0430(4)$	$0.0277(4)$	$0.0279(3)$	$0.0119(3)$	$0.0102(3)$
N1	$0.0353(12)$	$0.0390(12)$	$0.0320(12)$	$0.0179(10)$	$0.0070(10)$	$0.0116(10)$
N2	$0.0512(16)$	$0.0495(16)$	$0.0336(15)$	$0.0056(13)$	$0.0091(13)$	$0.0125(13)$
N3	$0.0408(13)$	$0.0354(13)$	$0.0548(16)$	$0.0181(11)$	$0.0078(12)$	$0.0098(12)$
S1	$0.0342(4)$	$0.0322(3)$	$0.0633(5)$	$0.0124(3)$	$0.0163(4)$	$0.0069(3)$
C1	$0.0396(15)$	$0.0500(17)$	$0.0483(18)$	$0.0219(14)$	$0.0149(14)$	$0.0263(15)$
C2	$0.0520(19)$	$0.081(2)$	$0.0423(19)$	$0.0389(19)$	$0.0210(16)$	$0.0334(18)$
C3	$0.057(2)$	$0.081(2)$	$0.0314(16)$	$0.047(2)$	$0.0127(15)$	$0.0168(16)$
C4	$0.0407(15)$	$0.0524(17)$	$0.0318(15)$	$0.0298(14)$	$0.0017(13)$	$0.0036(13)$
C5	$0.0508(19)$	$0.0547(19)$	$0.0415(19)$	$0.0243(16)$	$-0.0083(16)$	$-0.0088(16)$
C6	$0.0453(18)$	$0.0422(17)$	$0.061(2)$	$0.0074(15)$	$-0.0031(17)$	$-0.0022(16)$
C7	$0.0433(17)$	$0.0392(16)$	$0.058(2)$	$0.0078(14)$	$0.0083(16)$	$0.0125(15)$
C8	$0.0376(15)$	$0.0378(14)$	$0.0349(16)$	$0.0146(12)$	$0.0050(13)$	$0.0082(12)$
C9	$0.0302(13)$	$0.0328(13)$	$0.0285(14)$	$0.0161(11)$	$0.0021(11)$	$0.0043(11)$
C10	$0.0237(12)$	$0.0378(15)$	$0.0366(15)$	$0.0096(11)$	$0.0064(11)$	$0.0137(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Cd1-N3 ${ }^{\text {i }}$	2.311 (2)	C1-C2	1.402 (4)
Cd1-N1	2.322 (2)	C1-H1	0.9300
$\mathrm{Cd} 1-\mathrm{N} 2$	2.382 (3)	C2-C3	1.345 (5)
Cd1-Cl1	2.5495 (8)	C2-H2	0.9300
Cd1-S1	2.6413 (8)	C3-C4	1.408 (5)
$\mathrm{Cd} 1-\mathrm{Cl1}^{\text {ii }}$	2.8088 (7)	C3-H3	0.9300
$\mathrm{Cl} 1-\mathrm{Cd} 1{ }^{\text {ii }}$	2.8088 (7)	C4-C5	1.406 (5)
N1-C1	1.306 (4)	C4-C9	1.421 (4)
N1-C9	1.370 (3)	C5-C6	1.352 (5)
N2-C8	1.436 (4)	C5-H5	0.9300
N2-H8A	0.87 (5)	C6-C7	1.402 (5)
N2-H8B	0.88 (5)	C6-H6	0.9300
N3-C10	1.147 (3)	C7-C8	1.367 (4)
N3-Cd1 ${ }^{\text {i }}$	2.311 (2)	C7-H7	0.9300
S1-C10	1.646 (3)	C8-C9	1.413 (4)
N3 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	96.56 (8)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	118.4
N3 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{N} 2$	96.66 (11)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.4
N1-Cd1-N2	72.51 (9)	C3-C2-C1	119.0 (3)
N3 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Cl1}$	92.72 (7)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5
N1-Cd1-Cl1	161.21 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5
N2-Cd1-Cl1	90.24 (7)	C2-C3-C4	120.3 (3)
N3 ${ }^{\text {- }}$ Cd1- ${ }^{\text {S }}$	94.00 (6)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
N1-Cd1-S1	97.09 (6)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
N2-Cd1-S1	165.86 (8)	C5-C4-C3	123.8 (3)
$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{S} 1$	98.53 (3)	C5-C4-C9	118.6 (3)

N3 - ${ }^{\text {i }}$ (d1- $\mathrm{Cl1}^{\text {ii }}$	172.43 (6)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl1} 1^{\text {ii }}$	84.41 (6)
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {ii }}$	90.80 (10)
$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {ii }}$	88.55 (2)
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{Cl1}^{\text {ii }}$	78.43 (2)
Cd1-Cl1-Cd1 ${ }^{\text {ii }}$	91.45 (2)
C1-N1-C9	119.4 (2)
C1-N1-Cd1	124.5 (2)
C9-N1-Cd1	115.88 (17)
C8-N2-Cd1	112.08 (19)
C8-N2-H8A	109 (3)
$\mathrm{Cd} 1-\mathrm{N} 2-\mathrm{H} 8 \mathrm{~A}$	107 (3)
C8-N2-H8B	109 (3)
$\mathrm{Cd} 1-\mathrm{N} 2-\mathrm{H} 8 \mathrm{~B}$	105 (3)
H8A-N2-H8B	116 (4)
C10-N3-Cd1 ${ }^{\text {i }}$	156.0 (2)
C10-S1-Cd1	104.03 (9)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	123.1 (3)
C9-N1-C1-C2	0.9 (4)
Cd1-N1-C1-C2	-173.5 (2)
N1-C1-C2-C3	0.2 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.6 (5)
C2-C3-C4-C5	-179.3 (3)
C2-C3-C4-C9	-0.1 (4)
C3-C4-C5-C6	178.9 (3)
C9-C4-C5-C6	-0.2 (4)
C4-C5-C6-C7	-0.7 (5)
C5-C6-C7-C8	0.9 (5)
C6-C7-C8-C9	-0.2 (5)
C6-C7-C8-N2	-179.2 (3)
Cd1-N2-C8-C7	-172.4 (2)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$117.5(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.7(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.6
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.6
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.8(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	119.6
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.6
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$119.5(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$121.9(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$118.6(2)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$119.8(2)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 4$	$120.6(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$119.6(3)$
$\mathrm{N} 3-\mathrm{C} 10-\mathrm{S} 1$	$177.4(2)$

8.6 (4)
177.8 (2)
-7.3 (3)
-1.6 (4)
173.23 (18)
179.8 (3)
-1.2 (4)
-0.7 (4)
178.3 (3)
-179.6 (3)
1.2 (4)
1.0 (4)
-178.2 (2)

Symmetry codes: (i) $-x+1,-y-1,-z+1$; (ii) $-x+1,-y,-z+1$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1}{ }^{1 i i}$	0.93	2.84	$3.723(4)$	160

Symmetry code: (iii) $x, y, z+1$.

