

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetraphenylphosphonium) bis[N-(trifluoromethylsulfonyl)dithiocarbimato(2–)- $\kappa^2 S, S'$]zincate(II)

Paula S. Pinto,^a Mayura M. M. Rubinger,^a Silvana Guilardi,^{b*} Drielly A. Paixão^b and Marcelo R. L. Oliveira^a

^aDepartamento de Química – UFV, Viçosa MG, Brazil, and ^bInstituto de Química – UFU, Uberlândia, MG, Brazil Correspondence e-mail: silvana@ufu.br

Received 23 November 2011; accepted 2 December 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.058; wR factor = 0.169; data-to-parameter ratio = 18.5.

The title salt, $(C_{24}H_{20}P)_2[Zn(C_2F_3NO_2S_3)_2]$, consists of a complex dianion and two tetraphenylphosphonium cations. The Zn^{II} ion displays a distorted tetrahedral coordination environment with four S atoms from two S,S'-chelated N-(trifluoromethylsulfonyl)dithiocarbimate anions. In the crystal, besides the ionic interaction of the oppositely charged ions, intermolecular C-H···O interactions between cations and anions are observed. One of the cations interacts with an inversion-related equivalent by $\pi - \pi$ stacking between phenyl rings, with a centroid–centroid distance of 3.932 (4) Å.

Related literature

For the antifungal and vulcanization activities and crystal structures of dithiocarbimato complexes, see: Amim et al. (2011); Alves et al. (2009); Mariano et al. (2007); Oliveira et al. (2007); Perpétuo et al. (2003). For further synthetic details, see: Franca et al. (2006). For other literature related to fungicides, see: Hogarth (2005).

Experimental

Crystal data

 $(C_{24}H_{20}P)_2[Zn(C_2F_3NO_2S_3)_2]$ $M_r = 1190.53$ Monoclinic, $P2_1/c$ a = 8.8461 (1) Åb = 29.1869 (5) Åc = 20.6963 (3) Å $\beta = 93.578 \ (1)^{\circ}$

V = 5333.17 (13) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.82 \text{ mm}^{-1}$ T = 295 K $0.42\,\times\,0.18\,\times\,0.12$ mm

Data collection

Nonius KappaCCD diffractometer	57739 measured reflections
Absorption correction: multi-scan	11977 independent reflections
(SORTAV; Blessing, 1995)	8307 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.758, \ T_{\max} = 0.950$	$R_{\rm int} = 0.082$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	646 parameters
$wR(F^2) = 0.169$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.18 \text{ e } \text{\AA}^{-3}$
11977 reflections	$\Delta \rho_{\rm min} = -1.66 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn-S1	2.3346 (10)	Zn-S4	2.3376 (9)
Zn-S2	2.3340 (10)	Zn-S5	2.3566 (10)
S2-Zn-S1	77.84 (3)	S4-Zn-S5	77.63 (3)
			. ,

Table 2

Hydrogen-bond	geometry	(Å,	°).
1	0	× /	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C9-H9···O1	0.93	2.68	3.424 (4)	138
C31-H31···O4	0.93	2.62	3.470 (4)	153
$C33{-}H33{\cdot}{\cdot}{\cdot}O2^i$	0.93	2.47	3.283 (4)	145

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Professor Dr Javier Ellena of the IFSC. USP, Brazil, for the X-ray data collection. This work was supported financially by FAPEMIG and CAPES.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2371).

References

- Alves, L. C., Rubinger, M. M. M., Lindemann, R. H., Perpétuo, G. J., Janczak, J., Miranda, L. D. L., Zambolim, L. & Oliveira, M. R. L. (2009). J. Inorg. Biochem. 103, 1045-1053.
- Amim, R. S., Oliveira, M. R. L., Janczak, J., Rubinger, M. M. M., Vieira, L. M. M., Alves, L. C. & Zambolim, L. (2011). Polyhedron, 30, 683-689.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.
- Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71-561.
- Mariano, R. M., Oliveira, M. R. L., Rubinger, M. M. M. & Visconte, L. L. Y. (2007). Eur. Polym. J. 43, 4706-4711.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

- Oliveira, M. R. L., Perpétuo, G. J., Janczak, J. & Rubinger, M. M. M. (2007). Polyhedron, 26, 163–168.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Perpétuo, G. J., Oliveira, M. R. L., Janczak, J., Vieira, H. P., Amaral, F. F. & De Bellis, V. M. (2003). *Polyhedron*, 22, 3355–3362.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supporting information

Acta Cryst. (2012). E68, m33-m34 [doi:10.1107/S160053681105207X]

Bis(tetraphenylphosphonium) bis[N-(trifluoromethylsulfonyl)dithiocarbimato(2–)- $\kappa^2 S$,S']zincate(II)

Paula S. Pinto, Mayura M. M. Rubinger, Silvana Guilardi, Drielly A. Paixão and Marcelo R. L. Oliveira

S1. Comment

We became interested in the syntheses and characterization of dithiocarbimato-metal complexes due to their similarities with dithiocarbamato complexes, which are important fungicides (Hogarth, 2005). While the dithiocarbamato- metal(II) are neutral substances, the analogous dithiocarbimato-complexes are necessarily anionic species. Thus, the choice of metallic ion, active counter ions or the use of different R groups on the dithiocarbimate structures could improve and/or modulate the antifungal activity.

The title complex is a new member of the class of Zn complexes with general formula $[Zn(RSO_2N=CS_2)_2]^2$ (Amim et al., 2011; Alves et al., 2009; Mariano et al., 2007; Perpétuo et al., 2003). The literature describes only one complex of this class having an alkyl group (methyl) attached to the SO_2 moiety (Oliveira *et al.*, 2007). The asymmetric unit of the title compound is shown in Fig. 1, and consists of one $[Zn(CF_3SO_2N=CS_2)_2]^{2-}$ anion and two Ph₄P⁺ cations. The Zn^{II} ion is coordinated by two S,S'-chelated N-trifluoromethylsulfonyldithiocarbimate ligands, resulting in a slightly distorted ZnS_4 tetrahedral geometry. Due to the formation of the two ZnS₂C four membered rings, the two S—Zn—S angles containing both sulfur atoms of the same ligand are significantly smaller than those containing the sulfur atoms from two ligands (Table 1). The dihedral angle between the two ZnS_2C four membered rings [87.40 (4)°] is greater than that found in the salt (Ph₄P)₂[Zn(CH₃SO₂N=CS₂)₂] of 79.1 (1)° (Oliveira *et al.*, 2007). The C—S [average value of 1.731 Å] and C=N bond distances [1.315 (4) and 1.314 (4) Å] have double bond character. This behavior indicates that the electron density is delocalized over the entire NCS₂ moiety. The S1–C1–N1 and S5–C3–N2 angles are significantly greater than S2–C1– N1 and S4–C3–N2 due to the repulsive interactions between the two SO₂CF₃ groups and the S1 and S5 atoms, respectively, which are *cis* in relation to the C1–N1 and C3–N2 bonds. Similar behavior is observed for other zinc complexes with dithiocarbimato ligands (Amim et al., 2011; Alves et al., 2009; Oliveira et al., 2007; Perpétuo et al., 2003). The torsion angles of C1-N1-S3-C2 and C3-N2-S6-C4 describing the conformation of the dithiocarbimato ligands are -175.9 (3)° and 180.0 (3)°, respectively. These angles are -67.1 (2)° and 159.6 (2)° in the compound $(Ph_4P)_2[Zn(CH_3SO_2N=CS_2)_2]$ (Oliveira *et al.*, 2007), probably due to the larger size of the CF₃ group and the intermolecular interaction present in the title compound.

