

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexakis(dimethyl sulfoxide- κ O)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Meiju Niu,^a* Shumei Fan^b and Guihua Liu^a

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bDongchang College Liaocheng University, Shandong 252000, People's Republic of China Correspondence e-mail: niumeiju@163.com

Received 28 November 2011; accepted 14 December 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.038; wR factor = 0.095; data-to-parameter ratio = 17.0.

The reaction of NiCl₂·6H₂O with sodium 2,2-dicyanoethene-1,1-dithiolate [Na₂(*i*-mnt)] in dimethyl sulfoxide produces the title complex, [Ni(C₂H₆OS)₆][Ni(C₄N₂S₂)₂]. There is half each of an [Ni(C₂H₆OS)₆]²⁻ complex anion and an [Ni{(CH₃)₂SO}₆]²⁺ complex cation in the asymmetric unit. The *i*-mnt ligand coordinates in a bidentate manner to the Ni atom in the anion through the two chelating S atoms in an approximate square-planar geometry. The Ni atom in the complex cation has an octahedral coordination environment with six dimethyl sulfoxide molecules as ligands.

Related literature

For related structures, see Gao *et al.* (2004, 2005); Yu *et al.* (2005); Chen & Yu (2005).

V = 1930.6 (4) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.48 \times 0.05 \text{ mm}$

9458 measured reflections

3379 independent reflections

2328 reflections with $I > 2\sigma(I)$

 $\mu = 1.55 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.054$

Z = 2

Experimental

Crystal data

[Ni(C₂H₆OS)₆][Ni(C₄N₂S₂)₂] $M_r = 866.55$ Monoclinic, $P2_1/c$ a = 8.3368 (10) Å b = 12.6763 (17) Å c = 18.710 (2) Å $\beta = 102.466$ (2)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.511, T_{max} = 0.921$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	199 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
3379 reflections	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1-O3	2.052 (2)	Ni2-S4	2.2010 (11)
Ni1-O2	2.060 (3)	Ni2-S5	2.2030 (11)
Ni1-O1	2.064 (2)		
O3-Ni1-O2	90.14 (11)	\$4-Ni2-\$5	78.96 (4)

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (Nos. 20671048, 21041002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2141).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H. M. & Yu, H. L. (2005). Chin. J. Spectrosc. Lab. 22, 740-742.
- Gao, X. K., Dou, J. M. & Dong, F. Y. (2004). J. Inorg. Organomet. Polym. 14, 227–237.
- Gao, X. K., Dou, J. M. & Li, D. C. (2005). J. Mol. Struct. 733, 181-186.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yu, H. L., Chen, H. M. & Dou, J. M. (2005). Chin. J. Spectrosc. Lab. 22, 556– 558.

Acta Cryst. (2012). E68, m67 [doi:10.1107/S1600536811053827]

Hexakis(dimethyl sulfoxide- κO)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Meiju Niu, Shumei Fan and Guihua Liu

S1. Comment

The bridging ligand 1,1-dicyanoethene-2,2-dithiolate has been attracting more and more attention due to its delocalized π electron system able to build special planar conjugated structures (Yu *et al.*, 2005). The title complex consists of one $[Ni(i-mnt)_2]^{2-}$ (where *i*-mnt is 1,1-dicyanoethene-2,2-dithiolate) complex anion and one $[Ni((CH_3)_2SO)_6]^{2+}$ complex cation. For the $[Ni(i-mnt)_2]^{2-}$ complex anion, the NiS₄ group is square planar and tortiled slightly at an angle of 2.90 (14)° with respect to the plane of *i*-mnt ligand (Chen *et al.*, 2005). FourNi-S bonds present two comparable distances of 2.2010 (11) and 2.2030 (11)Å, similar to the Ni-S distance of 2.172 (3)

Å in [K(N18C6)]₂[Ni(mnt)₂] (Gao *et al.*, 2004). The average S-C, C=N, C-C and C=C bond lengths were 1.717, 1.141, 1.418, 1.379 Å, respectively (Gao *et al.*, 2005). The [Ni((CH₃)₂SO)₆]²⁺ complex cation contains a nickel with six-coordinated octahedral geometry.

