metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[6-(1*H*-benzimidazol-2-yl- κN^3)pyridine-2-carboxylato- $\kappa^2 N$,*O*]cobalt(II) dihydrate

Liying Han^a and Dajun Sun^{b*}

^aDepartment of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China, and ^bDepartment of Vascular Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China

Correspondence e-mail: doctorsundj@163.com

Received 4 December 2011; accepted 13 December 2011

Key indicators: single-crystal X-ray study; T = 185 K; mean σ (C–C) = 0.006 Å; R factor = 0.049; wR factor = 0.150; data-to-parameter ratio = 13.7.

In the title compound, $[Co(C_{13}H_8N_3O_2)_2] \cdot 2H_2O$, the Co^{II} atom has a distorted octahedral environment defined by four N atoms and two O atoms from two 6-(1*H*-benzimidazol-2yl)pyridine-2-carboxylate ligands. In the crystal, the complex molecules and uncoordinated water molecules are linked *via* $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming a twodimensional supramolecular structure parallel to (010). $\pi-\pi$ interactions are present between the imidazole, pyridine and benzene rings [centroid–centroid distances = 3.528 (2), 3.592 (2), 3.680 (2) and 3.732 (3) Å].

Related literature

For background to supramolecular architectures, see: Chun *et al.* (2005); Tranchemontagne *et al.* (2009). For related complexes with multidentate ligands, see: Eubank *et al.* (2011); Wang *et al.* (2009).

Experimental

Crystal data [Co(C₁₃H₈N₃O₂)₂]·2H₂O

 $M_r = 571.41$

Monoclinic, $P2_1/c$ a = 9.8602 (5) Å b = 20.3681 (11) Å c = 13.1069 (7) Å $\beta = 111.453$ (1)° V = 2449.9 (2) Å³

Data collection

Bruker APEXII CCD	13443 measured reflections
diffractometer	4827 independent reflections
Absorption correction: multi-scan	3864 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.026$
$T_{\min} = 0.839, \ T_{\max} = 0.915$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 6 restraints $wR(F^2) = 0.150$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.96$ e Å⁻³4827 reflections $\Delta \rho_{min} = -0.59$ e Å⁻³352 parameters $\Delta \rho_{min} = -0.59$ e Å⁻³

Z = 4

Mo $K\alpha$ radiation

 $0.24 \times 0.15 \times 0.12 \text{ mm}$

 $\mu = 0.76 \text{ mm}^{-1}$

T = 185 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3\cdots O3^{i}$	0.88	2.21	2.917 (4)	137
$N6-H6\cdots O1^{ii}$	0.88	2.30	2.971 (4)	133
$O1W-H1A\cdots O3^{iii}$	0.87	2.26	2.923 (4)	134
$O1W-H1B\cdots O4$	0.86	1.87	2.727 (6)	170
$O2W-H2A\cdots O2$	0.89	2.21	2.962 (6)	142
$O2W - H2B \cdots O1W^{iii}$	0.91	2.05	2.867 (8)	149
Symmetry codes: (i) -x, -y + 1, -z + 2.	-x + 1, -y +	1, -z + 2;	(ii) $-x, -y+1,$	-z + 1; (iii)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank Jilin University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2495).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chun, H., Dybtsev, D., Kim, H. & Kim, K. (2005). *Chem. Eur. J.* **11**, 3521–3529. Eubank, J. F., Wojtas, L., Hight, M. R., Bousquet, T. Ch., Kravtsov, V. &
- Eddaoudi, M. (2011). J. Am. Chem. Soc. 133, 17532–17535. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,

R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257–1283.
- Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.

supporting information

Acta Cryst. (2012). E68, m74 [doi:10.1107/S1600536811053700]

Bis[6-(1*H*-benzimidazol-2-yl- κN^3)pyridine-2-carboxylato- $\kappa^2 N$,*O*]cobalt(II) dihydrate

Liying Han and Dajun Sun

S1. Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Chun *et al.*, 2005; Tranchemontagne *et al.*, 2009). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and bridging building blocks, as well as on the influence of weaker non-covalent interactions, such as hydrogen bonds and π - π stacking interactions. Multidentate ligands containing rich coordination sites (N and/or O donors) are often employed to produce polymeric networks with structural diversity owing to their various coordination modes (Eubank *et al.*, 2011; Wang *et al.*, 2009). Recently, we obtained the title mononuclear complex by the reaction of cobalt chloride with 6-(1*H*-benzimidazol-2-yl)pyridine-2-carboxylic acid using hydrothermal methods and its crystal structure is reported here.