In both tetraphenylphosphonium cations, the P–C bond lengths range from 1.785 (3) to 1.803 (3) Å, the C–P–C angles range from 106.6 (2) to 112.1 (1)°, and the P atoms display slightly distorted tetrahedral geometry. The arrangement of molecules is mainly determined by the electrostatic interactions between oppositely charged units. Moreover, there are intermolecular C–H…O interactions between cations and anions (Table 2) and π - π stacking between phenyl rings on inversion related (1-x, -y, 2-z) cations.

S2. Experimental

The potassium trifluoromethylsulfonyldithiocarbimate dihydrate was prepared in dimethylformamide from trifluoromethanesulfonamide as described in the literature (Franca *et al.*, 2006). The title compound was prepared in 1:1 (10 ml) methanol:water by the reaction of zinc acetate dihydrate (1.0 mmol) with trifluoromethylsulfonyldithiocarbimate dihydrate (2.0 mmol) and tetraphenylphosphanium chloride (2.0 mmol). The reaction mixture was stirred for 1 h at room temperature. The white solid obtained was filtered, washed with distilled water and dried under reduced pressure. The title compound is insoluble in water but soluble in chloroform, methanol and dichloromethane. Suitable crystals were obtained after slow evaporation of the solution in dichloromethene:ethanol 2:1 mixture. *M*.p. 161.5–163.3 °C. IR (selected bands, cm⁻¹): 1395, 1378 v(C=N); 1315, 1183 (vCF₃), 1298 v_{as} (SO₂); 1110 v_{sym} (SO₂); 951 v_{as} (CS₂) and 323 v(ZnS). ¹³C NMR (dithiocarbimate anion signals) (δ): 119.3 (q, CF₃, *J* = 317,2 Hz), 226.3 (s, C=N). All spectra (IR, ¹H NMR and ¹³C NMR) showed the expected signals for the tetraphenylphosphonium cation.

S3. Refinement

H atoms were geometrically positioned (C–H 0.93 Å) and refined as riding, with $U_{iso}(H) = 1.2 U_{eq}$ of the parent atom. Anisotropic displacement parameters were made equal for the S3, O2 and O1 atoms, using the SHELXL-97 EADP constraint. Reflections (-1 1 2) and (0 4 2) were omitted because they were partially obscured by the beamstop.

Figure 1

Representation of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Bis(tetraphenylphosphonium) bis[N-(trifluoromethylsulfonyl)dithiocarbimato(2-)- $\kappa^2 S.S'$]zincate(II)

F(000) = 2432

 $\theta = 2.9 - 27.5^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 295 KPrism. colourless $0.42 \times 0.18 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.483 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 80040 reflections

Crystal data
$(C_{24}H_{20}P)_2[Zn(C_2F_3NO_2S_3)_2]$
$M_r = 1190.53$
Monoclinic, $P2_1/c$
a = 8.8461 (1) Å
b = 29.1869 (5) Å
c = 20.6963 (3) Å
$\beta = 93.578 (1)^{\circ}$
$V = 5333.17 (13) \text{ Å}^3$
Z=4

Data collection

Refinement

 $wR(F^2) = 0.169$

646 parameters 0 restraints

S = 1.05

Nonius KappaCCD	57739 measured reflections
diffractometer	11977 independent reflections
Radiation source: Enraf Nonius FR590	8307 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.082$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.9^{\circ}$
CCD rotation images, thick slices scans	$h = -11 \rightarrow 7$
Absorption correction: multi-scan	$k = -37 \rightarrow 37$
(SORTAV; Blessing, 1995)	$l = -26 \rightarrow 26$
$T_{\min} = 0.758, T_{\max} = 0.950$	

Secondary atom site location: difference Fourier Refinement on F^2 Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.058$ Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained 11977 reflections $w = 1/[\sigma^2(F_o^2) + (0.0872P)^2 + 2.420P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta \rho_{\rm max} = 1.18 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -1.66 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn	0.76875 (4)	0.258126 (13)	1.300410 (19)	0.05905 (14)

