metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(formato- κ O)bis[1-(pyridin-2-yl)ethanone oxime- $\kappa^2 N, N'$]nickel(II)

Leilei Li, Xiumin Qiu and Dacheng Li*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: lidacheng62@163.com

Received 18 November 2011; accepted 26 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.049; wR factor = 0.137; data-to-parameter ratio = 13.0.

In the title compound, $[Ni(HCOO)_2(C_7H_8N_2O)_2]$, the Ni atom is six-coordinated by four N atoms from two oxime ligands and by two O atoms from two formate ions in a distorted octahedral geometry, with the oxime-N atoms mutually *trans*. The molecular conformation is stabilized by intramolecular $O-H \cdots O$ hydrogen bonds.

Related literature

For uses of oximes, see: Davidson *et al.* (2007); Pavlishchuk *et al.* (2003) and of 2-pyridyl oximes, see: Chaudhuri (2003); Milios *et al.* (2006). For a related structure, see: Zuo *et al.* (2007).

Experimental

Crystal data	
$[Ni(CHO_2)_2(C_7H_8N_2O)_2]$	a = 10.5000 (12) Å
$M_r = 421.05$	b = 14.6109 (16) Å
Monoclinic, $P2_1/c$	c = 15.7391 (17) Å

$\beta = 131.850 \ (2)^{\circ}$
$V = 1798.6 (3) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.807, T_{\max} = 0.887$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 244 parameters $wR(F^2) = 0.137$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.98$ e Å⁻³3171 reflections $\Delta \rho_{min} = -0.38$ e Å⁻³

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1···O4	0.82	1.69	2.508 (4)	177
O2−H2···O6	0.82	1.67	2.482 (4)	169

 $\mu = 1.12 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.077$

 $0.20 \times 0.17 \times 0.11 \text{ mm}$

9294 measured reflections

3171 independent reflections

2209 reflections with $I > 2\sigma(I)$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (Nos. 20671048, 21041002) and the Shandong Province Higher School Science and Technology Plan Projects (No. J10LB61).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2139).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-190.
- Davidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D. & Mahon, M. F. (2007). Polyhedron, 26, 975–980.
- Milios, C. J., Stamatatos, T. C. & Perlepes, S. P. (2006). Polyhedron, 25, 134– 194.
- Pavlishchuk, V. V., Kolotilov, S. V., Addison, A. W., Prushan, M. J., Schollmeyer, D., Thompson, L. K., Weyhermuller, T. & Goreshnik, E. A. (2003). *Dalton Trans.* pp. 1587–1595.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zuo, J., Dou, J., Li, D., Wang, D. & Sun, Y. (2007). Acta Cryst. E63, m3183– m3184.

supporting information

Acta Cryst. (2012). E68, m2 [doi:10.1107/S1600536811050859]

Bis(formato- κO)bis[1-(pyridin-2-yl)ethanone oxime- $\kappa^2 N, N'$]nickel(II)

Leilei Li, Xiumin Qiu and Dacheng Li

S1. Comment

Recently, there is a intense interest in the coordination chemistry of oximes (Davidson *et al.*, 2007; Pavlishchuk *et al.*, 2003). 2-Pyridyl oximes which are versatile ligands for a variety of research objectives are popular ligands in coordination chemistry (Chaudhuri, 2003; Milios *et al.*, 2006). We report here the synthesis and structure of the title compound.

The complex (Fig. 1) crystallizes in monoclinic space group $P2_1/c$. The central Ni atom is six coordinated by four N atoms from the oxime ligands and two O atoms from the formate ions in a distorted octahedral geometry. The N1 and N3 atoms of methyl 2-pyridylketone oxime occupy the axial sites. The N2, N4 and O3, O5 are in the equatorial plane. The six coordinated molecule is the *cis-cis-trans* isomer considering the positions of the coordinated formyl groups, pyridyl and oxime nitrogen atoms, respectively (Zuo *et al.*, 2007). The Ni–N bond distances in the compound are in the range of 2.075 (3)–2.107 (3) Å which is longer than the Ni–O distances (2.049 (3)–2.070 (3) Å). The molecular conformation is stabilized by intramolecular O—H···O hydrogen bonds (Table 1).

S2. Experimental

A solution of NiSO₄.6H₂O (0.131 g, 0.5 mmol) and methyl 2-pyridyl ketone oxime (0.068 g, 0.5 mmol) in MeOH was treated with equivalent amounts of HCOONa. After stirring for 6 h, a green solution was obtained. After filtration, green block crystals suitable for single-crystal X-ray diffraction were obtained after two weeks by evaporating the resulting filtrate in air. Yield: 47% (based on Ni).

