# inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Cs<sub>3</sub>Sm<sub>7</sub>Se<sub>12</sub>

# Christof Schneck, Andreas Elbe, Christian M. Schurz and Thomas Schleid\*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Correspondence e-mail: schleid@iac.uni-stuttgart.de

Received 14 November 2011; accepted 1 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (Sm–Se) = 0.001 Å; disorder in main residue; R factor = 0.035; wR factor = 0.072; data-to-parameter ratio = 29.7.

The title compound, tricaesium heptasamarium(III) dodecaselenide, is setting a new starting point for realization of the channel structure of the  $Cs_3M_7Se_{12}$  series, now with M = Sm, Gd-Er. This Cs<sub>3</sub>Y<sub>7</sub>Se<sub>12</sub>-type arrangement is structurally based on the Z-type sesquiselenides  $M_2$ Se<sub>3</sub> adopting the Sc<sub>2</sub>S<sub>3</sub> structure. Thus, the structural set-up of Cs<sub>3</sub>Sm<sub>7</sub>Se<sub>12</sub> consists of edge- and vertex-connected  $[SmSe_6]^{9-}$  octahedra  $[d_{\emptyset}(\text{Sm}^{3+} - \text{Se}^{2-}) = 2.931 \text{ Å}]$ , forming a rock-salt-related network  $[Sm_7Se_{12}]^{3-}$  with channels along [001] that are apt to take up monovalent cations (here Cs<sup>+</sup>) with coordination numbers of 7 + 1 for one and of 6 for the second cation. The latter cation has a trigonal-prismatic coordination and shows half-occupancy, resulting in an impossible short distance [2.394 (4) Å] between symmetrically coupled Cs<sup>+</sup> cations of the same kind. While one Sm atom occupies Wyckoff position 2b with site symmetry ..2/m, all other 11 crystallographically different atoms (namely 2  $\times$  Cs, 3  $\times$  Sm and 6  $\times$  Se) are located at Wyckoff positions 4g with site symmetry ..m.

#### **Related literature**

For prototypic  $Cs_3Y_7Se_{12}$  or  $Rb_3Yb_7Se_{12}$ , see: Folchnandt & Schleid (1996); Kim *et al.* (1996). For other representatives of the  $A_3M_7Ch_{12}$  series, see: Folchnandt & Schleid (1997, 1998, 2000); Tougaît *et al.* (2001); Lissner *et al.* (2002). A detailed description of the relation between the crystal structures of the  $Cs_3M_7Se_{12}$  series and Z-type  $Sc_2Ch_3$  (Dismukes & White, 1964) is provided by Folchnandt & Schleid (1998).

#### **Experimental**

Crystal data  $Cs_3Sm_7Se_{12}$  $M_r = 2398.70$ 

Orthorhombic, *Pnnm* a = 13.0387 (9) Å b = 26.6742 (19) Å c = 4.2351 (3) Å  $V = 1472.95 (18) \text{ Å}^3$ Z = 2

#### Data collection

Stoe IPDS-I diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999)  $T_{min} = 0.115, T_{max} = 0.216$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$  72 parameters

  $wR(F^2) = 0.072$   $\Delta \rho_{max} = 2.09 \text{ e Å}^{-3}$  

 S = 0.97  $\Delta \rho_{min} = -1.78 \text{ e Å}^{-3}$  

 2135 reflections
  $\Delta \rho_{min} = -1.78 \text{ e Å}^{-3}$ 

 Table 1

 Selected bond lengths (Å).

| Cs1-Se4 <sup>i</sup>                                   | 3.6071 (12)                              | Cs1-Se1                   | 4.5421 (14)                                                |
|--------------------------------------------------------|------------------------------------------|---------------------------|------------------------------------------------------------|
| Cs1-Se4 <sup>ii</sup>                                  | 3.6071 (12)                              | Cs2-Se2 <sup>ii</sup>     | 3.5286 (16)                                                |
| Cs1-Se6 <sup>ii</sup>                                  | 3.7129 (12)                              | Cs2-Se2 <sup>i</sup>      | 3.5286 (16)                                                |
| Cs1-Se6 <sup>i</sup>                                   | 3.7129 (12)                              | Cs2-Se2 <sup>v</sup>      | 3.6917 (17)                                                |
| Cs1-Se3 <sup>iii</sup>                                 | 3.7639 (14)                              | Cs2-Se2 <sup>vi</sup>     | 3.6917 (17)                                                |
| Cs1-Se5 <sup>i</sup>                                   | 3.8053 (12)                              | Cs2-Se5 <sup>iii</sup>    | 3.719 (2)                                                  |
| Cs1-Se5 <sup>ii</sup>                                  | 3.8053 (12)                              | Cs2-Se6 <sup>iii</sup>    | 3.924 (2)                                                  |
| Symmetry codes:                                        | (i) $-x + \frac{1}{2}, y - \frac{1}{2},$ | $z + \frac{1}{2};$ (ii) - | $x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2};$ (iii) |
| -x + 1, -y + 1, -z;                                    | (iv) $-x + 1, -y,$                       | -z; (v) $x +$             | $\frac{1}{2}, -y + \frac{1}{2}, -z - \frac{1}{2};$ (vi)    |
| $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}.$ |                                          |                           |                                                            |