S1	0.76765 (13)	0.32502 (3)	1.36222 (5)	0.0744 (3)
S2	0.89252 (11)	0.30995 (3)	1.23596 (4)	0.0636 (2)
S3	0.88481 (12)	0.42771 (3)	1.34592 (5)	0.0706 (2)
S4	0.57897 (9)	0.20559 (3)	1.26862 (5)	0.0615 (2)
S5	0.87243 (10)	0.18826 (3)	1.33924 (5)	0.0658 (2)
S 6	0.77346 (10)	0.08409 (3)	1.33543 (4)	0.0600(2)
P1	0.58019 (9)	0.36494 (3)	1.07700 (4)	0.0529 (2)
P2	0.41864 (8)	0.12861 (3)	1.04277 (4)	0.04373 (18)
F1	0.8570 (4)	0.48605 (10)	1.25094 (14)	0.1171 (10)
F2	1.0842 (3)	0.47099 (9)	1.28085 (14)	0.1085 (9)
F3	0.9532(4)	0.51320 (8)	1 33994 (13)	0 1030 (9)
F4	0.6206 (4)	0.03089(10)	1 25260 (17)	0 1194 (10)
F5	0.0200(1) 0.7129(4)	-0.00242(9)	1.23200(17) 1.33781(18)	0.1227(11)
F6	0.7129(4) 0.5171(3)	0.00242(9) 0.03994(10)	1 34194 (19)	0.1227(11) 0.1285(11)
N1	0.9171(3) 0.9004(3)	0.39051 (10)	1.29069 (13)	0.1205(11) 0.0605(7)
N2	0.6657 (3)	0.12278 (9)	1.20005 (13)	0.0559 (6)
01	0.0037(3)	0.12278(9) 0.13889(9)	1.36005 (13)	0.0339(0)
01	0.7340(3)	0.43889(9) 0.42280(8)	1.30093(12) 1.30032(12)	0.0700(2)
02	0.9930(3)	0.42280(8) 0.08521(10)	1.39932(12) 1.40427(12)	0.0700(2)
03	0.7863(4)	0.08321(10)	1.40457(15) 1.20165(12)	0.0039(0)
04 C1	0.9003(3)	0.07408(9) 0.24775(11)	1.30103(13) 1.20750(15)	0.0738(7)
	0.8377(3)	0.34773(11)	1.29730 (13)	0.0337(7)
C2 C2	0.9492 (5)	0.4/68/(14)	1.3012(2)	0.0703(11)
C3	0.7047(3)	0.16624 (11)	1.30466 (14)	0.0503(7)
C4	0.6486 (5)	0.03583 (14)	1.3155 (3)	0.0853 (12)
C5	0.4940 (4)	0.36160 (13)	1.1528/(17)	0.0638 (9)
C6	0.3858 (6)	0.32851 (19)	1.1625 (2)	0.0986 (15)
H6	0.3616	0.3069	1.1305	0.118*
C7	0.3137 (7)	0.3277 (3)	1.2198 (3)	0.128 (2)
H7	0.2419	0.3052	1.2268	0.153*
C8	0.3489 (7)	0.3605 (3)	1.2668 (3)	0.125 (2)
H8	0.2972	0.3608	1.3046	0.151*
C9	0.4583 (6)	0.3920 (2)	1.2581 (2)	0.1071 (17)
H9	0.4846	0.413	1.2908	0.129*
C10	0.5303 (4)	0.39325 (15)	1.20132 (18)	0.0744 (10)
H10	0.6037	0.4154	1.1953	0.089*
C11	0.6968 (4)	0.31543 (11)	1.06493 (16)	0.0558 (8)
C12	0.6925 (4)	0.27720 (12)	1.10471 (17)	0.0664 (9)
H12	0.6242	0.2759	1.1371	0.08*
C13	0.7902 (6)	0.24120 (13)	1.0960 (2)	0.0816 (13)
H13	0.7874	0.2157	1.1228	0.098*
C14	0.8906 (6)	0.24230 (15)	1.0487 (3)	0.0889 (14)
H14	0.9562	0.2178	1.0436	0.107*
C15	0.8946 (5)	0.27990 (17)	1.0084 (2)	0.0878 (12)
H15	0.9617	0.2805	0.9755	0.105*
C16	0.7991 (4)	0.31657 (14)	1.01673 (18)	0.0693 (9)
H16	0.8034	0.3421	0.99	0.083*
C17	0.7020 (4)	0.41366 (11)	1.07582 (15)	0.0537 (7)
C18	0.8430 (4)	0.41156 (14)	1.11035 (18)	0.0672 (9)
			(10)	

H18	0.8731	0.3851	1.1326	0.081*
C19	0.9370 (5)	0.44945 (15)	1.1109 (2)	0.0793 (11)
H19	1.0305	0.4485	1.1341	0.095*
C20	0.8941 (6)	0.48820 (16)	1.0781 (2)	0.0939 (14)
H20	0.9586	0.5134	1.0787	0.113*
C21	0.7568 (6)	0.49019 (16)	1.0441 (3)	0.1064 (17)
H21	0.7281	0.5167	1.0216	0.128*
C22	0.6601 (5)	0.45280 (13)	1.0432 (2)	0.0794 (11)
H22	0.5664	0.4543	1.0203	0.095*
C23	0.4320 (3)	0.37039 (11)	1.01393 (16)	0.0536(7)
C24	0.2849 (4)	0.38278 (15)	1.0277 (2)	0.0750 (10)
H24	0.2615	0.3879	1.0703	0.09*
C25	0.1748 (4)	0.38742 (15)	0.9783 (2)	0.0790 (11)
H25	0.0768	0.3953	0.9879	0.095*
C26	0.2071 (4)	0.38068 (13)	0.9152 (2)	0.0698 (10)
H26	0.1316	0.3839	0.8822	0.084*
C27	0.3520 (4)	0.36912 (14)	0.90089 (19)	0.0698 (9)
H27	0.3748	0.3649	0.858	0.084*
C28	0.4642 (4)	0.36372 (12)	0.95011 (16)	0.0616 (8)
H28	0.5617	0.3556	0.9401	0.074*
C29	0.6183 (3)	0.12592 (9)	1.06577 (13)	0.0418 (6)
C30	0.6682 (3)	0.12508 (10)	1.13043 (14)	0.0475 (6)
H30	0.5996	0.129	1.1623	0.057*
C31	0.8211 (3)	0.11840 (11)	1.14776 (15)	0.0525 (7)
H31	0.8553	0.1173	1.1911	0.063*
C32	0.9212 (3)	0.11350 (11)	1.09979 (16)	0.0527 (7)
H32	1.0234	0.1087	1.1112	0.063*
C33	0.8732 (3)	0.11551 (11)	1.03584 (16)	0.0528 (7)
H33	0.9427	0.1127	1.0042	0.063*
C34	0.7213 (3)	0.12172 (11)	1.01815 (15)	0.0507 (7)
H34	0.6883	0.1231	0.9746	0.061*
C35	0.3211 (3)	0.13903 (11)	1.11472 (15)	0.0510(7)
C36	0.2516 (4)	0.18093 (13)	1.12335 (18)	0.0625 (8)
H36	0.2526	0.2033	1.0914	0.075*
C37	0.1799 (4)	0.18924 (16)	1.1806 (2)	0.0781 (12)
H37	0.1345	0.2175	1.1871	0.094*
C38	0.1766 (4)	0.15591 (19)	1.22685 (19)	0.0811 (13)
H38	0.126	0.1614	1.2642	0.097*
C39	0.2459 (4)	0.11501 (17)	1.21909 (17)	0.0741 (11)
H39	0.2439	0.0929	1.2514	0.089*
C40	0.3192 (3)	0.10597 (13)	1.16364 (15)	0.0588 (8)
H40	0.3673	0.078	1.1588	0.071*
C41	0.3778 (3)	0.17355 (10)	0.98562 (14)	0.0489 (7)
C42	0.4799 (4)	0.20877 (11)	0.97580 (18)	0.0634 (9)
H42	0.5729	0.2095	0.9994	0.076*
C43	0.4427 (5)	0.24267 (13)	0.9309 (2)	0.0813 (12)
H43	0.5116	0.2659	0.9238	0.098*
C44	0.3046 (5)	0.24214 (14)	0.8969 (2)	0.0821 (12)