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H = 0.82 Å [$U_{iso}(H) = 1.5U_{eq}(O)$], C—H = 0.97 (methyl) Å [$U_{iso}(H) = 1.5U_{eq}(C)$], and C—H = 0.93 (aromatic and formic) Å [$U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Bis(formato-κO)bis[1-(pyridin-2-yl)ethanone oxime-κ²N,N']nickel(II)

<i>c</i> = 15.7391 (17) Å
$\beta = 131.850 \ (2)^{\circ}$
$V = 1798.6 (3) Å^3$
Z = 4
F(000) = 872
$D_{\rm x} = 1.555 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3030 reflections $\theta = 2.4 - 25.3^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.807, \ T_{\max} = 0.887$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.049$ Hydrogen site location: inferred from $wR(F^2) = 0.137$ neighbouring sites S = 1.00H-atom parameters constrained 3171 reflections $w = 1/[\sigma^2(F_o^2) + (0.077P)^2]$ 244 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

T = 298 K

Block, green

 $R_{\rm int} = 0.077$

 $h = -12 \rightarrow 11$ $k = -16 \rightarrow 17$ $l = -14 \rightarrow 18$

 $0.20 \times 0.17 \times 0.11 \text{ mm}$

9294 measured reflections 3171 independent reflections 2209 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
0.79945 (5)	0.29154 (3)	0.43579 (3)	0.0370 (2)	
0.9617 (4)	0.2714 (2)	0.6114 (2)	0.0438 (8)	
0.9641 (4)	0.1861 (2)	0.4685 (2)	0.0417 (7)	
0.6356 (4)	0.2740 (2)	0.2604 (2)	0.0425 (7)	
0.6175 (3)	0.19950 (19)	0.4010 (2)	0.0389 (7)	
0.9530 (4)	0.3159 (2)	0.6839 (2)	0.0625 (8)	
0.8715	0.3512	0.6473	0.094*	
0.6505 (4)	0.3135 (2)	0.1895 (2)	0.0600 (8)	
0.7258	0.3525	0.2244	0.090*	
0.6415 (3)	0.39657 (19)	0.4059 (2)	0.0594 (7)	
0.6976 (4)	0.4197 (3)	0.5686 (3)	0.0824 (11)	
0.9714 (3)	0.38535 (19)	0.4670 (2)	0.0565 (7)	
	x 0.79945 (5) 0.9617 (4) 0.9641 (4) 0.6356 (4) 0.6175 (3) 0.9530 (4) 0.8715 0.6505 (4) 0.7258 0.6415 (3) 0.6976 (4) 0.9714 (3)	xy 0.79945 (5) 0.29154 (3) 0.9617 (4) 0.2714 (2) 0.9641 (4) 0.1861 (2) 0.6356 (4) 0.2740 (2) 0.6175 (3) 0.19950 (19) 0.9530 (4) 0.3159 (2) 0.8715 0.3512 0.6505 (4) 0.3135 (2) 0.7258 0.3525 0.6415 (3) 0.39657 (19) 0.6976 (4) 0.4197 (3) 0.9714 (3) 0.38535 (19)	xyz 0.79945 (5) 0.29154 (3) 0.43579 (3) 0.9617 (4) 0.2714 (2) 0.6114 (2) 0.9641 (4) 0.1861 (2) 0.4685 (2) 0.6356 (4) 0.2740 (2) 0.2604 (2) 0.6175 (3) 0.19950 (19) 0.4010 (2) 0.9530 (4) 0.3159 (2) 0.6839 (2) 0.8715 0.3512 0.6473 0.6505 (4) 0.3135 (2) 0.1895 (2) 0.7258 0.3525 0.2244 0.6415 (3) 0.39657 (19) 0.4059 (2) 0.6976 (4) 0.4197 (3) 0.5686 (3) 0.9714 (3) 0.38535 (19) 0.4670 (2)	xyz $U_{iso}*/U_{eq}$ 0.79945 (5)0.29154 (3)0.43579 (3)0.0370 (2)0.9617 (4)0.2714 (2)0.6114 (2)0.0438 (8)0.9641 (4)0.1861 (2)0.4685 (2)0.0417 (7)0.6356 (4)0.2740 (2)0.2604 (2)0.0425 (7)0.6175 (3)0.19950 (19)0.4010 (2)0.0389 (7)0.9530 (4)0.3159 (2)0.6839 (2)0.0625 (8)0.87150.35120.64730.094*0.6505 (4)0.3135 (2)0.1895 (2)0.0600 (8)0.72580.35250.22440.090*0.6415 (3)0.39657 (19)0.4059 (2)0.0594 (7)0.6976 (4)0.4197 (3)0.5686 (3)0.0824 (11)0.9714 (3)0.38535 (19)0.4670 (2)0.0565 (7)