Mo  $K\alpha$  radiation

 $0.10 \times 0.07 \times 0.05 \text{ mm}$ 

15080 measured reflections

2135 independent reflections

1587 reflections with  $I > 2\sigma(I)$ 

 $\mu = 32.19 \text{ mm}^-$ 

T = 293 K

 $R_{\rm int} = 0.065$ 

Data collection: *DIF4* (Stoe & Cie, 1992); cell refinement: *DIF4*; data reduction: *REDU4* (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

This work was supported by the State of Baden-Württemberg (Stuttgart) and the German Research Foundation (DFG; Bonn) within the funding programme Open Access Publishing. We thank Dr Falk Lissner for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2561).

#### References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Dismukes, J. P. & White, J. G. (1964). *Inorg. Chem.* **3**, 1220–1228.

Folchnandt, M. & Schleid, Th. (1996). Z. Kristallogr. Suppl. 12, 125.

Folchnandt, M. & Schleid, Th. (1997). Z. Anorg. Allg. Chem. 623, 1501-1502.

Folchnandt, M. & Schleid, Th. (1998). Z. Anorg. Allg. Chem. 624, 1595–1600. Folchnandt, M. & Schleid, Th. (2000). Z. Kristallogr. New Cryst. Struct. 215, 9–

10. Kim, S.-J., Park, S.-J., Yun, H. & Do, J. (1996). *Inorg. Chem.* **35**, 5283–5289. Lissner, F., Hartenbach, I. & Schleid, Th. (2002). *Z. Anorg. Allg. Chem.* **628**,

1552–1555. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Tougaît, O., Noël, H. & Ibers, J. A. (2001). Solid State Sci. 3, 513-518.

# supporting information

Acta Cryst. (2012). E68, i2 [doi:10.1107/S1600536811051919]

# $Cs_3Sm_7Se_{12}\\$

## Christof Schneck, Andreas Elbe, Christian M. Schurz and Thomas Schleid

## S1. Comment

 $Cs_3Sm_7Se_{12}$  crystallizes isotypically to the large family of ternary  $A_3M_7Ch_{12}$  representatives with a channel-like structure. For Ch = S, A = K, Rb, M = Er, see: Lissner *et al.* (2002); for Ch = Se, A = Rb, M = Dy, Yb, see: Folchnandt & Schleid (2000), Kim *et al.* (1996); for Ch = Se, A = Cs, M = Y, Gd – Er, see: Folchnandt & Schleid (1996, 1997, 1998); for Ch = Te, A = Cs, M = Sm, Gd, Tb, see: Tougaît *et al.* (2001).

In the title compound,  $[SmSe_6]^{9-}$  octahedra  $(d(Sm^{3+}-Se^{2-}) = 2.8578 (9)-3.0614 (13) Å)$  are connected via edges and corners to form a  $[Sm_7Se_{12}]^{3-}$  network with triple-channels occupied by Cs<sup>+</sup> cations (Fig. 1). This network represents a defect rock-salt-type structure strongly related to that of the *Z*-type sesquiselenides  $M_2Se_3$  (Dismukes & White, 1964) according to the formula  $[\Box]_4[M]_8[Se]_{12}$ . In tricaesium heptasamarium(III) dodecaselenide three Cs<sup>+</sup> cations replace one Sm<sup>3+</sup> for charge balance. The triple-channels are arranged in a herringbone pattern and run through the structure parallel to [001]. They are filled with two crystallographically different Cs<sup>+</sup> cations (Fig. 2). While Cs1<sup>+</sup> exhibits a coordination number of 7+1 with an extra secondary contact ( $d(Cs1^+-Se^{2-}) = 3.6071 (12)-3.8053 (12) Å$  and 4.5421 (14) Å; Fig. 2, *left*), the Cs2<sup>+</sup> cations have only six selenide anions as nearest neighbours in the shape of a trigonal prism ( $d(Cs2^+-Se^{2-}) = 3.5286 (16) - 3.924 (2) Å$ ; Fig. 2, *right*). Owing to the very close distances between these Cs2<sup>+</sup> cations ( $d(Cs2^+\cdotsCs2^+) = 2.394 (4) Å$ ) only a half-occupation of this position is possible (Fig. 2, *right* and Fig. 3) and stoichiometrically meaningful.