In the title compound, the Co^{II} atom has a distorted octahedral environment with four N atoms and two carboxylate O atoms from two 6-(1*H*-benzimidazol-2-yl)pyridine-2-carboxylate ligands (Fig. 1). The bond lengths and angles around the Co atom are normal. The complex molecules and uncoordinated water molecules are connected into a two-dimensional structure by extensive N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1). π - π interactions between the imidazole, pyridine and benzene rings are present [centroid–centroid distances = 3.528 (2), 3.592 (2), 3.680 (2) and 3.732 (3) Å].

S2. Experimental

The synthesis was performed under hydrothermal conditions. A mixture of $CoCl_2.6H_2O$ (0.2 mmol, 0.050 g), 6-(1*H*-benzimidazol-2-yl)pyridine-2-carboxylic acid (0.4 mmol, 0.098 g), NaOH (0.4 mmol, 0.016 g) and H₂O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 433 K in 2 h and a constant temperature was maintained at 433 K for 72 h. After the mixture was cooled to 298 K, pink crystals of the title compound were recovered from the reaction.

S3. Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and N—H = 0.88 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$. H atoms of the water molecules were located from a difference Fourier map and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

View of the two-dimensional structure of the title compound built by hydrogen bonds (dashed lines).

Bis[6-(1*H*-benzimidazol-2-yl- κN^3)pyridine-2-carboxylato- $\kappa^2 N$,O]cobalt(II) dihydrate

Crystal data

 $[Co(C_{13}H_8N_3O_2)_2] \cdot 2H_2O$ $M_r = 571.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8602 (5) Å b = 20.3681 (11) Å c = 13.1069 (7) Å $\beta = 111.453$ (1)° V = 2449.9 (2) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.839, T_{\max} = 0.915$ F(000) = 1172 $D_x = 1.549 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4827 reflections $\theta = 1.0-26.0^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ T = 185 KBlock, pink $0.24 \times 0.15 \times 0.12 \text{ mm}$

13443 measured reflections 4827 independent reflections 3864 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 26.1^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -12 \rightarrow 10$ $k = -23 \rightarrow 25$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.150$	neighbouring sites
S = 1.06	H-atom parameters constrained
4827 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0767P)^2 + 2.8721P]$
352 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.59 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1555 (4)	0.35179 (16)	0.7579 (3)	0.0386 (8)
C2	0.3187 (4)	0.35664 (15)	0.8211 (3)	0.0321 (7)
C3	0.4130 (4)	0.30476 (16)	0.8634 (3)	0.0384 (8)
H3A	0.3779	0.2609	0.8558	0.046*
C4	0.5581 (4)	0.31795 (16)	0.9164 (3)	0.0404 (8)
H4A	0.6245	0.2829	0.9462	0.048*
C5	0.6094 (4)	0.38247 (16)	0.9270 (3)	0.0356 (7)
H5A	0.7100	0.3920	0.9631	0.043*
C6	0.5091 (3)	0.43192 (15)	0.8833 (2)	0.0290 (6)
C7	0.5339 (3)	0.50287 (14)	0.8836 (2)	0.0278 (6)
C8	0.6304 (3)	0.60145 (15)	0.9040 (3)	0.0308 (7)
C9	0.7184 (4)	0.65706 (16)	0.9248 (3)	0.0393 (8)
H9A	0.8210	0.6545	0.9619	0.047*
C10	0.6487 (4)	0.71598 (17)	0.8885 (3)	0.0420 (8)
H10A	0.7052	0.7550	0.9002	0.050*
C11	0.4972 (4)	0.72036 (16)	0.8348 (3)	0.0388 (8)
H11A	0.4534	0.7621	0.8127	0.047*
C12	0.4113 (4)	0.66545 (15)	0.8138 (3)	0.0337 (7)
H12A	0.3087	0.6684	0.7771	0.040*
C13	0.4794 (3)	0.60507 (14)	0.8482 (3)	0.0287 (6)
C14	0.0579 (4)	0.57477 (19)	0.8491 (4)	0.0512 (10)
C15	0.0334 (4)	0.60199 (19)	0.7370 (3)	0.0502 (10)
C16	-0.0381 (5)	0.6601 (2)	0.6968 (4)	0.0728 (16)
H16A	-0.0828	0.6848	0.7375	0.087*
C17	-0.0424 (6)	0.6812 (2)	0.5950 (4)	0.088 (2)