06	0.9048 (4)	0.4151 (2)	0.3023 (2)	0.0647 (8)
C1	1.1889 (5)	0.1813 (3)	0.7810 (3)	0.0666 (13)
H1A	1.1802	0.2260	0.8217	0.100*
H1B	1.3051	0.1780	0.8133	0.100*
H1C	1.1540	0.1226	0.7866	0.100*
C2	1.0756 (4)	0.2085 (3)	0.6584 (3)	0.0453 (9)
C3	1.0842 (4)	0.1614 (3)	0.5792 (3)	0.0454 (9)
C4	1.2087 (5)	0.0964 (3)	0.6154 (4)	0.0640 (12)
H4	1.2920	0.0811	0.6921	0.077*
C5	1.2066 (6)	0.0551 (3)	0.5356 (4)	0.0763 (14)
Н5	1.2880	0.0113	0.5578	0.092*
C6	1.0840 (6)	0.0793 (3)	0.4241 (4)	0.0692 (13)
H6	1.0803	0.0518	0.3692	0.083*
C7	0.9647 (5)	0.1451 (3)	0.3928 (3)	0.0527 (10)
H7	0.8819	0.1614	0.3164	0.063*
C8	0.3945 (5)	0.1940 (3)	0.0882 (3)	0.0625 (12)
H8A	0.3672	0.2490	0.0455	0.094*
H8B	0.2915	0.1674	0.0643	0.094*
H8C	0.4493	0.1514	0.0750	0.094*
C9	0.5122 (4)	0.2164 (2)	0.2125 (3)	0.0399 (8)
C10	0.4964 (4)	0.1737 (3)	0.2905 (3)	0.0398 (8)
C11	0.3649 (5)	0.1158 (3)	0.2541 (3)	0.0508 (10)
H11	0.2837	0.0982	0.1780	0.061*
C12	0.3560 (5)	0.0843 (3)	0.3330 (4)	0.0570 (11)
H12	0.2686	0.0449	0.3105	0.068*
C13	0.4765 (5)	0.1115 (3)	0.4443 (3)	0.0535 (10)
H13	0.4710	0.0921	0.4981	0.064*
C14	0.6058 (4)	0.1680 (3)	0.4749 (3)	0.0428 (9)
H14	0.6892	0.1852	0.5510	0.051*
C15	0.6164 (5)	0.4323 (3)	0.4662 (4)	0.0604 (11)
H15	0.5257	0.4733	0.4293	0.072*
C16	0.9880 (5)	0.4261 (3)	0.4058 (4)	0.0535 (10)
H16	1.0734	0.4703	0.4419	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0332 (3)	0.0470 (3)	0.0287 (3)	-0.0006 (2)	0.0199 (2)	-0.00075 (19)
N1	0.0397 (17)	0.061 (2)	0.0314 (16)	-0.0092 (15)	0.0238 (15)	-0.0067 (14)
N2	0.0377 (16)	0.0543 (19)	0.0363 (17)	0.0045 (13)	0.0260 (15)	0.0063 (13)
N3	0.0422 (17)	0.055 (2)	0.0331 (16)	0.0040 (15)	0.0263 (15)	0.0067 (14)
N4	0.0350 (16)	0.0485 (18)	0.0303 (15)	-0.0008 (13)	0.0206 (14)	-0.0040 (12)
O1	0.0598 (17)	0.091 (2)	0.0364 (15)	0.0007 (15)	0.0322 (14)	-0.0092 (14)
O2	0.0632 (18)	0.082 (2)	0.0373 (15)	-0.0115 (15)	0.0347 (14)	0.0029 (13)
O3	0.0552 (17)	0.0595 (18)	0.0588 (18)	0.0075 (13)	0.0361 (15)	-0.0041 (14)
O4	0.083 (2)	0.104 (3)	0.073 (2)	0.022 (2)	0.058 (2)	-0.0027 (19)
O5	0.0495 (16)	0.0650 (19)	0.0470 (16)	-0.0112 (13)	0.0289 (14)	0.0010 (13)
06	0.0609 (18)	0.074 (2)	0.0571 (19)	-0.0065 (16)	0.0386 (16)	0.0083 (16)

