metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{4,4'-Dimethyl-2,2'-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethanylylidene)]diphenolato}nickel(II) monohydrate

Hadi Kargar,^a* Reza Kia,^{b,c} Zahra Sharafi^d and Muhammad Nawaz Tahir^e*

^aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran, ^bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^dDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, and ^eDepartment of Physics, University of Sargodha, Punjab, Pakistan Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

Received 11 December 2011; accepted 16 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.083; data-to-parameter ratio = 20.5.

In the title compound, $[Ni(C_{21}H_{24}N_2O_2)] \cdot H_2O$, both the complex molecule and the water molecule lie on a twofold rotation axis. The Ni^{II} ion is coordinated in a distorted squareplanar geometry by the tetradentate ligand. The dihedral angle between the two symmetry-related benzene rings is 47.12 (8)°. In the crystal, pairs of symmetry-related $O-H \cdots O$ hydrogen bonds form $R_2^2(6)$ ring motifs. In addition, there are weak intermolecular C-H···O hydrogen bonds, and π - π stacking interactions with a centroid-centroid distance of 3.4760 (8) Å.

Related literature

For related structures, see for example: Fun et al. (2008); Kargar et al. (2008, 2011); Rayati et al. (2011); Kia et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

[Ni(C₂₁H₂₄N₂O₂)]·H₂O $M_r = 413.15$ Monoclinic, C2/c a = 13.3333 (4) Å b = 15.9424 (5) Å c = 9.9965 (3) Å $\beta = 104.736 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.794, \ T_{\max} = 0.927$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	125 parameters
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
2557 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

 $V = 2055.01 (11) \text{ Å}^3$

 $0.25 \times 0.12 \times 0.08 \text{ mm}$

17468 measured reflections

2557 independent reflections

2131 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.97 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.040$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $O1W-H1\cdotsO1^{i}$ 0.98 1.92 2.781 (2) 145 $C3-H3A\cdots O1W^{ii}$ 0.93 2.55 3.477 (2) 173

Symmetry codes: (i) -x, y, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5396).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895-o1896.
- Kargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541-m1542.
- Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614. Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.
- Rayati, S., Ghaemi, A. & Notash, B. (2011). Acta Cryst. E67, m448.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m82 [doi:10.1107/S1600536811054262]

{4,4'-Dimethyl-2,2'-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethanylyl-idene)]diphenolato}nickel(II) monohydrate

Hadi Kargar, Reza Kia, Zahra Sharafi and Muhammad Nawaz Tahir

S1. Comment

In continuation of our work on the crystal structures of a Schiff base ligands and complexes (Fun *et al.*, 2008; Kargar *et al.*, 2008,2011; Rayati *et al.*, 2011; Kia *et al.*, 2010), we have determined the X-ray structure of the title compound.

The molecular structure of the title compound is ahown in Fig. 1. The asymmetric unit comprises half of Schiff base complex and half a water molecule. The Ni^{II} ion, the central carbon atom of the diamine segment (C10) and the O atom of water molecule lie on a two-fold rotation axis. The coordination geometry of Ni1 is distorted square-planar formed by the tetradentate ligand. The bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to related structures (Fun *et al.* 2008; Kargar *et al.* 2008; Rayati *et al.*, 2011). The dihedral angle between the two symmetry related benzene rings is 47.12 (8)°. A pair of symmetry related intermolecular O—H…O hydrogen bonds form an $R^2_2(6)$ ring motif (Bernstein *et al.*, 1995). In the crystal, molecules are linked through weak intermolecular C—H…O interactions. The crystal structure is further stabilized by intermolecular π - π interactions [Cg1…Cg1ⁱⁱⁱ = 3.4760 (8)Å; (iii) -x, 1 - y, 1 - z; Cg1 is the centroid of the Ni1/O1/C1/C6/C8/N1 ring].

S2. Experimental

The title compound was synthesized by adding bis(5-methylsalicylaldehyde)-2,2-dimethyl-1,3-propanediimine (2 mmol) to a solution of nickel(II) chloride hexahydrate (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from an ethanol solution of the title compound by slow evaporation of the solvent at room temperature over several days.

S3. Refinement

Hydrogen atoms bonded to C atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model approximation with U_{iso} (H) = 1.2 or 1.5 U_{eq} (C) The unique water H atom was located in a difference Fourier map and then constrained to ride to the parent atom with U_{iso} (H) = 1.5 U_{eq} (O). A rotating group model was used only for the benzene- substituent methyl group.