## **S2. Experimental**

Yellow, transparent, needle-shaped single crystals of  $Cs_3Sm_7Se_{12}$  were obtained as the main product of a reaction between 0.10 g Sm, 0.08 g Se and 0.50 g CsCl added as flux and caesium source upon heating at 1073 K for 10 days in a sealed, evacuated fused-silica vessel.

## S3. Refinement

In the final difference Fourier map the highest peak is 1.24 Å away from Se2 and the deepest hole is located 0.83 Å away from Sm2.



#### Figure 1

Channel-structure representation of Cs<sub>3</sub>Sm<sub>7</sub>Se<sub>12</sub> as octahedral framework with indicated unit cell.



### Figure 2

Coordination spheres of the Cs1<sup>+</sup> (*left*) and Cs2<sup>+</sup> (*right*) cations in Cs<sub>3</sub>Sm<sub>7</sub>Se<sub>12</sub>. Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes: (i) -x+1/2, y-1/2, z+1/2; (ii) -x+1/2, y-1/2, z-1/2; (iii) -x+1, -y+1, -z; (viii) -x+1, -y, -z; (ix) x+1/2, -y+1/2, -z-1/2; (x) x+1/2, -y+1/2, -z+1/2.



### Figure 3

Interplay of the  $Cs^+$  cations situated in the triple-channels of the crystal structure of  $Cs_3Sm_7Se_{12}$ . Displacement ellipsoids are drawn at the 90% probability level.

F(000) = 2014

 $\theta = 2.1 - 29.3^{\circ}$ 

 $\mu = 32.19 \text{ mm}^{-1}$ T = 293 K

Needle, yellow

 $0.10 \times 0.07 \times 0.05 \text{ mm}$ 

 $D_{\rm x} = 5.408 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71069$  Å

Cell parameters from 5000 reflections

#### tricaesium heptasamarium(III) dodecaselenide

Crystal data

Cs<sub>3</sub>Sm<sub>7</sub>Se<sub>12</sub>  $M_r = 2398.70$ Orthorhombic, *Pnnm* Hall symbol: -P 2 2n a = 13.0387 (9) Å b = 26.6742 (19) Å c = 4.2351 (3) Å V = 1472.95 (18) Å<sup>3</sup> Z = 2