H44	0.2797	0.2652	0.8672	0.099*	
C45	0.2028 (5)	0.20768 (15)	0.90656 (19)	0.0764 (11)	
H45	0.1087	0.2079	0.8838	0.092*	
C46	0.2388 (4)	0.17285 (13)	0.94965 (17)	0.0637 (9)	
H46	0.171	0.149	0.9548	0.076*	
C47	0.3599 (3)	0.07588 (10)	1.00384 (14)	0.0472 (6)	
C48	0.2587 (4)	0.04559 (11)	1.02871 (16)	0.0559 (7)	
H48	0.2166	0.0519	1.0678	0.067*	
C49	0.2205 (4)	0.00612 (12)	0.99541 (19)	0.0668 (9)	
H49	0.1515	-0.0141	1.012	0.08*	
C50	0.2826 (4)	-0.00369 (12)	0.93823 (19)	0.0652 (9)	
H50	0.257	-0.0307	0.9164	0.078*	
C51	0.3832 (4)	0.02640 (14)	0.91288 (19)	0.0718 (10)	
H51	0.4256	0.0197	0.874	0.086*	
C52	0.4205 (4)	0.06620 (13)	0.94506 (17)	0.0670 (9)	
H52	0.4868	0.0868	0.9275	0.08*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0568 (2)	0.0545 (2)	0.0660 (3)	-0.00555 (17)	0.00531 (18)	-0.00531 (17)
S 1	0.0976 (7)	0.0628 (5)	0.0662 (6)	-0.0187 (5)	0.0324 (5)	-0.0122 (4)
S2	0.0715 (6)	0.0615 (5)	0.0595 (5)	-0.0087(4)	0.0170 (4)	-0.0105 (4)
S3	0.0793 (5)	0.0670 (5)	0.0670 (5)	-0.0189 (4)	0.0169 (4)	-0.0131 (4)
S4	0.0452 (4)	0.0540 (5)	0.0840 (6)	0.0023 (3)	-0.0067 (4)	-0.0026 (4)
S5	0.0505 (5)	0.0657 (5)	0.0792 (6)	-0.0007 (4)	-0.0113 (4)	0.0004 (4)
S6	0.0575 (5)	0.0567 (5)	0.0661 (5)	0.0069 (4)	0.0063 (4)	0.0033 (4)
P1	0.0490 (4)	0.0558 (5)	0.0538 (5)	-0.0078 (4)	0.0028 (3)	-0.0004 (4)
P2	0.0310 (3)	0.0516 (4)	0.0485 (4)	-0.0019 (3)	0.0015 (3)	-0.0016 (3)
F1	0.167 (3)	0.0894 (18)	0.0918 (18)	0.0078 (18)	-0.0169 (19)	0.0137 (14)
F2	0.114 (2)	0.0865 (17)	0.131 (2)	-0.0304 (16)	0.0558 (18)	-0.0042 (16)
F3	0.149 (3)	0.0613 (13)	0.0995 (18)	-0.0193 (15)	0.0172 (17)	-0.0187 (12)
F4	0.129 (2)	0.0855 (18)	0.139 (3)	-0.0078 (17)	-0.028(2)	-0.0277 (17)
F5	0.119 (2)	0.0566 (14)	0.191 (3)	0.0091 (14)	0.003 (2)	0.0182 (17)
F6	0.0822 (18)	0.0841 (18)	0.223 (4)	-0.0127 (15)	0.042 (2)	0.006 (2)
N1	0.0680 (17)	0.0590 (16)	0.0557 (15)	-0.0102 (13)	0.0132 (13)	-0.0067 (12)
N2	0.0491 (14)	0.0513 (15)	0.0670 (17)	0.0027 (11)	0.0029 (12)	-0.0022 (12)
01	0.0793 (5)	0.0670 (5)	0.0670 (5)	-0.0189 (4)	0.0169 (4)	-0.0131 (4)
O2	0.0793 (5)	0.0670 (5)	0.0670 (5)	-0.0189 (4)	0.0169 (4)	-0.0131 (4)
O3	0.102 (2)	0.0844 (18)	0.0650 (16)	0.0128 (16)	0.0061 (14)	0.0117 (13)
O4	0.0603 (14)	0.0793 (17)	0.0889 (18)	0.0176 (13)	0.0128 (13)	0.0008 (14)
C1	0.0469 (16)	0.0598 (19)	0.0545 (18)	-0.0038 (14)	0.0030 (14)	-0.0058 (14)
C2	0.097 (3)	0.062 (2)	0.072 (2)	-0.013 (2)	0.008 (2)	-0.0079 (19)
C3	0.0435 (15)	0.0583 (18)	0.0501 (16)	0.0029 (13)	0.0112 (13)	-0.0027 (13)
C4	0.076 (3)	0.060 (2)	0.121 (4)	0.006 (2)	0.009 (3)	0.003 (2)
C5	0.0565 (19)	0.073 (2)	0.062 (2)	-0.0092 (17)	0.0054 (16)	0.0066 (17)
C6	0.090 (3)	0.122 (4)	0.087 (3)	-0.046 (3)	0.023 (2)	-0.005 (3)
C7	0.105 (4)	0.172 (6)	0.110 (4)	-0.057 (4)	0.043 (3)	0.012 (4)