C1	0.051 (3)	0.095 (3)	0.037 (2)	0.004 (2)	0.022 (2)	0.012 (2)
C2	0.0305 (19)	0.062 (3)	0.033 (2)	-0.0076 (18)	0.0172 (17)	0.0042 (17)
C3	0.035 (2)	0.055 (2)	0.044 (2)	0.0015 (17)	0.0258 (18)	0.0078 (18)
C4	0.052 (3)	0.077 (3)	0.058 (3)	0.014 (2)	0.034 (2)	0.020 (2)
C5	0.071 (3)	0.078 (3)	0.091 (4)	0.033 (3)	0.059 (3)	0.026 (3)
C6	0.080 (3)	0.074 (3)	0.083 (4)	0.012 (3)	0.066 (3)	0.000 (3)
C7	0.055 (2)	0.063 (3)	0.050 (2)	0.007 (2)	0.039 (2)	0.003 (2)
C8	0.056 (3)	0.087 (3)	0.032 (2)	-0.012 (2)	0.024 (2)	-0.012 (2)
C9	0.0332 (19)	0.052 (2)	0.0245 (17)	0.0053 (17)	0.0151 (16)	-0.0010 (15)
C10	0.0371 (19)	0.045 (2)	0.0356 (19)	0.0024 (16)	0.0237 (17)	-0.0014 (16)
C11	0.045 (2)	0.058 (3)	0.039 (2)	-0.0116 (18)	0.0237 (18)	-0.0149 (18)
C12	0.058 (3)	0.057 (3)	0.064 (3)	-0.019 (2)	0.044 (2)	-0.012 (2)
C13	0.062 (3)	0.057 (3)	0.049 (2)	-0.011 (2)	0.040 (2)	-0.0053 (19)
C14	0.042 (2)	0.054 (2)	0.0329 (19)	-0.0052 (17)	0.0250 (18)	-0.0043 (17)
C15	0.052 (3)	0.057 (3)	0.077 (3)	-0.002 (2)	0.045 (3)	-0.011 (2)
C16	0.042 (2)	0.050 (2)	0.062 (3)	0.0012 (18)	0.032 (2)	0.008 (2)

Geometric parameters (Å, °)

Nil—O5	2.049 (3)	C2—C3	1.478 (5)
Nil—O3	2.070 (3)	C3—C4	1.394 (5)
Ni1—N3	2.075 (3)	C4—C5	1.379 (7)
Nil—N1	2.085 (3)	C4—H4	0.9300
Nil—N4	2.089 (3)	C5—C6	1.359 (6)
Ni1—N2	2.107 (3)	С5—Н5	0.9300
N1-C2	1.281 (5)	C6—C7	1.382 (5)
N1-01	1.368 (4)	С6—Н6	0.9300
N2—C7	1.337 (5)	С7—Н7	0.9300
N2—C3	1.351 (4)	C8—C9	1.494 (5)
N3—C9	1.285 (4)	C8—H8A	0.9600
N3—O2	1.356 (4)	C8—H8B	0.9600
N4C14	1.330 (4)	C8—H8C	0.9600
N4-C10	1.354 (4)	C9—C10	1.481 (5)
01—H1	0.8200	C10-C11	1.377 (5)
O2—H2	0.8200	C11—C12	1.386 (5)
O3—C15	1.256 (5)	C11—H11	0.9300
O4—C15	1.235 (5)	C12—C13	1.367 (5)
O5—C16	1.239 (5)	C12—H12	0.9300
O6—C16	1.243 (5)	C13—C14	1.373 (5)
C1—C2	1.493 (5)	C13—H13	0.9300
C1—H1A	0.9600	C14—H14	0.9300
C1—H1B	0.9600	C15—H15	0.9300
C1—H1C	0.9600	C16—H16	0.9300
O5—Ni1—O3	90.17 (12)	C5—C4—C3	119.0 (4)
O5—Ni1—N3	102.57 (11)	C5—C4—H4	120.5
O3—Ni1—N3	87.81 (11)	C3—C4—H4	120.5
O5—Ni1—N1	88.09 (11)	C6—C5—C4	119.2 (4)