#### Data collection

| 15080 measured reflections                                         |
|--------------------------------------------------------------------|
| 2135 independent reflections                                       |
| 1587 reflections with $I > 2\sigma(I)$                             |
| $R_{\rm int} = 0.065$                                              |
| $\theta_{\rm max} = 29.0^{\circ},  \theta_{\rm min} = 2.8^{\circ}$ |
| $h = -17 \rightarrow 17$                                           |
| $k = -36 \rightarrow 36$                                           |
| $l = -5 \rightarrow 5$                                             |
|                                                                    |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.035$  $wR(F^2) = 0.072$ S = 0.972135 reflections 72 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map  $w = 1/[\sigma^2(F_o^2) + (0.0371P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} = 0.014$   $\Delta\rho_{max} = 2.09 \text{ e } \text{Å}^{-3}$   $\Delta\rho_{min} = -1.78 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00017 (4)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x            | У           | Ζ      | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|--------|-----------------------------|-----------|
| Cs1 | 0.28796 (6)  | 0.36600 (3) | 0.0000 | 0.0252 (2)                  |           |
| Cs2 | 0.56532 (14) | 0.03154 (7) | 0.0000 | 0.0311 (5)                  | 0.50      |
| Sm1 | 0.0000       | 0.0000      | 0.5000 | 0.0124 (2)                  |           |
| Sm2 | 0.21848 (5)  | 0.08314 (2) | 0.0000 | 0.01316 (15)                |           |
| Sm3 | 0.40590 (4)  | 0.71214 (2) | 0.0000 | 0.01224 (15)                |           |
| Sm4 | 0.07792 (5)  | 0.68240 (2) | 0.0000 | 0.01271 (15)                |           |
| Se1 | 0.25592 (8)  | 0.19644 (4) | 0.0000 | 0.0125 (3)                  |           |
| Se2 | 0.12980 (9)  | 0.57736 (4) | 0.0000 | 0.0142 (3)                  |           |
| Se3 | 0.43019 (9)  | 0.60350 (4) | 0.0000 | 0.0129 (3)                  |           |
| Se4 | 0.05307 (8)  | 0.78890 (4) | 0.0000 | 0.0133 (3)                  |           |
| Se5 | 0.15051 (9)  | 0.98065 (4) | 0.0000 | 0.0142 (3)                  |           |
| Se6 | 0.42742 (9)  | 0.82140 (4) | 0.0000 | 0.0133 (3)                  |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$    | $U^{12}$    | $U^{13}$ | U <sup>23</sup> |
|-----|------------|------------|-------------|-------------|----------|-----------------|
| Cs1 | 0.0214 (4) | 0.0295 (4) | 0.0247 (6)  | -0.0002 (3) | 0.000    | 0.000           |
| Cs2 | 0.0266 (9) | 0.0273 (9) | 0.0393 (14) | 0.0114 (7)  | 0.000    | 0.000           |
| Sm1 | 0.0147 (4) | 0.0109 (4) | 0.0116 (6)  | -0.0030 (3) | 0.000    | 0.000           |
| Sm2 | 0.0153 (3) | 0.0135 (3) | 0.0107 (4)  | -0.0027 (2) | 0.000    | 0.000           |
| Sm3 | 0.0137 (3) | 0.0117 (3) | 0.0113 (4)  | -0.0018 (2) | 0.000    | 0.000           |
| Sm4 | 0.0131 (3) | 0.0130 (3) | 0.0121 (4)  | 0.0034 (2)  | 0.000    | 0.000           |
| Se1 | 0.0123 (5) | 0.0153 (5) | 0.0101 (7)  | -0.0004 (4) | 0.000    | 0.000           |
| Se2 | 0.0147 (6) | 0.0142 (5) | 0.0137 (8)  | 0.0007 (4)  | 0.000    | 0.000           |
| Se3 | 0.0154 (5) | 0.0096 (5) | 0.0138 (7)  | 0.0007 (4)  | 0.000    | 0.000           |
| Se4 | 0.0144 (5) | 0.0128 (5) | 0.0126 (8)  | 0.0000 (4)  | 0.000    | 0.000           |
| Se5 | 0.0155 (5) | 0.0129 (5) | 0.0141 (8)  | -0.0004 (4) | 0.000    | 0.000           |
| Se6 | 0.0140 (5) | 0.0134 (5) | 0.0124 (8)  | 0.0008 (4)  | 0.000    | 0.000           |
|     |            |            |             |             |          |                 |

#### *Geometric parameters (Å, °)*

| Cs1—Se4 <sup>i</sup>   | 3.6071 (12) | Sm1—Se5 <sup>xi</sup>   | 2.9328 (8)  |
|------------------------|-------------|-------------------------|-------------|
| Cs1—Se4 <sup>ii</sup>  | 3.6071 (12) | Sm1—Se5 <sup>xii</sup>  | 2.9328 (8)  |
| Cs1—Se6 <sup>ii</sup>  | 3.7129 (12) | Sm1—Se5 <sup>xiii</sup> | 2.9328 (8)  |
| Cs1—Se6 <sup>i</sup>   | 3.7129 (12) | Sm2—Se5 <sup>xiii</sup> | 2.8738 (13) |
| Cs1—Se3 <sup>iii</sup> | 3.7639 (14) | Sm2—Se2 <sup>i</sup>    | 2.9020 (10) |
|                        |             |                         |             |