C 8	0.110(4)	0 183 (6)	0.088 (4)	-0.026(4)	0.045(3)	0.007 (4)
C0	0.110(4) 0.111(4)	0.133(0)	0.000(4)	-0.010(4)	0.043(3)	-0.014(3)
C10	0.067(2)	0.142(3) 0.096(3)	0.071(3)	-0.006(2)	0.020(3)	-0.014(3)
C11	0.007(2) 0.0572(18)	0.050(3)	0.001(2) 0.0546(18)	-0.0058(14)	-0.0099(15)	-0.0023(14)
C12	0.0372(10)	0.0537(17)	0.0540(10)	-0.0165(18)	-0.0148(18)	0.0025(14)
C13	0.077(2)	0.057(2)	0.002(2)	-0.008(2)	-0.035(3)	0.0033(10) 0.0041(19)
C14	0.090(3)	0.052(2)	0.092(3)	0.000(2)	-0.030(3)	-0.014(2)
C15	0.003(3)	0.007(3)	0.100(3)	0.010(2)	0.000(2)	0.011(2)
C16	0.003(3)	0.075(3)	0.000(3)	0.030(2)	0.000(2)	0.002(2)
C17	0.072(2)	0.077(2)	0.002(2)	-0.0048(14)	0.0010(10) 0.0080(14)	-0.0075(17)
C18	0.0505(17) 0.0544(19)	0.0371(10)	0.0311(17)	-0.0137(17)	0.0000(11)	0.0005(18)
C19	0.0511(1)	0.070(2)	0.071(2) 0.085(3)	-0.026(2)	0.0012(10)	-0.012(2)
C20	0.003(2) 0.101(3)	0.076(3)	0.005(3)	-0.038(3)	0.004(2) 0.012(3)	-0.008(3)
C20	0.101(3) 0.109(4)	0.070(3)	0.103(5) 0.143(5)	-0.025(3)	-0.02(3)	0.003(3)
C21	0.109(4)	0.003(2)	0.145(3)	-0.0155(19)	-0.011(2)	0.010(3)
C22	0.075(3)	0.001(2) 0.0531(17)	0.050(3)	-0.0063(13)	0.011(2) 0.0032(14)	-0.003(2)
C23	0.0409(10)	0.0951(17)	0.0007(1))	0.0003 (13)	0.0032(14)	-0.0014(14)
C24	0.0334(19)	0.095(3)	0.077(2)	-0.0010(19)	0.0032(13)	-0.003(2)
C25	0.0403(19)	0.094(3)	0.090(3)	-0.0001(19)	-0.0183(18)	-0.004(2)
C20 C27	0.050(2)	0.003(2)	0.065(3)	0.0047(10)	-0.0080(17)	-0.0007(19)
C28	0.003(2)	0.079(2)	0.003(2)	0.0013(16)	0.0030(17)	0.0002(18)
C20	0.0310(10)	0.071(2)	0.002(2)	-0.0013(10)	0.0013(13)	-0.0007(10)
C30	0.0348(12)	0.0434(14) 0.0587(17)	0.0407(15)	-0.0032(11)	0.0020(11) 0.0041(12)	-0.0051(13)
C31	0.0340(13)	0.0567(17)	0.0494(10) 0.0520(17)	-0.0034(12)	-0.0019(13)	0.0091(13)
C32	0.0399(14) 0.0306(13)	0.0030(19) 0.0585(18)	0.0520(17)	-0.0042(13)	0.0019(13)	-0.0009(14)
C32	0.0300(13)	0.0535(18) 0.0634(19)	0.009(2)	-0.0053(12)	0.0003(13)	-0.0071(13)
C34	0.0303(14) 0.0394(14)	0.0034(19)	0.0399(19) 0.0487(16)	-0.0062(13)	0.0134(13)	-0.0071(14)
C35	0.0394(14)	0.0043(18)	0.0487(10)	-0.0002(13)	0.0045(12)	-0.0005(14)
C36	0.0295(12)	0.071(2)	0.0521(17)	-0.0027(15)	0.0023(12) 0.0037(15)	-0.0159(17)
C37	0.0470(10)	0.072(2) 0.104(3)	0.071(2) 0.083(3)	0.0025(19)	0.0037(13)	-0.037(2)
C38	0.0470(19)	0.104(3)	0.085(3)	-0.0023(19)	0.0070(13)	-0.025(3)
C39	0.0409(19)	0.140(4) 0.122(3)	0.058(2)	-0.011(2)	0.0038(10) 0.0017(15)	-0.023(3)
C40	0.0407(10)	0.122(3)	0.0514(19) 0.0541(18)	-0.0022(15)	0.0017(13)	0.002(2)
C40	0.0377(13) 0.0399(14)	0.065(2)	0.0541(13) 0.0545(17)	0.0022(13)	-0.0020(13)	-0.0011(10)
C41	0.0399(14) 0.0588(10)	0.0518(10)	0.0343(17)	-0.0022(12)	-0.0123(17)	0.0022(13)
C42	0.0388(19)	0.0550(18)	0.070(2)	-0.0000(10)	-0.0123(17)	0.0027(10)
C43	0.080(3)	0.030(2)	0.100(3)	0.0090(19)	-0.011(2)	0.019(2)
C45	0.091(3)	0.070(2)	0.085(3)	0.012(2)	-0.0208(10)	0.014(2)
C45	0.004(2)	0.080(3)	0.077(3)	-0.002(2)	-0.0208(19)	0.000(2)
C40	0.0433(10) 0.0342(13)	0.071(2)	0.075(2)	-0.0003(13)	-0.0071(10)	-0.0032(18)
C48	0.0542(13)	0.0515(10)	0.0504(17)	-0.0023(12)	0.0011(12)	0.0014(13)
C40	0.0513(17)	0.0517(18)	0.0394(18)	-0.0154(14)	0.0090(14)	0.0051(15) 0.0053(17)
C50	0.007(2)	0.0317(10) 0.0477(17)	0.002(2)	-0.0017(15)	-0.0035(19)	-0.0033(17)
C51	0.000(2)	0.077(17)	0.073(2)	-0.0100(10)	0.0159 (19)	-0.0170(10)
C52	0.007(2)	0.076(2)	0.075(2)	-0.0235(17)	0.0159 (16)	-0.01/9(19)
032	0.0370 (17)	0.070 (2)	0.000 (2)	0.0233 (17)	0.0101 (10)	0.0100 (18)

Geometric parameters (Å, °)

Zn—S1	2.3346 (10)	C20—C21	1.366 (7)
Zn—S2	2.3340 (10)	C20—H20	0.93
Zn—S4	2.3376 (9)	C21—C22	1.386 (6)
Zn—S5	2.3566 (10)	C21—H21	0.93
S1—C1	1.733 (3)	C22—H22	0.93
S2—C1	1.727 (3)	C23—C28	1.382 (5)
S3—01	1.421 (3)	C23—C24	1.397 (5)
S3—O2	1.435 (3)	C24—C25	1.375 (5)
S3—N1	1.589 (3)	C24—H24	0.93
S3—C2	1.818 (4)	C25—C26	1.369 (6)
S4—C3	1.735 (3)	C25—H25	0.93
S5—C3	1.730 (3)	C26—C27	1.375 (5)
S6—O3	1.425 (3)	C26—H26	0.93
S6—O4	1.431 (3)	C27—C28	1.386 (5)
S6—N2	1.593 (3)	С27—Н27	0.93
S6—C4	1.821 (5)	C28—H28	0.93
P1—C17	1.785 (3)	C29—C30	1.383 (4)
P1—C5	1.790 (4)	C29—C34	1.389 (4)
P1—C23	1.798 (3)	C30—C31	1.391 (4)
P1-C11	1.802 (3)	С30—Н30	0.93
P2—C41	1.788 (3)	C31—C32	1.379 (4)
P2—C35	1.793 (3)	C31—H31	0.93
P2—C47	1.799 (3)	C32—C33	1.366 (4)
P2—C29	1.802 (3)	С32—Н32	0.93
F1—C2	1.309 (5)	C33—C34	1.383 (4)
F2—C2	1.303 (5)	С33—Н33	0.93
F3—C2	1.328 (4)	C34—H34	0.93
F4—C4	1.319 (6)	C35—C36	1.385 (5)
F5—C4	1.323 (5)	C35—C40	1.400 (5)
F6—C4	1.321 (5)	C36—C37	1.399 (5)
N1—C1	1.314 (4)	С36—Н36	0.93
N2—C3	1.314 (4)	C37—C38	1.367 (7)
C5—C6	1.383 (5)	С37—Н37	0.93
C5—C10	1.386 (5)	C38—C39	1.356 (6)
C6—C7	1.381 (7)	C38—H38	0.93
С6—Н6	0.93	C39—C40	1.379 (5)
С7—С8	1.387 (8)	С39—Н39	0.93
С7—Н7	0.93	C40—H40	0.93
С8—С9	1.356 (8)	C41—C42	1.391 (4)
С8—Н8	0.93	C41—C46	1.397 (4)
C9—C10	1.372 (6)	C42—C43	1.382 (5)
С9—Н9	0.93	C42—H42	0.93
C10—H10	0.93	C43—C44	1.372 (6)
C11—C12	1.389 (5)	C43—H43	0.93
C11—C16	1.389 (5)	C44—C45	1.373 (6)
C12—C13	1.380 (6)	C44—H44	0.93