Figure 1

The molecular structure of the title compound, showing 40% probability displacement ellipsoids. The dashed lines show hydrogen bonds [symmetry code: (A) -x, y, -z+1/2].

Figure 2

A partial packing diagram of the title compound viewed approximately along the *c*-axis showing molecules linked through intermolecular hydrogen bonds (dashed lines). Only the H atoms involved in the interactions are shown.

{4,4'-Dimethyl-2,2'-[(2,2-dimethylpropane-1,3- diyl)bis(nitrilomethanylylidene)]diphenolato}nickel(II) monohydrate

Crystal data	
$[Ni(C_{21}H_{24}N_2O_2)] \cdot H_2O$	F(000) = 872
$M_r = 413.15$	$D_{\rm x} = 1.335 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3245 reflections
a = 13.3333 (4) Å	$\theta = 2.8 - 27.8^{\circ}$
b = 15.9424(5) Å	$\mu=0.97~\mathrm{mm^{-1}}$
c = 9.9965 (3) Å	T = 296 K
$\beta = 104.736 (1)^{\circ}$	Block, red
$V = 2055.01 (11) \text{ Å}^3$	$0.25 \times 0.12 \times 0.08 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEXII CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2005)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.794, T_{\max} = 0.927$
Graphite monochromator	17468 measured reflections
φ and ω scans	2557 independent reflections

2131 reflections with $I > 2\sigma(I)$	$h = -17 \rightarrow 16$
$R_{\rm int}=0.040$	$k = -21 \rightarrow 21$
$\theta_{\rm max} = 28.3^\circ, \theta_{\rm min} = 2.6^\circ$	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.083$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
2557 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0485P)^2]$
125 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.0000	0.489837 (15)	0.2500	0.03589 (11)
0.09186 (9)	0.57316 (6)	0.34800 (11)	0.0457 (3)
0.04523 (10)	0.40475 (8)	0.39178 (12)	0.0414 (3)
0.16634 (12)	0.56212 (9)	0.46203 (15)	0.0401 (3)
0.23779 (14)	0.62692 (10)	0.50786 (17)	0.0497 (4)
0.2346	0.6747	0.4537	0.060*
0.31279 (14)	0.62162 (12)	0.63132 (18)	0.0567 (5)
0.3589	0.6660	0.6581	0.068*
0.32147 (14)	0.55163 (13)	0.71719 (17)	0.0550 (4)
0.25490 (14)	0.48675 (11)	0.67168 (18)	0.0487 (4)
0.2604	0.4390	0.7265	0.058*
0.17758 (13)	0.48878 (9)	0.54427 (17)	0.0410 (3)
0.40114 (17)	0.54821 (18)	0.85526 (19)	0.0817 (7)
0.4556	0.5101	0.8494	0.123*
0.3687	0.5292	0.9252	0.123*
0.4297	0.6031	0.8788	0.123*
0.11388 (13)	0.41566 (10)	0.50691 (15)	0.0431 (4)
0.1230	0.3725	0.5714	0.052*
-0.01669 (14)	0.32780 (10)	0.36982 (16)	0.0488 (4)
-0.0895	0.3426	0.3512	0.059*
0.0006	0.2949	0.4542	0.059*
0.0000	0.27358 (15)	0.2500	0.0564 (7)
	x0.00000.09186 (9)0.04523 (10)0.16634 (12)0.23779 (14)0.23460.31279 (14)0.35890.32147 (14)0.25490 (14)0.26040.17758 (13)0.40114 (17)0.45560.36870.42970.11388 (13)0.1230-0.01669 (14)-0.08950.00060.0000	x y 0.0000 $0.489837 (15)$ $0.09186 (9)$ $0.57316 (6)$ $0.04523 (10)$ $0.40475 (8)$ $0.16634 (12)$ $0.56212 (9)$ $0.23779 (14)$ $0.62692 (10)$ 0.2346 0.6747 $0.31279 (14)$ $0.62162 (12)$ 0.3589 0.6660 $0.32147 (14)$ $0.55163 (13)$ $0.25490 (14)$ $0.48675 (11)$ 0.2604 0.4390 $0.17758 (13)$ $0.48878 (9)$ $0.40114 (17)$ $0.54821 (18)$ 0.4556 0.5101 0.3687 0.5292 0.4297 0.6031 $0.11388 (13)$ $0.41566 (10)$ 0.1230 0.3725 $-0.01669 (14)$ $0.32780 (10)$ -0.0895 0.3426 0.0006 0.2949 0.0000 $0.27358 (15)$	x y z 0.00000.489837 (15)0.25000.09186 (9)0.57316 (6)0.34800 (11)0.04523 (10)0.40475 (8)0.39178 (12)0.16634 (12)0.56212 (9)0.46203 (15)0.23779 (14)0.62692 (10)0.50786 (17)0.23460.67470.45370.31279 (14)0.62162 (12)0.63132 (18)0.35890.66600.65810.32147 (14)0.55163 (13)0.71719 (17)0.25490 (14)0.48675 (11)0.67168 (18)0.26040.43900.72650.17758 (13)0.48878 (9)0.54427 (17)0.40114 (17)0.54821 (18)0.85526 (19)0.45560.51010.84940.36870.52920.92520.42970.60310.87880.11388 (13)0.41566 (10)0.50691 (15)0.12300.37250.5714-0.01669 (14)0.32780 (10)0.36982 (16)-0.08950.34260.35120.00060.29490.45420.00000.27358 (15)0.2500