S2. Experimental

The title compound, $[Ni((CH_3)_2SO)_6][Ni(i-mnt)_2]$ was synthesized by the reaction of 0.05 mmol NiCl₂.6H₂O and 0.1 mmol Na₂(*i*-mnt)(1,1-dicyanoethene-2,2-dithiolate sodium) in 5 ml water. The solution was stirred for 2 hours and then filtered. The precipitate was dissolved in 10ml Dimethyl Sulfoxide. After slow evaporation of the solution over one month, deep green crystals suitable for X-ray diffraction were obtained (56.8%, m.p. 527-529 K).

S3. Refinement

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H 0.96 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$, and refined as riding on their parent atoms.

Figure 1

. .

The molecular structure of the title compound with atom labels and 40% probability displacement ellipsoids for non-H atoms. Symmetry codes: (i) -x + 1, -y + 1, -z + 1, (ii) -x + 2, -y, -z + 1.

Hexakis(dimethyl sulfoxide- κO)nickel(II) bis(2,2-dicyanoethene-1,1-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Crystal data	
$C_{12}H_{36}NiO_6S_6^{2+}C_8N_4NiS_4^{2-}$	F(000) = 896
$M_r = 866.55$	$D_{\rm x} = 1.491 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2760 reflections
a = 8.3368 (10) Å	$\theta = 2.5 - 24.3^{\circ}$
b = 12.6763 (17) Å	$\mu = 1.55 \text{ mm}^{-1}$
c = 18.710 (2) Å	T = 298 K
$\beta = 102.466 \ (2)^{\circ}$	Needle, green
V = 1930.6 (4) Å ³	$0.50 \times 0.48 \times 0.05 \text{ mm}$
Z = 2	
Data collection	
Bruker SMART CCD area-detector	9458 measured reflections
diffractometer	3379 independent reflections
Radiation source: fine-focus sealed tube	2328 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.054$
phi and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 15$
$T_{\min} = 0.511, \ T_{\max} = 0.921$	$l = -22 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
3379 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0275P)^2 + 1.0073P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Ni1	0.5000	0.5000	0.5000	0.02973 (18)	
Ni2	1.0000	0.0000	0.5000	0.0415 (2)	
N1	0.7064 (6)	0.2565 (4)	0.2505 (2)	0.0863 (15)	
N2	1.1494 (6)	0.0945 (4)	0.2174 (2)	0.0751 (13)	
01	0.4945 (3)	0.64165 (18)	0.44513 (13)	0.0367 (6)	
O2	0.7372 (3)	0.47506 (19)	0.48840 (15)	0.0440 (7)	
03	0.4122 (3)	0.41769 (19)	0.40520 (13)	0.0436 (7)	
S1	0.62727 (13)	0.72370 (8)	0.46849 (5)	0.0412 (3)	
S2	0.78272 (12)	0.36249 (8)	0.47193 (5)	0.0385 (3)	
S3	0.32535 (13)	0.47016 (8)	0.33476 (5)	0.0391 (3)	
S4	0.81754 (14)	0.08901 (9)	0.41999 (6)	0.0489 (3)	
S5	1.10676 (15)	-0.00988 (9)	0.40228 (6)	0.0533 (3)	
C1	0.5310 (7)	0.8291 (4)	0.5044 (3)	0.095 (2)	
H1A	0.4416	0.8553	0.4675	0.142*	
H1B	0.6092	0.8846	0.5198	0.142*	
H1C	0.4898	0.8047	0.5456	0.142*	
C2	0.6505 (7)	0.7821 (4)	0.3864 (2)	0.0732 (16)	
H2A	0.6983	0.7320	0.3586	0.110*	
H2B	0.7208	0.8426	0.3971	0.110*	
H2C	0.5449	0.8036	0.3586	0.110*	
C3	0.9350 (5)	0.3786 (3)	0.4198 (2)	0.0503 (11)	
H3A	0.8874	0.4120	0.3741	0.075*	
H3B	0.9777	0.3108	0.4106	0.075*	
H3C	1.0224	0.4216	0.4465	0.075*	
C4	0.9093 (6)	0.3174 (4)	0.5552 (2)	0.0585 (13)	
H4A	0.9998	0.3651	0.5701	0.088*	
H4B	0.9504	0.2484	0.5480	0.088*	
H4C	0.8462	0.3144	0.5924	0.088*	
C5	0.2206 (6)	0.3635 (4)	0.2835 (2)	0.0676 (14)	
H5A	0.2961	0.3066	0.2827	0.101*	
H5B	0.1756	0.3863	0.2343	0.101*	
H5C	0.1334	0.3399	0.3057	0.101*	
C6	0.4776 (6)	0.4904 (4)	0.2835 (2)	0.0600 (13)	
H6A	0.5526	0.5440	0.3065	0.090*	