O3—Ni1—N1	103.18 (12)	С6—С5—Н5	120.4
N3—Ni1—N1	164.78 (12)	С4—С5—Н5	120.4
O5—Ni1—N4	177.98 (11)	C5—C6—C7	119.5 (4)
O3—Ni1—N4	87.92 (11)	С5—С6—Н6	120.2
N3—Ni1—N4	76.72 (11)	С7—С6—Н6	120.2
N1—Ni1—N4	92.98 (11)	N2—C7—C6	122.4 (4)
O5—Ni1—N2	88.99 (12)	N2—C7—H7	118.8
O3—Ni1—N2	178.97 (12)	С6—С7—Н7	118.8
N3—Ni1—N2	92.95 (11)	С9—С8—Н8А	109.5
N1—Ni1—N2	76.20 (11)	C9—C8—H8B	109.5
N4—Ni1—N2	92.93 (12)	H8A—C8—H8B	109.5
C2—N1—O1	114.6 (3)	C9—C8—H8C	109.5
C_2 N1—Ni1	119.3 (3)	H8A—C8—H8C	109.5
01— $N1$ — $Ni1$	126.0 (2)	H8B-C8-H8C	109.5
C7-N2-C3	118.3 (3)	N3-C9-C10	114.5 (3)
C7—N2—Ni1	126.9 (3)	N3-C9-C8	122.8(3)
$C_3 - N_2 - N_{11}$	1147(2)	C10-C9-C8	122.0(3) 122.7(3)
C9 - N3 - O2	114.8 (3)	N4-C10-C11	122.7(3) 121.8(3)
C9—N3—Ni1	1186(2)	N4-C10-C9	121.0(3) 114.8(3)
Ω^2 _N3_Ni1	1264(2)	$C_{11} - C_{10} - C_{9}$	114.0(3) 123 3 (3)
C_14 N4 C_10	120.4(2) 118 2 (3)	C10-C11-C12	123.3(3) 118.7(3)
C14 N4 $C10$	126.6 (2)	C10-C11-H11	120.6
C10 N4 Nil	1152(2)	C_{12} C_{11} H_{11}	120.6
N1_01_H1	109.5	$C_{12} = C_{11} = C_{11}$	120.0 119.6(4)
$N_3 = O_2 = H_2$	109.5	C_{13} C_{12} H_{12}	120.2
$C_{15} = 02 = 112$	132.6 (3)	C_{11} C_{12} H_{12}	120.2
$C_{15} = 05 = N_{11}$	132.0(3)	C12 - C12 - C12	120.2 118 6 (4)
$C_2 = C_1 = H_1 \Lambda$	100 5	$C_{12} = C_{13} = C_{14}$	120.7
C_2 — C_1 — H_1B	109.5	C12 - C13 - H13	120.7
	109.5	$N_{4} = C_{13} = 1113$	120.7 123.2(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	N4 C14 H14	123.2 (3)
	109.5	14 - 014 - 1114	118.4
	109.5	$04 C_{15} O_{2}^{15}$	110.4
$\mathbf{N}_{1} = \mathbf{C}_{2} = \mathbf{C}_{3}$	109.3 112 0 (2)	04 - C15 - U15	127.8 (4)
N1 = C2 = C1	113.9(3) 124.6(4)	04 - 015 - 1115	110.1
N1 = C2 = C1	124.0(4) 121.4(4)	05 C16 O6	110.1 128 1 (4)
$C_{3} = C_{2} = C_{1}$	121.4(4) 121.5(4)	05 - C16 + H16	128.1 (4)
$N_2 = C_3 = C_4$	121.3(4) 115.8(2)	05-010-110	115.9
$N_2 = C_3 = C_2$	113.0(3) 122.7(4)	00	115.9
04-03-02	122.7 (4)		
05 Ni1 N1 C2	-916(3)	03 - Ni1 - 05 - C16	-878(4)
$O_3 = N_1 = N_1 = C_2$	91.0(3) 1787(3)	$N_{3} = N_{11} = 05 = 0.05$	0.0(4)
$N_3 N_1 N_1 - N_1 - C_2$	43 4 (6)	$N1_Ni1_05_016$	169.0 (4)
M = MI = MI = C2	-5.7(0)	NI = NII = 05 = 010	-60 (2)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	-21(3)	N2 Ni1 O5 C16	03(3) 028(4)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	2.1(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72.0 (4) -170 6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.0(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/9.0(3)
V_{3} V_{11} $V_$	-1222(4)	$\mathbf{N}\mathbf{I} - \mathbf{N}\mathbf{I} - \mathbf{C}2 - \mathbf{C}3$	4.3 (4)
IND—IN11—IN1—O1	-132.2 (4)	UI - NI - U2 - UI	1.9 (5)