C12—H12	0.93	C45—C46	1.377 (5)
C13—C14	1.362 (7)	C45—H45	0.93
С13—Н13	0.93	C46—H46	0.93
C14—C15	1.381 (7)	C47—C48	1.381 (4)
C14—H14	0.93	C47—C52	1.389 (4)
C15—C16	1.381 (6)	C48—C49	1.374 (5)
C15—H15	0.93	C48—H48	0.93
C16—H16	0.93	C49—C50	1.366 (5)
C17—C22	1.366 (5)	C49—H49	0.93
C17—C18	1.400 (5)	C50—C51	1.377 (5)
C18-C19	1383(5)	C50—H50	0.93
C18—H18	0.93	C51-C52	1 369 (5)
C19-C20	1 362 (7)	C51—H51	0.93
C19H19	0.93	C52_H52	0.93
(1)—1119	0.95	0.52-1152	0.95
S2—Zn—S1	77.84 (3)	C19—C20—C21	120.2 (4)
S2—Zn—S4	128.21 (4)	C19—C20—H20	119.9
S1—Zn—S4	132.48 (4)	C21—C20—H20	119.9
S2-Zn-S5	124.69 (4)	C20—C21—C22	120.1 (4)
S1 - Zn - S5	123.49 (4)	C20—C21—H21	119.9
S4—Zn—S5	77.63 (3)	C22—C21—H21	119.9
C1-S1-Zn	83.04 (11)	C17—C22—C21	120.2 (4)
C1 = S2 = Zn	83 17 (11)	C17—C22—H22	119.9
01 - 83 - 02	117.00(15)	C^{21} C^{22} H^{22}	119.9
01—\$3—N1	116.02 (16)	C_{28} C_{23} C_{24}	118.8 (3)
0^{2} S3 N1	113.61 (16)	C28-C23-P1	110.0(3) 119.8(2)
01 - 83 - C2	104.9(2)	C_{24} C_{23} P1	119.0(2) 121 4 (3)
$01 \ 53 \ 02$ $02 \ 53 \ 02$	104.5(2) 104.58(19)	$C_{24} = C_{23} = 11$ $C_{25} = C_{24} = C_{23}$	121.4(3) 120.0(4)
N1_S3_C2	97.43(17)	C25-C24-H24	120.0 (4)
$C_{3}=S_{4}=7n$	83 31 (11)	C_{23} C_{24} H_{24}	120
$C_3 = S_5 = Z_1$	82.82 (11)	$C_{25} = C_{24} = 1124$	120 1210(4)
$C_3 = S_5 = Z_{11}$	11773(18)	$C_{20} = C_{23} = C_{24}$	121.0 (4)
O_{3}^{3} S6 N2	117.75 (16)	$C_{20} = C_{23} = H_{23}$	119.5
O_{3} O_{3} O_{4} S_{6} N_{2}	114.39(10) 115.02(15)	$C_{24} = C_{25} = 1125$	119.5
04 - 30 - 102	115.02(15) 105.2(2)	$C_{25} = C_{26} = C_{27}$	119.0 (3)
03 - 50 - 04	103.2(2) 104.2(2)	C_{23} C_{20} H_{20}	120.2
N2 S6 C4	104.2(2)	$C_2/-C_20-1120$	120.2
$N_2 = 50 = 0.4$	90.07 (18)	$C_{20} - C_{27} - C_{28}$	120.3 (4)
C17 P1 - C3	110.23(10) 100.44(15)	$C_{20} = C_{27} = H_{27}$	119.9
C1 / - P1 - C23	109.44(13) 108.00(16)	$C_{20} = C_{2} / = H_{2} / C_{22} = C_{22} / C_{22} = C_{22} / C_{22} = C_{22} / C_{22} = C_{22} = C_{22} / C_{22} = C_{22} / C_{22} = C$	119.9
C_{3} $-P_{1}$ $-C_{23}$	108.09 (10)	C_{23} C_{26} C_{27}	120.3 (3)
CI / - PI - CII	100.00 (15)	C_{23} $-C_{28}$ H_{28}	119.8
C_{2} P_{1} C_{11}	110.89 (17)	$C_2/-C_{28}-H_{28}$	119.8
C_{23} PI $-C_{11}$	111.59 (15)	$C_{30} = C_{29} = C_{34}$	120.1 (3)
C41 - F2 - C33	109.70 (15)	C_{30} C_{29} P_{2}	120.3(2)
$U_{41} - F_2 - U_4 / U_4$	100.90 (14)	C_{34} C_{29} F_{2}	119.5 (2)
$C_{33} - P_2 - C_4/$	112.13 (14)	C_{29} C_{30} C_{31} C_{20} C_{30} C_{31}	119.9 (3)
C41 - P2 - C29	111.16 (13)	C29—C30—H30	120.1
C35—P2—C29	107.61 (13)	C31—C30—H30	120.1