H6B	0.4265	0.5123	0.2348	0.090*
H6C	0.5365	0.4258	0.2813	0.090*
C7	0.9525 (5)	0.0750 (3)	0.3630 (2)	0.0409 (10)
C8	0.9395 (5)	0.1255 (3)	0.2967 (2)	0.0427 (10)
C9	0.8105 (6)	0.1979 (4)	0.2706 (2)	0.0526 (12)
C10	1.0561 (6)	0.1086 (3)	0.2528 (2)	0.0522 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nil	0.0336 (4)	0.0269 (4)	0.0290 (4)	0.0013 (3)	0.0074 (3)	-0.0017 (3)
Ni2	0.0476 (5)	0.0370 (4)	0.0408 (4)	0.0016 (4)	0.0116 (3)	-0.0019 (3)
N1	0.092 (4)	0.077 (3)	0.076 (3)	0.030 (3)	-0.011 (3)	-0.008 (2)
N2	0.080 (3)	0.093 (3)	0.058 (3)	0.006 (3)	0.029 (2)	0.002 (2)
01	0.0380 (16)	0.0297 (14)	0.0415 (14)	-0.0024 (12)	0.0067 (12)	0.0023 (12)
O2	0.0373 (17)	0.0336 (16)	0.0633 (18)	-0.0007 (12)	0.0155 (14)	-0.0079 (13)
03	0.061 (2)	0.0358 (15)	0.0309 (14)	-0.0010 (14)	0.0039 (13)	-0.0047 (12)
S1	0.0402 (7)	0.0377 (6)	0.0461 (6)	-0.0039 (5)	0.0104 (5)	0.0007 (5)
S2	0.0339 (6)	0.0327 (6)	0.0497 (6)	0.0002 (4)	0.0104 (5)	-0.0077 (5)
S3	0.0409 (6)	0.0434 (6)	0.0325 (5)	0.0031 (5)	0.0071 (4)	-0.0050 (4)
S4	0.0502 (8)	0.0503 (7)	0.0486 (6)	0.0102 (5)	0.0157 (5)	-0.0005 (5)
S5	0.0537 (8)	0.0614 (8)	0.0473 (6)	0.0163 (6)	0.0161 (5)	0.0049 (6)
C1	0.094 (5)	0.053 (3)	0.155 (6)	-0.023 (3)	0.067 (4)	-0.048 (4)
C2	0.086 (4)	0.072 (3)	0.063 (3)	-0.032 (3)	0.018 (3)	0.015 (3)
C3	0.045 (3)	0.048 (3)	0.063 (3)	-0.003 (2)	0.022 (2)	-0.011 (2)
C4	0.067 (3)	0.049 (3)	0.056 (3)	0.014 (2)	0.004 (2)	0.000 (2)
C5	0.077 (4)	0.074 (3)	0.049 (3)	-0.025 (3)	0.008 (2)	-0.017 (3)
C6	0.062 (3)	0.064 (3)	0.061 (3)	-0.005 (3)	0.030 (3)	0.006 (2)
C7	0.045 (3)	0.035 (2)	0.041 (2)	-0.0014 (19)	0.0061 (19)	-0.0096 (18)
C8	0.045 (3)	0.042 (3)	0.041 (2)	0.002 (2)	0.008 (2)	-0.0053 (19)
C9	0.066 (3)	0.049 (3)	0.040 (2)	-0.003 (3)	0.005 (2)	-0.010 (2)
C10	0.065 (4)	0.051 (3)	0.040 (3)	-0.002 (2)	0.008 (2)	0.001 (2)

Geometric parameters (Å, °)