N4—Ni1—N1—O1	-85.4 (3)	Ni1—N1—C2—C1	-174.1 (3)
N2—Ni1—N1—O1	-177.7 (3)	C7—N2—C3—C4	1.3 (5)
O5—Ni1—N2—C7	-89.8 (3)	Ni1—N2—C3—C4	-176.2 (3)
O3—Ni1—N2—C7	-125 (6)	C7—N2—C3—C2	-179.4 (3)
N3—Ni1—N2—C7	12.8 (3)	Ni1—N2—C3—C2	3.0 (4)
N1—Ni1—N2—C7	-178.0 (3)	N1-C2-C3-N2	-4.8 (5)
N4—Ni1—N2—C7	89.6 (3)	C1—C2—C3—N2	173.7 (3)
O5—Ni1—N2—C3	87.6 (3)	N1—C2—C3—C4	174.5 (4)
O3—Ni1—N2—C3	53 (6)	C1—C2—C3—C4	-7.0 (6)
N3—Ni1—N2—C3	-169.9 (2)	N2—C3—C4—C5	-1.3 (6)
N1—Ni1—N2—C3	-0.7 (2)	C2—C3—C4—C5	179.4 (4)
N4—Ni1—N2—C3	-93.0 (3)	C3—C4—C5—C6	0.4 (7)
O5—Ni1—N3—C9	178.4 (3)	C4—C5—C6—C7	0.5 (7)
O3—Ni1—N3—C9	-91.9 (3)	C3—N2—C7—C6	-0.4 (6)
N1—Ni1—N3—C9	44.9 (5)	Ni1—N2—C7—C6	176.8 (3)
N4—Ni1—N3—C9	-3.5 (3)	C5—C6—C7—N2	-0.5 (7)
N2—Ni1—N3—C9	88.8 (3)	O2—N3—C9—C10	-179.8 (3)
O5—Ni1—N3—O2	2.9 (3)	Ni1—N3—C9—C10	4.1 (4)
O3—Ni1—N3—O2	92.5 (3)	O2—N3—C9—C8	0.3 (5)
N1—Ni1—N3—O2	-130.7 (4)	Ni1—N3—C9—C8	-175.7 (3)
N4—Ni1—N3—O2	-179.1 (3)	C14—N4—C10—C11	-0.8 (5)
N2—Ni1—N3—O2	-86.8 (3)	Ni1—N4—C10—C11	-177.8 (3)
O5—Ni1—N4—C14	-105 (3)	C14—N4—C10—C9	176.2 (3)
O3—Ni1—N4—C14	-86.4 (3)	Ni1—N4—C10—C9	-0.8 (4)
N3—Ni1—N4—C14	-174.6 (3)	N3—C9—C10—N4	-2.1 (5)
N1—Ni1—N4—C14	16.7 (3)	C8—C9—C10—N4	177.7 (3)
N2-Ni1-N4-C14	93.1 (3)	N3—C9—C10—C11	174.8 (3)
O5—Ni1—N4—C10	72 (3)	C8—C9—C10—C11	-5.3 (6)
O3—Ni1—N4—C10	90.4 (2)	N4—C10—C11—C12	0.9 (6)
N3—Ni1—N4—C10	2.2 (2)	C9—C10—C11—C12	-175.8 (4)
N1—Ni1—N4—C10	-166.5 (2)	C10-C11-C12-C13	0.3 (6)
N2—Ni1—N4—C10	-90.2 (2)	C11—C12—C13—C14	-1.4 (6)
O5—Ni1—O3—C15	-100.5 (4)	C10—N4—C14—C13	-0.5 (5)
N3—Ni1—O3—C15	156.9 (4)	Ni1—N4—C14—C13	176.2 (3)
N1—Ni1—O3—C15	-12.4 (4)	C12—C13—C14—N4	1.6 (6)
N4—Ni1—O3—C15	80.1 (4)	Ni1—O3—C15—O4	9.0 (7)
N2—Ni1—O3—C15	-66 (6)	Ni1—O5—C16—O6	-5.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O4	0.82	1.69	2.508 (4)	177
O2—H2…O6	0.82	1.67	2.482 (4)	169