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.0973 (2)	0.21930 (15)	0.2981 (2)	0.1038 (9)
H11A	0.1569	0.2548	0.3287	0.156*
H11B	0.1057	0.1851	0.2226	0.156*
H11C	0.0903	0.1840	0.3729	0.156*
O1W	0.0000	0.72531 (12)	0.2500	0.0992 (8)
H1	-0.0556	0.6878	0.2007	0.149*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Nil	0.03715 (18)	0.03024 (16)	0.03666 (16)	0.000	0.00274 (11)	0.000
01	0.0462 (7)	0.0353 (6)	0.0472 (6)	-0.0002(5)	-0.0032 (5)	0.0020 (5)
N1	0.0448 (8)	0.0367 (7)	0.0424 (7)	-0.0023 (6)	0.0110 (6)	0.0012 (5)
C1	0.0364 (8)	0.0408 (8)	0.0418 (8)	0.0035 (6)	0.0075 (6)	-0.0040 (6)
C2	0.0470 (10)	0.0449 (9)	0.0540 (9)	-0.0035 (7)	0.0069 (8)	-0.0022 (7)
C3	0.0434 (10)	0.0635 (12)	0.0586 (10)	-0.0101 (8)	0.0047 (8)	-0.0118 (9)
C4	0.0391 (10)	0.0794 (13)	0.0432 (9)	-0.0003 (9)	0.0042 (7)	-0.0047 (9)
C5	0.0428 (10)	0.0604 (11)	0.0413 (8)	0.0055 (8)	0.0076 (7)	0.0051 (7)
C6	0.0373 (9)	0.0449 (9)	0.0390 (8)	0.0040 (7)	0.0065 (7)	-0.0010 (6)
C7	0.0590 (14)	0.121 (2)	0.0537 (11)	-0.0122 (13)	-0.0074 (10)	-0.0005 (12)
C8	0.0472 (10)	0.0411 (8)	0.0408 (8)	0.0029 (7)	0.0109 (7)	0.0055 (6)
C9	0.0603 (11)	0.0394 (9)	0.0494 (9)	-0.0103 (8)	0.0189 (8)	0.0006 (7)
C10	0.0806 (19)	0.0355 (12)	0.0563 (14)	0.000	0.0236 (14)	0.000
C11	0.159 (3)	0.0726 (15)	0.0929 (16)	0.0629 (16)	0.0553 (17)	0.0332 (13)
O1W	0.1069 (18)	0.0426 (11)	0.1201 (18)	0.000	-0.0225 (15)	0.000

Geometric parameters (Å, °)

Ni1—O1	1.901 (1)	С5—Н5А	0.9300
Ni1—O1 ⁱ	1.9010 (10)	C6—C8	1.435 (2)
Ni1—N1 ⁱ	1.9436 (12)	C7—H7A	0.9600
Ni1—N1	1.9436 (12)	С7—Н7В	0.9600
O1—C1	1.3194 (17)	C7—H7C	0.9600
N1—C8	1.2870 (19)	C8—H8A	0.9300
N1—C9	1.4638 (19)	C9—C10	1.539 (2)
C1—C2	1.401 (2)	С9—Н9А	0.9700
C1—C6	1.415 (2)	С9—Н9В	0.9700
C2—C3	1.379 (2)	C10—C11	1.532 (2)
C2—H2A	0.9300	C10-C11 ⁱ	1.532 (2)
C3—C4	1.394 (3)	C10—C9 ⁱ	1.539 (2)
С3—НЗА	0.9300	C11—H11A	0.9600
C4—C5	1.364 (3)	C11—H11B	0.9600
C4—C7	1.513 (2)	C11—H11C	0.9600
C5—C6	1.421 (2)	O1W—H1	0.9818
O1—Ni1—O1 ⁱ	91.34 (6)	С4—С7—Н7А	109.5
O1-Ni1-N1 ⁱ	154.58 (6)	С4—С7—Н7В	109.5
O1 ⁱ —Ni1—N1 ⁱ	94.14 (5)	H7A—C7—H7B	109.5