Ni1—O3	2.052 (2)	S5—C7	1.716 (4)
Nil—O3 ⁱ	2.052 (2)	C1—H1A	0.9600
Nil—O2 ⁱ	2.060 (3)	C1—H1B	0.9600
Nil—O2	2.060 (3)	C1—H1C	0.9600
Nil—O1	2.064 (2)	C2—H2A	0.9600
Nil—Ol ⁱ	2.064 (2)	C2—H2B	0.9600
Ni2—S4	2.2010 (11)	C2—H2C	0.9600
Ni2—S4 ⁱⁱ	2.2010 (11)	С3—НЗА	0.9600
Ni2—S5 ⁱⁱ	2.2030 (11)	С3—Н3В	0.9600
Ni2—S5	2.2030 (11)	C3—H3C	0.9600
N1—C9	1.142 (6)	C4—H4A	0.9600
N2-C10	1.139 (5)	C4—H4B	0.9600
01—S1	1.513 (3)	C4—H4C	0.9600

62 62	1 525 (2)		0.000
02—82	1.525 (3)	С5—Н5А	0.9600
O3—S3	1.514 (3)	С5—Н5В	0.9600
S1—C2	1.752 (4)	С5—Н5С	0.9600
S1—C1	1.765 (5)	С6—Н6А	0.9600
S2—C3	1.772 (4)	С6—Н6В	0.9600
S2—C4	1.777 (4)	С6—Н6С	0.9600
S3—C6	1.767 (4)	C7—C8	1.378 (5)
\$3-C5	1 775 (4)	C8 - C9	1 418 (6)
S4 C7	1.775(4)	C_{3} C_{10}	1.418(6)
34-07	1.719 (4)	0-010	1.418 (0)
O3—Ni1—O3 ⁱ	180.000(1)	H1B—C1—H1C	109.5
O3—Ni1—O2 ⁱ	89.86 (11)	S1—C2—H2A	109.5
03^{i} Ni1 -02^{i}	90.14 (11)	S1—C2—H2B	109.5
03 - Ni1 - 02	90.14 (11)	$H_2A = C_2 = H_2B$	109.5
O_2^i Ni1 O2	90.14 (11) 80.86 (11)	S1 C2 H2C	109.5
03 - Ni1 - 02	190.00(11)		109.5
02	180.00 (15)	H2A—C2—H2C	109.5
03—N11—O1	92.69 (9)	H2B—C2—H2C	109.5
O3 ⁱ —Ni1—O1	87.31 (9)	S2—C3—H3A	109.5
02 ⁱ —Ni1—O1	90.01 (10)	S2—C3—H3B	109.5
02—Ni1—O1	89.99 (10)	НЗА—СЗ—НЗВ	109.5
O3—Ni1—O1 ⁱ	87.31 (9)	S2—C3—H3C	109.5
O3 ⁱ —Ni1—O1 ⁱ	92.69 (9)	НЗА—СЗ—НЗС	109.5
O2 ⁱ —Ni1—O1 ⁱ	89.99 (10)	НЗВ—СЗ—НЗС	109.5
O2—Ni1—O1 ⁱ	90.01 (10)	S2—C4—H4A	109.5
$01 - Ni1 - O1^{i}$	180.0	S2—C4—H4B	109.5
\$4—Ni2—\$4 ⁱⁱ	180.00 (5)	H4A - C4 - H4B	109 5
$S4_{12}$ $S4_{31}$	101.04(4)	$S_2 - C_4 - H_4C$	109.5
S4 ⁱⁱ N;2 S5 ⁱⁱ	78.06 (4)		109.5
54 - 102 - 55	78.90 (4)	H4A - C4 - H4C	109.5
54—INI2—55	78.90 (4)	$\Pi 4D - C4 - \Pi 4C$	109.3
S4"—N12—S5	101.04 (4)	S3—C5—H5A	109.5
S5 ⁿ —N12—S5	180.0	S3—C5—H5B	109.5
S1—O1—Ni1	121.20 (14)	H5A—C5—H5B	109.5
S2—O2—Ni1	116.83 (15)	S3—C5—H5C	109.5
S3—O3—Ni1	122.93 (15)	H5A—C5—H5C	109.5
O1—S1—C2	104.45 (19)	H5B—C5—H5C	109.5
O1—S1—C1	105.4 (2)	S3—C6—H6A	109.5
C2—S1—C1	99.2 (3)	S3—C6—H6B	109.5
O2—S2—C3	104.06 (18)	H6A—C6—H6B	109.5
02— <u>S2</u> —C4	104.50 (18)	S3—C6—H6C	109.5
$C_3 = S_2 = C_4$	99 1 (2)	H6A - C6 - H6C	109.5
03 - 83 - C6	105.8(2)	H6B—C6—H6C	109.5
$O_3 S_3 C_5$	102.88(10)	C_{2}^{8} C_{7}^{7} S_{5}^{5}	105.5 125.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08.3(2)	$C_{8} = C_{7} = S_{4}$	125.7(3) 125.1(2)
$C7 = S4 = N^{2}$	90.3(2)	$C_{0} = C_{1} = C_{1}$	123.1(3) 100.2(2)
$C_1 = 54 = N12$	03.42 (14)	53-0	109.2 (2)
C/—S5—N12	85.44 (14)	C/C8C9	121.2 (4)
SI—CI—HIA	109.5	C/C8C10	121.3 (4)
S1—C1—H1B	109.5	C9—C8—C10	117.5 (4)
H1A—C1—H1B	109.5	N1—C9—C8	179.0 (5)