| Cs1—Se5 <sup>i</sup>                        | 3.8053 (12)            | Sm2—Se2 <sup>ii</sup>                                                                                    | 2.9020 (10)              |
|---------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|
| Cs1—Se5 <sup>ii</sup>                       | 3.8053 (12)            | Sm2—Se3 <sup>ii</sup>                                                                                    | 2.9217 (9)               |
| Cs1—Se1                                     | 4.5421 (14)            | Sm2—Se3 <sup>i</sup>                                                                                     | 2.9217 (9)               |
| Cs1—Cs1 <sup>iv</sup>                       | 4.2351 (3)             | Sm2—Se1                                                                                                  | 3.0614 (13)              |
| Cs1—Cs1 <sup>v</sup>                        | 4.2351 (3)             | Sm3—Se4 <sup>xiv</sup>                                                                                   | 2.8578 (9)               |
| $Cs2-Cs2^{vi}$                              | 2 394 (4)              | Sm3—Se4 <sup>xv</sup>                                                                                    | 2,8578 (9)               |
| Cs2 = Ss2                                   | 3 5286 (16)            | Sm3—Se3                                                                                                  | 2,9152 (13)              |
| $C_{s2}$ Se2 <sup>i</sup>                   | 3 5286 (16)            | Sm3—Se6                                                                                                  | 2.9132(13)<br>2.9279(13) |
| $C_{s2} = S_{s2} = S_{s2}$                  | 3 6917 (17)            | Sm3_Se1 <sup>xvi</sup>                                                                                   | 3 0185 (9)               |
| $C_{s2} = S_{s2}^{s2}$                      | 3.6917(17)             | Sm3 Se1 <sup>xvii</sup>                                                                                  | 3.0185(9)                |
| $C_{s2}$ $C_{s2}$ $S_{s2}$                  | 3.0917(17)             | Sm1 Set                                                                                                  | 2,8501(13)               |
| $C_{s2}$ $C_{s2}$ $C_{s4}$                  | 3.719(2)               | Sm4—Sc4                                                                                                  | 2.8391(13)               |
| Cs2—Seo                                     | 5.924(2)               | Sin4—Se2                                                                                                 | 2.8823(13)               |
| Cs2—Sm2"                                    | 4.1597 (18)            | Sm4—Seo                                                                                                  | 2.8888 (9)               |
| $Sm1 - Se3^{4}$                             | 2.9070 (11)            |                                                                                                          | 2.8888 (9)               |
| Sm1—Se3 <sup>th</sup>                       | 2.9070 (11)            | Sm4—Sel <sup>xvn</sup>                                                                                   | 3.0526 (9)               |
| Sm1—Se5 <sup>x</sup>                        | 2.9328 (8)             | Sm4—Sel <sup>xvi</sup>                                                                                   | 3.0526 (9)               |
|                                             |                        |                                                                                                          |                          |
| Se4 <sup>1</sup> —Cs1—Se4 <sup>n</sup>      | 71.90 (3)              | Se2 <sup>n</sup> —Sm2—Se1                                                                                | 86.77 (3)                |
| Se4 <sup>1</sup> —Cs1—Se6 <sup>11</sup>     | 125.93 (3)             | Se3 <sup>n</sup> —Sm2—Se1                                                                                | 85.54 (3)                |
| Se4 <sup>ii</sup> —Cs1—Se6 <sup>ii</sup>    | 85.24 (2)              | Se3 <sup>i</sup> —Sm2—Se1                                                                                | 85.54 (3)                |
| Se4 <sup>i</sup> —Cs1—Se6 <sup>i</sup>      | 85.24 (2)              | Se4 <sup>xiv</sup> —Sm3—Se4 <sup>xv</sup>                                                                | 95.63 (4)                |
| Se4 <sup>ii</sup> —Cs1—Se6 <sup>i</sup>     | 125.93 (3)             | Se4 <sup>xiv</sup> —Sm3—Se3                                                                              | 85.26 (3)                |
| Se6 <sup>ii</sup> —Cs1—Se6 <sup>i</sup>     | 69.55 (3)              | Se4 <sup>xv</sup> —Sm3—Se3                                                                               | 85.26 (3)                |
| Se4 <sup>i</sup> —Cs1—Se3 <sup>iii</sup>    | 64.04 (3)              | Se4 <sup>xiv</sup> —Sm3—Se6                                                                              | 86.87 (3)                |