O1—Ni1—N1	94.14 (5)	C4—C7—H7C	109.5
O1 ⁱ —Ni1—N1	154.58 (6)	H7A—C7—H7C	109.5
N1 ⁱ —Ni1—N1	91.48 (7)	H7B—C7—H7C	109.5
C1—O1—Ni1	126.63 (9)	N1—C8—C6	125.58 (15)
C8—N1—C9	119.54 (13)	N1—C8—H8A	117.2
C8—N1—Ni1	125.16 (11)	C6—C8—H8A	117.2
C9—N1—Ni1	114.64 (10)	N1-C9-C10	113.57 (13)
O1—C1—C2	118.94 (14)	N1—C9—H9A	108.9
O1—C1—C6	123.87 (14)	С10—С9—Н9А	108.9
C2—C1—C6	117.16 (15)	N1—C9—H9B	108.9
C3—C2—C1	121.69 (16)	С10—С9—Н9В	108.9
C3—C2—H2A	119.2	H9A—C9—H9B	107.7
C1—C2—H2A	119.2	C11-C10-C11 ⁱ	111.2 (3)
C2—C3—C4	121.84 (17)	C11—C10—C9 ⁱ	106.43 (11)
С2—С3—НЗА	119.1	C11 ⁱ C10C9 ⁱ	110.61 (11)
С4—С3—Н3А	119.1	C11—C10—C9	110.61 (11)
C5—C4—C3	117.16 (16)	C11 ⁱ —C10—C9	106.43 (11)
C5—C4—C7	121.55 (19)	C9 ⁱ —C10—C9	111.63 (18)
C3—C4—C7	121.28 (19)	C10-C11-H11A	109.5
C4—C5—C6	122.98 (17)	C10-C11-H11B	109.5
C4—C5—H5A	118.5	H11A—C11—H11B	109.5
С6—С5—Н5А	118.5	C10—C11—H11C	109.5
C1—C6—C5	119.02 (15)	H11A—C11—H11C	109.5
C1—C6—C8	123.49 (15)	H11B—C11—H11C	109.5
C5—C6—C8	117.48 (14)		
O1 ⁱ —Ni1—O1—C1	163.48 (15)	C7—C4—C5—C6	178.41 (17)
N1 ⁱ —Ni1—O1—C1	-93.95 (16)	O1—C1—C6—C5	-174.24 (15)
N1—Ni1—O1—C1	8.32 (13)	C2—C1—C6—C5	4.2 (2)
O1—Ni1—N1—C8	1.34 (13)	O1—C1—C6—C8	5.0 (2)
O1 ⁱ —Ni1—N1—C8	-100.61 (16)	C2—C1—C6—C8	-176.58 (15)
N1 ⁱ —Ni1—N1—C8	156.53 (16)	C4—C5—C6—C1	-2.0 (3)
O1—Ni1—N1—C9	171.99 (11)	C4—C5—C6—C8	178.70 (16)
O1 ⁱ —Ni1—N1—C9	70.04 (15)	C9—N1—C8—C6	-177.90 (15)
N1 ⁱ —Ni1—N1—C9	-32.82(8)	Ni1—N1—C8—C6	-7.7 (2)
Ni1—O1—C1—C2	169.47 (11)	C1—C6—C8—N1	5.6 (3)
Ni1—O1—C1—C6	-12.1 (2)	C5—C6—C8—N1	-175.14 (16)
O1—C1—C2—C3	175.28 (15)	C8—N1—C9—C10	-117.17 (16)
C6-C1-C2-C3	-3.2 (2)	Ni1—N1—C9—C10	71.61 (15)
C1—C2—C3—C4	-0.1(3)	N1—C9—C10—C11	82.3 (2)
C2-C3-C4-C5	2.4 (3)	N1—C9—C10—C11 ⁱ	-156.78 (16)
C2—C3—C4—C7	-177.33 (18)	N1—C9—C10—C9 ⁱ	-36.00 (9)
C3—C4—C5—C6	-1.3 (3)		
	× /		

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1…O1 ⁱ	0.98	1.92	2.781 (2)	145
C3—H3 A ···O1 W ⁱⁱ	0.93	2.55	3.477 (2)	173

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) -*x*+1/2, -*y*+3/2, -*z*+1.