C47—P2—C29	109.39 (13)	C32—C31—C30	119.2 (3)
C1—N1—S3	122.3 (2)	C32—C31—H31	120.4
C3—N2—S6	121.9 (2)	C30—C31—H31	120.4
N1—C1—S2	117.5 (2)	C33—C32—C31	121.2 (3)
N1—C1—S1	126.6 (3)	С33—С32—Н32	119.4
82—C1—81	115.92 (19)	С31—С32—Н32	119.4
F2-C2-F1	108.0 (4)	C32—C33—C34	120.1 (3)
$F^2 - C^2 - F^3$	108.0(4)	C32—C33—H33	12011 (0)
F1 - C2 - F3	108.0(4)	C34—C33—H33	120
F_{2} C_{2} S_{3}	1125(3)	C_{33} C_{34} C_{29}	120 1196(3)
$F_{12} = C_{22} = S_{33}$	112.5(3)	$C_{33} C_{34} H_{34}$	120.2
$F_1 = C_2 = S_3$	111.3(3)	$C_{20} = C_{24} = H_{24}$	120.2
F3-C2-S5	106.7(3)	$C_{29} = C_{34} = H_{34}$	120.2
$N_2 = C_3 = S_3$	125.0 (2)	$C_{30} = C_{35} = C_{40}$	119.5 (3)
N2-C3-S4	118.1 (2)	C36—C35—P2	119.8 (3)
S5—C3—S4	116.24 (18)	C40—C35—P2	120.8 (2)
F4—C4—F6	107.6 (4)	C35—C36—C37	119.4 (4)
F4—C4—F5	107.6 (4)	С35—С36—Н36	120.3
F6—C4—F5	107.6 (4)	С37—С36—Н36	120.3
F4—C4—S6	112.5 (3)	C38—C37—C36	120.1 (4)
F6—C4—S6	111.9 (3)	С38—С37—Н37	120
F5—C4—S6	109.4 (3)	С36—С37—Н37	120
C6—C5—C10	119.5 (4)	C39—C38—C37	120.9 (4)
C6—C5—P1	120.1 (3)	С39—С38—Н38	119.5
C10—C5—P1	120.4 (3)	С37—С38—Н38	119.5
C7—C6—C5	119.8 (5)	C38—C39—C40	120.5 (4)
С7—С6—Н6	120.1	С38—С39—Н39	119.8
С5—С6—Н6	120.1	С40—С39—Н39	119.8
C6—C7—C8	119.7 (5)	C39—C40—C35	119.8 (4)
С6—С7—Н7	120.2	С39—С40—Н40	120.1
С8—С7—Н7	120.2	C35—C40—H40	120.1
C9-C8-C7	120 5 (5)	C42-C41-C46	1194(3)
C9—C8—H8	119.8	C42 - C41 - P2	122.2(2)
C7 - C8 - H8	119.8	$C_{46} - C_{41} - P_{2}$	122.2(2) 118.5(2)
$C_{8} - C_{9} - C_{10}$	120.3 (5)	C_{43} C_{42} C_{41} C_{42} C_{41}	110.5(2) 119.8(3)
	110.0	C_{43} C_{42} C_{41}	120.1
$C_{10} C_{9} H_{9}$	119.9	$C_{43} = C_{42} = H_{42}$	120.1
$C_{10} = C_{10} = C_{5}$	119.9	$C_{+1} - C_{+2} - 11_{+2}$	120.1
$C_{9} = C_{10} = C_{5}$	120.3 (4)	C44 - C43 - C42	120.2 (4)
C9-C10-H10	119.9	$C_{44} = C_{43} = H_{43}$	119.9
C_{12} C_{10} H_{10}	119.9	C42 - C43 - H43	119.9
	119.2 (3)	C43—C44—C45	120.3 (4)
C12—C11—P1	121.7 (3)	C43—C44—H44	119.8
C16—C11—P1	119.0 (3)	C45—C44—H44	119.8
C13—C12—C11	119.6 (4)	C44—C45—C46	120.5 (4)
C13—C12—H12	120.2	C44—C45—H45	119.8
C11—C12—H12	120.2	C46—C45—H45	119.8
C14—C13—C12	121.2 (4)	C45—C46—C41	119.7 (3)
C14—C13—H13	119.4	C45—C46—H46	120.2
С12—С13—Н13	119.4	C41—C46—H46	120.2

C13—C14—C15	119.7 (4)	C48—C47—C52	119.4 (3)
C13—C14—H14	120.2	C48—C47—P2	123.8 (2)
C15—C14—H14	120.2	C52—C47—P2	116.7 (2)
C14—C15—C16	120.1 (4)	C49—C48—C47	119.7 (3)
C14—C15—H15	119.9	C49—C48—H48	120.2
C16—C15—H15	119.9	C47—C48—H48	120.2
C15—C16—C11	120.2 (4)	C50—C49—C48	120.7 (3)
C15—C16—H16	119.9	С50—С49—Н49	119.7
C11—C16—H16	119.9	C48—C49—H49	119.7
C_{22} — C_{17} — C_{18}	119.6 (3)	C49 - C50 - C51	120.1 (3)
C22—C17—P1	121.8 (3)	C49—C50—H50	120.1 (0)
C_{18} C_{17} P_{1}	1185(3)	$C_{51} - C_{50} - H_{50}$	120
C19-C18-C17	110.5 (5)	$C_{52} - C_{51} - C_{50}$	119.8 (3)
C19-C18-H18	120.5	$C_{52} = C_{51} = H_{51}$	120.1
C17 - C18 - H18	120.5	$C_{52} = C_{51} = H_{51}$	120.1
C_{10} C_{10} C_{18}	120.3 120.7(4)	$C_{50} = C_{51} = H_{51}$	120.1 120.3(3)
$C_{20} = C_{19} = C_{18}$	120.7 (4)	$C_{51} = C_{52} = C_{47}$	120.5 (5)
$C_{20} = C_{19} = H_{10}$	119.0	$C_{31} = C_{32} = H_{52}$	119.9
C18-C19-H19	119.0	C4/—C32—H32	119.9
62 Z- 61 C1	1.1(.(11))	C22 D1 C17 C19	1(5,2,(2))
S_2 — Z_1 — S_1 — C_1	1.10 (11)	C_{23} PI $-C_{17}$ $-C_{18}$	-105.5(3)
S4—Z1—S1—C1	-130.18(11)	C11 - P1 - C1 / - C18	-44.5(3)
$S_{2} = C_{1}$	124.91 (11)	C_{22} C_{17} C_{18} C_{19}	0.3(6)
SI = Zn = S2 = CI	-1.1/(11)	PI = CI / = CI8 = CI9	-1/8.6(3)
S4—Zn—S2—C1	134.03 (11)	C17—C18—C19—C20	-0.5 (6)
S5—Zn—S2—C1	-123.66 (11)	C18—C19—C20—C21	0.3 (7)
S2—Zn—S4—C3	123.96 (10)	C19—C20—C21—C22	0.2 (8)
S1—Zn—S4—C3	-125.12 (10)	C18—C17—C22—C21	0.2 (6)
S5—Zn—S4—C3	-0.72 (10)	P1—C17—C22—C21	179.1 (4)
S2—Zn—S5—C3	-127.47 (10)	C20—C21—C22—C17	-0.4 (8)
S1—Zn—S5—C3	133.86 (10)	C17—P1—C23—C28	73.9 (3)
S4—Zn—S5—C3	0.72 (10)	C5—P1—C23—C28	-166.0 (3)
O1—S3—N1—C1	-65.2 (3)	C11—P1—C23—C28	-43.8 (3)
O2—S3—N1—C1	74.6 (3)	C17—P1—C23—C24	-103.9 (3)
C2—S3—N1—C1	-175.9 (3)	C5—P1—C23—C24	16.1 (3)
O3—S6—N2—C3	70.0 (3)	C11—P1—C23—C24	138.3 (3)
O4—S6—N2—C3	-70.8 (3)	C28—C23—C24—C25	1.0 (6)
C4—S6—N2—C3	-180.0 (3)	P1-C23-C24-C25	178.9 (3)
S3—N1—C1—S2	-175.78 (19)	C23—C24—C25—C26	-0.9 (7)
S3—N1—C1—S1	4.8 (5)	C24—C25—C26—C27	-0.1 (6)
Zn—S2—C1—N1	-177.8 (3)	C25—C26—C27—C28	0.9 (6)
Zn—S2—C1—S1	1.71 (16)	C24—C23—C28—C27	-0.2(5)
Zn—S1—C1—N1	177.7 (3)	P1—C23—C28—C27	-178.1 (3)
Zn—S1—C1—S2	-1.71 (16)	C26—C27—C28—C23	-0.7 (6)
O1—S3—C2—F2	-176.8(3)	C41—P2—C29—C30	129.3 (2)
O2—S3—C2—F2	59.5 (3)	C35—P2—C29—C30	9.2 (3)
N1 - S3 - C2 - F2	-57.3 (3)	C47 - P2 - C29 - C30	-112.9(2)
01 - 83 - C2 - F1	-55.3 (3)	C41 - P2 - C29 - C34	-54.8(3)
02-83-C2-F1	-179.0(3)	C35 - P2 - C29 - C34	-175.0(2)
			- / - / - /