| Se4 <sup>ii</sup> —Cs1—Se3 <sup>iii</sup>   | 64.04 (3)              | Se4 <sup>xv</sup> —Sm3—Se6                                                                               | 86.87 (3)                |
| Se6 <sup>ii</sup> —Cs1—Se3 <sup>iii</sup>   | 143.874 (16)           | Se3—Sm3—Se6                                                                                              | 168.27 (4)               |
| Se6 <sup>i</sup> —Cs1—Se3 <sup>iii</sup>    | 143.874 (16)           | Se4 <sup>xiv</sup> —Sm3—Se1 <sup>xvi</sup>                                                               | 171.05 (4)               |
| Se4 <sup>i</sup> —Cs1—Se5 <sup>i</sup>      | 90.60 (2)              | Se4 <sup>xv</sup> —Sm3—Se1 <sup>xvi</sup>                                                                | 87.03 (2)                |
| Se4 <sup>ii</sup> —Cs1—Se5 <sup>i</sup>     | 131.59 (3)             | Se3—Sm3—Se1 <sup>xvi</sup>                                                                               | 86.44 (3)                |
| Se6 <sup>ii</sup> —Cs1—Se5 <sup>i</sup>     | 137.25 (3)             | Se6—Sm3—Se1 <sup>xvi</sup>                                                                               | 101.84 (3)               |
| Se6 <sup>i</sup> —Cs1—Se5 <sup>i</sup>      | 95.72 (2)              | Se4 <sup>xiv</sup> —Sm3—Se1 <sup>xvii</sup>                                                              | 87.03 (2)                |
| Se3 <sup>iii</sup> —Cs1—Se5 <sup>i</sup>    | 67.69 (3)              | Se4 <sup>xv</sup> —Sm3—Se1 <sup>xvii</sup>                                                               | 171.05 (4)               |
| Se4 <sup>i</sup> —Cs1—Se5 <sup>ii</sup>     | 131.59 (3)             | Se3—Sm3—Se1 <sup>xvii</sup>                                                                              | 86.44 (3)                |
| Se4 <sup>ii</sup> —Cs1—Se5 <sup>ii</sup>    | 90.60 (2)              | Se6—Sm3—Se1 <sup>xvii</sup>                                                                              | 101.84(3)                |
| Se6 <sup>ii</sup> —Cs1—Se5 <sup>ii</sup>    | 95 72 (2)              | Sel <sup>xvi</sup> —Sm3—Sel <sup>xvii</sup>                                                              | 89 10 (3)                |
| $Se6^{i}$ Cs1 Se5                           | 137 25 (3)             | Se4—Sm4—Se2                                                                                              | 172 93 (4)               |
| $Se3^{iii}$ _Cs1_Se5 <sup>ii</sup>          | 67.69 (3)              | Se4_Sm4_Se6 <sup>xviii</sup>                                                                             | 87 59 (3)                |
| $Se5^{i} = Cs1 = Se5^{ii}$                  | 67.63 (2)              | Se2 Sm4 Se $6^{xviii}$                                                                                   | 97.39(3)                 |
| Se3 - Cs1 - Se3                             | 07.03(2)<br>05.31(2)   | Set Sm4 Set Set                                                                                          | 97.20 (3)<br>97.50 (3)   |
| Se2 - Cs2 - Se2                             | 95.51(5)               | Se4 - Sin4 - Se0                                                                                         | 87.39 (3)<br>97.20 (2)   |
| Se2 - Cs2 - Se2 =                           | 141.55(0)              | $Se2 - Sin4 - Se0^{min}$                                                                                 | 97.20 (3)                |
|                                             | 141.33(0)              |                                                                                                          | 94.28 (4)                |
|                                             | 95.31 (3)<br>70.00 (4) | $Se4 - Sm4 - Se1^{AVH}$                                                                                  | 87.05 (3)                |
| $Se2^{vii}$ $Cs2$ $Se2^{viii}$              | /0.00 (4)              | $Se_2 - Sm_4 - Se_1^{AVII}$                                                                              | 87.29 (3)                |
| Se2 <sup>n</sup> —Us2—Se5 <sup>m</sup>      | 138.46 (3)             | $\operatorname{Seb}^{\operatorname{xvm}}$ $\operatorname{Sm4}$ $\operatorname{Se1}^{\operatorname{xvm}}$ | 174.23 (4)               |
| Se2 <sup>1</sup> —Cs2—Se5 <sup>m</sup>      | 138.46 (3)             | Se6 <sup>xix</sup> —Sm4—Se1 <sup>xvii</sup>                                                              | 88.74 (2)                |
| Se2 <sup>vn</sup> —Cs2—Se5 <sup>m</sup>     | 72.81 (4)              | Se4—Sm4—Se1 <sup>xv1</sup>                                                                               | 87.63 (3)                |
| Se2 <sup>viii</sup> —Cs2—Se5 <sup>iii</sup> | 72.81 (4)              | Se2—Sm4—Se1 <sup>xv1</sup>                                                                               | 87.29 (3)                |
| Se2 <sup>ii</sup> —Cs2—Se6 <sup>iii</sup>   | 70.80 (4)              | Se6 <sup>xviii</sup> —Sm4—Se1 <sup>xvi</sup>                                                             | 88.74 (2)                |