S1—C1—H1C H1A—C1—H1C	109.5 109.5	N2	179.7 (6)
$\begin{array}{c} S1-C1-H1C\\ H1A-C1-H1C\\ \hline \\ O3-Ni1-O1-S1\\ O2^{i}-Ni1-O1-S1\\ O2^{i}-Ni1-O1-S1\\ O2^{-Ni1}-O1-S1\\ O1^{i}-Ni1-O1-S1\\ O3-Ni1-O2-S2\\ O3^{i}-Ni1-O2-S2\\ O2^{i}-Ni1-O2-S2\\ O1^{-Ni1}-O2-S2\\ O1^{i}-Ni1-O2-S2\\ O1^{i}-Ni1-O2-S2\\ O1^{i}-Ni1-O3-S3\\ O2^{i}-Ni1-O3-S3\\ O2-Ni1-O3-S3\\ \end{array}$	$\begin{array}{c} 109.5\\ 109.5\\ \hline \\ 109.5\\ \hline \\ -142.43\ (17)\\ 37.57\ (17)\\ 127.71\ (17)\\ -52.29\ (17)\\ \hline \\ -139\ (100)\\ \hline \\ -48.30\ (17)\\ 131.70\ (17)\\ 13\ (48)\\ \hline \\ -140.99\ (17)\\ 39.01\ (17)\\ \hline \\ -178\ (100)\\ 71.7\ (2)\\ \hline \\ -108.3\ (2)\\ \end{array}$	N2—C10—C8 Ni1—O3—S3—C5 S4 ⁱⁱ —Ni2—S4—C7 S5 ⁱⁱ —Ni2—S4—C7 S5—Ni2—S4—C7 S4—Ni2—S5—C7 S4 ⁱⁱ —Ni2—S5—C7 Si ⁱⁱ —Ni2—S5—C7 Ni2—S5—C7—C8 Ni2—S5—C7—S4 Ni2—S4—C7—C8 Ni2—S4—C7—C8 S5—C7—C8—C9 S4—C7—C8—C9	$\begin{array}{c} -161.4 \ (2) \\ -120 \ (100) \\ 173.58 \ (13) \\ -6.42 \ (13) \\ 6.44 \ (13) \\ -173.56 \ (13) \\ 112 \ (14) \\ 170.5 \ (3) \\ -8.58 \ (17) \\ -170.5 \ (3) \\ 8.59 \ (18) \\ -177.2 \ (3) \\ 1.7 \ (6) \end{array}$
01—Ni1—O3—S3 01 ⁱ —Ni1—O3—S3	-18.3 (2) 161.7 (2)	S5—C7—C8—C10 S4—C7—C8—C10	1.6 (6) -179.4 (3)
Ni1—O1—S1—C2 Ni1—O1—S1—C1 Ni1—O2—S2—C3	145.1 (2) -110.9 (3) 149.93 (19)	C7—C8—C9—N1 C10—C8—C9—N1 C7—C8—C10—N2	26 (32) -153 (32) 79 (100)
Ni1—O2—S2—C4 Ni1—O3—S3—C6	-106.6 (2) 95.9 (2)	C9—C8—C10—N2	-102 (100)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1.