N1—S3—C2—F1	64.2 (3)	C47—P2—C29—C34	63.0 (3)
O1—S3—C2—F3	63.6 (4)	C34—C29—C30—C31	-2.3 (4)
O2—S3—C2—F3	-60.1 (4)	P2-C29-C30-C31	173.6 (2)
N1—S3—C2—F3	-176.9 (3)	C29—C30—C31—C32	1.1 (5)
S6—N2—C3—S5	-0.1 (4)	C30—C31—C32—C33	0.6 (5)
S6—N2—C3—S4	179.99 (16)	C31—C32—C33—C34	-1.2(5)
Zn—S5—C3—N2	179.0 (3)	C32—C33—C34—C29	0.0 (5)
Zn—S5—C3—S4	-1.06 (15)	C30—C29—C34—C33	1.7 (5)
Zn—S4—C3—N2	-179.0 (2)	P2-C29-C34-C33	-174.2 (2)
Zn—S4—C3—S5	1.07 (15)	C41—P2—C35—C36	-10.6 (3)
O3—S6—C4—F4	178.5 (3)	C47—P2—C35—C36	-129.2(2)
O4—S6—C4—F4	-57.0 (3)	C29—P2—C35—C36	110.5 (3)
N2—S6—C4—F4	61.0 (3)	C41—P2—C35—C40	172.0 (2)
O3—S6—C4—F6	57.3 (4)	C47—P2—C35—C40	53.3 (3)
O4—S6—C4—F6	-178.3 (3)	C29—P2—C35—C40	-67.0 (3)
N2—S6—C4—F6	-60.3 (4)	C40—C35—C36—C37	-0.5 (5)
O3—S6—C4—F5	-62.0(4)	P2-C35-C36-C37	-178.0(3)
O4—S6—C4—F5	62.5 (4)	C35—C36—C37—C38	-1.1(5)
N2—S6—C4—F5	-179.5(3)	C36—C37—C38—C39	1.9 (6)
C17—P1—C5—C6	174.8 (4)	C37—C38—C39—C40	-1.1 (6)
C23—P1—C5—C6	55.3 (4)	C38—C39—C40—C35	-0.6(5)
C11—P1—C5—C6	-67.4 (4)	C36—C35—C40—C39	1.3 (5)
C17—P1—C5—C10	-2.4(4)	P2-C35-C40-C39	178.8 (2)
C23—P1—C5—C10	-122.0(3)	C35—P2—C41—C42	102.1 (3)
C11—P1—C5—C10	115.4 (3)	C47—P2—C41—C42	-136.1 (3)
C10—C5—C6—C7	0.8 (8)	C29—P2—C41—C42	-16.8(3)
P1—C5—C6—C7	-176.5 (5)	C35—P2—C41—C46	-78.2(3)
C5—C6—C7—C8	0.9 (10)	C47—P2—C41—C46	43.6 (3)
C6—C7—C8—C9	-2.9(11)	C29—P2—C41—C46	162.9 (3)
C7—C8—C9—C10	3.1 (10)	C46—C41—C42—C43	0.2 (5)
C8—C9—C10—C5	-1.3 (8)	P2-C41-C42-C43	179.9 (3)
C6—C5—C10—C9	-0.7 (7)	C41—C42—C43—C44	1.1 (6)
P1—C5—C10—C9	176.6 (4)	C42—C43—C44—C45	-0.7 (7)
C17—P1—C11—C12	131.2 (3)	C43—C44—C45—C46	-1.1(7)
C5—P1—C11—C12	11.2 (3)	C44—C45—C46—C41	2.5 (6)
C23—P1—C11—C12	-109.4 (3)	C42—C41—C46—C45	-2.0(5)
C17—P1—C11—C16	-45.4 (3)	P2-C41-C46-C45	178.3 (3)
C5—P1—C11—C16	-165.4(3)	C41—P2—C47—C48	-124.1(3)
C23—P1—C11—C16	74.1 (3)	C35—P2—C47—C48	-3.9(3)
C16—C11—C12—C13	0.3 (5)	C29—P2—C47—C48	115.4 (3)
P1—C11—C12—C13	-176.2 (3)	C41—P2—C47—C52	55.2 (3)
C11—C12—C13—C14	-0.3(6)	C_{35} P2 C47 C52	175.4 (3)
C12—C13—C14—C15	-0.4(6)	C_{29} P2 C47 C52	-65.3(3)
C13—C14—C15—C16	1.2 (7)	C52—C47—C48—C49	0.7 (5)
C14-C15-C16-C11	-1.2 (7)	P2-C47-C48-C49	179.9 (3)
C_{12} C_{11} C_{16} C_{15}	0.4 (5)	C47—C48—C49—C50	0.6 (5)
P1-C11-C16-C15	177.1 (3)	C48—C49—C50—C51	-0.9 (6)
$C_5 = P_1 = C_17 = C_{22}^{22}$	-1030(3)	C49 - C50 - C51 - C52	-0.1(6)
0.5 11 0.17 0.22	105.0 (5)	0.17 0.00 0.01 - 0.02	0.1 (0)

supporting information

C23—P1—C17—C22	15.8 (4)	C50—C51—C52—C47	1.4 (6)
C11—P1—C17—C22	136.6 (3)	C48—C47—C52—C51	-1.7 (5)
C5—P1—C17—C18	75.9 (3)	P2-C47-C52-C51	179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9…О1	0.93	2.68	3.424 (4)	138
C31—H31···O4	0.93	2.62	3.470 (4)	153
C33—H33…O2 ⁱ	0.93	2.47	3.283 (4)	145

Symmetry code: (i) x, -y+1/2, z-1/2.