| Se2 <sup>i</sup> —Cs2—Se6 <sup>iii</sup>    | 70.80 (4)    | Se6 <sup>xix</sup> —Sm4—Se1 <sup>xvi</sup>   | 174.23 (4)  |
|---------------------------------------------|--------------|----------------------------------------------|-------------|
| Se2 <sup>vii</sup> —Cs2—Se6 <sup>iii</sup>  | 141.36 (3)   | Se1 <sup>xvii</sup> —Sm4—Se1 <sup>xvi</sup>  | 87.85 (3)   |
| Se2 <sup>viii</sup> —Cs2—Se6 <sup>iii</sup> | 141.36 (3)   | Sm3 <sup>ii</sup> —Se1—Sm3 <sup>i</sup>      | 89.10 (3)   |
| Se5 <sup>iii</sup> —Cs2—Se6 <sup>iii</sup>  | 93.63 (5)    | Sm3 <sup>ii</sup> —Se1—Sm4 <sup>i</sup>      | 178.80 (4)  |
| Se3 <sup>i</sup> —Sm1—Se3 <sup>ix</sup>     | 180.000 (14) | Sm3 <sup>i</sup> —Se1—Sm4 <sup>i</sup>       | 91.519 (12) |
| Se3 <sup>i</sup> —Sm1—Se5 <sup>x</sup>      | 92.43 (3)    | Sm3 <sup>ii</sup> —Se1—Sm4 <sup>ii</sup>     | 91.519 (12) |
| Se3 <sup>ix</sup> —Sm1—Se5 <sup>x</sup>     | 87.57 (3)    | Sm3 <sup>i</sup> —Se1—Sm4 <sup>ii</sup>      | 178.80 (4)  |
| Se3 <sup>i</sup> —Sm1—Se5 <sup>xi</sup>     | 87.57 (3)    | Sm4 <sup>i</sup> —Se1—Sm4 <sup>ii</sup>      | 87.85 (3)   |
| Se3 <sup>ix</sup> —Sm1—Se5 <sup>xi</sup>    | 92.43 (3)    | Sm3 <sup>ii</sup> —Se1—Sm2                   | 91.46 (3)   |
| Se5 <sup>x</sup> —Sm1—Se5 <sup>xi</sup>     | 180.00 (4)   | Sm3 <sup>i</sup> —Se1—Sm2                    | 91.46 (3)   |
| Se3 <sup>i</sup> —Sm1—Se5 <sup>xii</sup>    | 92.43 (3)    | Sm4 <sup>i</sup> —Se1—Sm2                    | 89.55 (3)   |
| Se3 <sup>ix</sup> —Sm1—Se5 <sup>xii</sup>   | 87.57 (3)    | Sm4 <sup>ii</sup> —Se1—Sm2                   | 89.55 (3)   |
| Se5 <sup>x</sup> —Sm1—Se5 <sup>xii</sup>    | 92.44 (3)    | Sm4—Se2—Sm2 <sup>xvii</sup>                  | 96.22 (3)   |
| Se5 <sup>xi</sup> —Sm1—Se5 <sup>xii</sup>   | 87.56 (3)    | Sm4—Se2—Sm2 <sup>xvi</sup>                   | 96.22 (3)   |
| Se3 <sup>i</sup> —Sm1—Se5 <sup>xiii</sup>   | 87.57 (3)    | Sm2 <sup>xvii</sup> —Se2—Sm2 <sup>xvi</sup>  | 93.72 (4)   |
| Se3 <sup>ix</sup> —Sm1—Se5 <sup>xiii</sup>  | 92.43 (3)    | Sm1 <sup>viii</sup> —Se3—Sm3                 | 167.99 (5)  |
| Se5 <sup>x</sup> —Sm1—Se5 <sup>xiii</sup>   | 87.56 (3)    | Sm1 <sup>viii</sup> —Se3—Sm2 <sup>xvi</sup>  | 91.79 (3)   |
| Se5 <sup>xi</sup> —Sm1—Se5 <sup>xiii</sup>  | 92.44 (3)    | Sm3—Se3—Sm2 <sup>xvi</sup>                   | 96.47 (3)   |
| Se5 <sup>xii</sup> —Sm1—Se5 <sup>xiii</sup> | 180.0        | Sm1 <sup>viii</sup> —Se3—Sm2 <sup>xvii</sup> | 91.79 (3)   |
| Se5 <sup>xiii</sup> —Sm2—Se2 <sup>i</sup>   | 99.19 (3)    | Sm3—Se3—Sm2 <sup>xvii</sup>                  | 96.47 (3)   |
| Se5 <sup>xiii</sup> —Sm2—Se2 <sup>ii</sup>  | 99.19 (3)    | Sm2 <sup>xvi</sup> —Se3—Sm2 <sup>xvii</sup>  | 92.90 (4)   |
| Se2 <sup>i</sup> —Sm2—Se2 <sup>ii</sup>     | 93.72 (4)    | Sm3 <sup>xviii</sup> —Se4—Sm3 <sup>xix</sup> | 95.63 (4)   |
| Se5 <sup>xiii</sup> —Sm2—Se3 <sup>ii</sup>  | 88.41 (3)    | Sm3 <sup>xviii</sup> —Se4—Sm4                | 93.81 (3)   |
| Se2 <sup>i</sup> —Sm2—Se3 <sup>ii</sup>     | 172.31 (4)   | Sm3 <sup>xix</sup> —Se4—Sm4                  | 93.81 (3)   |
| Se2 <sup>ii</sup> —Sm2—Se3 <sup>ii</sup>    | 86.18 (2)    | Sm2 <sup>xx</sup> —Se5—Sm1 <sup>xxi</sup>    | 92.23 (3)   |
| Se5 <sup>xiii</sup> —Sm2—Se3 <sup>i</sup>   | 88.41 (3)    | Sm2 <sup>xx</sup> —Se5—Sm1 <sup>xx</sup>     | 92.23 (3)   |
| Se2 <sup>i</sup> —Sm2—Se3 <sup>i</sup>      | 86.18 (2)    | Sm1 <sup>xxi</sup> —Se5—Sm1 <sup>xx</sup>    | 92.44 (3)   |
| Se2 <sup>ii</sup> —Sm2—Se3 <sup>i</sup>     | 172.31 (4)   | Sm4 <sup>xiv</sup> —Se6—Sm4 <sup>xv</sup>    | 94.28 (4)   |
| Se3 <sup>ii</sup> —Sm2—Se3 <sup>i</sup>     | 92.90 (4)    | Sm4 <sup>xiv</sup> —Se6—Sm3                  | 91.72 (3)   |
| Se5 <sup>xiii</sup> —Sm2—Se1                | 171.21 (4)   | Sm4 <sup>xv</sup> —Se6—Sm3                   | 91.72 (3)   |
| Se2 <sup>i</sup> —Sm2—Se1                   | 86.77 (3)    |                                              |             |

Symmetry codes: (i) -x+1/2, y-1/2, z+1/2; (ii) -x+1/2, y-1/2, z-1/2; (iii) -x+1, -y+1, -z; (iv) x, y, z-1; (v) x, y, z+1; (vi) -x+1, -y, -z; (vii) x+1/2, -y+1/2, -z-1/2; (viii) x+1/2, -y+1/2, -z+1/2; (ix) x-1/2, -y+1/2, -z+1/2; (ix) x, y-1, z+1; (iii) -x, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1/2, -y+1/2, -z+1/2; (ix) x-1/2, -y+1/2, -z+1/2; (ix) x, y-1, z+1; (iii) -x, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1/2, -y+3/2, -z+1/2; (iv) x+1/2, -y+3/2, -z-1/2; (iv) -x+1/2, y+1/2, z-1/2; (ivi) -x+1/2, y+1/2, z+1/2; (ivi) x-1/2, -y+3/2, -z-1/2; (ivi) -x+1/2, -x+1/2; (ivi) -x+1/2, -x+1/2; (ivi) -x+1/2; (ivi) -x+1/2, -x+1/2; (ivi) -x+1/2, -x+1/2; (ivi) -x+1/2; (ivi)