H17A	-0.0897	0.7214	0.5657	0.105*
C18	0.0215 (6)	0.6445 (2)	0.5353 (4)	0.0763 (16)
H18A	0.0188	0.6586	0.4655	0.092*
C19	0.0896 (4)	0.58621 (18)	0.5817 (3)	0.0498 (10)
C20	0.1695 (4)	0.54082 (17)	0.5376 (3)	0.0446 (9)
C21	0.2695 (5)	0.49105 (19)	0.4359 (3)	0.0518 (10)
C22	0.3211 (6)	0.4676 (3)	0.3561 (4)	0.0721 (14)
H22A	0.2964	0.4887	0.2870	0.087*
C23	0.4077 (6)	0.4137 (3)	0.3816 (4)	0.0718 (14)
H23A	0.4428	0.3967	0.3283	0.086*
C24	0.4476 (5)	0.3820 (2)	0.4829 (4)	0.0620 (11)
H24A	0.5105	0.3450	0.4976	0.074*
C25	0.3962 (4)	0.40391 (19)	0.5622 (3)	0.0486 (9)
H25A	0.4216	0.3824	0.6310	0.058*
C26	0.3061 (4)	0.45864 (17)	0.5370 (3)	0.0409 (8)
N1	0.3673 (3)	0.41784 (12)	0.8317 (2)	0.0284 (5)
N2	0.4214 (3)	0.54241 (12)	0.8366 (2)	0.0287 (6)
N3	0.6612 (3)	0.53553 (13)	0.9257 (2)	0.0334 (6)
H3	0.7476	0.5182	0.9605	0.040*
N4	0.0940 (3)	0.56671 (14)	0.6808 (3)	0.0421 (7)
N5	0.2413 (3)	0.49147 (13)	0.5994 (2)	0.0363 (6)
N6	0.1837 (4)	0.54260 (16)	0.4400 (3)	0.0599 (10)
H6	0.1447	0.5718	0.3879	0.072*
01	0.0911 (2)	0.40631 (11)	0.7254 (2)	0.0416 (6)
O2	0.0977 (3)	0.29740 (13)	0.7412 (3)	0.0601 (8)
O1W	0.1067 (4)	0.5642 (2)	1.1243 (4)	0.1120 (16)
H1A	0.0385	0.5579	1.1501	0.168*
H1B	0.0679	0.5744	1.0559	0.168*
O2W	-0.2043 (5)	0.3346 (3)	0.7130 (6)	0.179 (3)
H2A	-0.1389	0.3089	0.7008	0.268*
H2B	-0.1663	0.3533	0.7805	0.268*
O3	0.1308 (3)	0.52097 (12)	0.8735 (2)	0.0477 (6)
O4	0.0139 (3)	0.60542 (18)	0.9118 (3)	0.0748 (10)
Col	0.22295 (4)	0.49008 (2)	0.75644 (4)	0.03024 (16)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0422 (19)	0.0317 (18)	0.0419 (19)	-0.0054 (15)	0.0154 (16)	0.0014 (14)
C2	0.0403 (18)	0.0260 (16)	0.0333 (16)	-0.0007 (13)	0.0174 (14)	0.0001 (12)
C3	0.051 (2)	0.0225 (16)	0.0437 (19)	0.0005 (14)	0.0198 (16)	0.0011 (13)
C4	0.048 (2)	0.0294 (17)	0.0440 (19)	0.0130 (15)	0.0165 (16)	0.0032 (14)
C5	0.0355 (17)	0.0300 (17)	0.0404 (18)	0.0058 (13)	0.0128 (14)	-0.0023 (14)
C6	0.0319 (16)	0.0270 (16)	0.0303 (16)	0.0031 (12)	0.0140 (13)	-0.0006 (12)
C7	0.0294 (16)	0.0278 (15)	0.0289 (16)	0.0022 (12)	0.0140 (13)	-0.0021 (12)
C8	0.0311 (16)	0.0282 (16)	0.0358 (17)	0.0018 (12)	0.0155 (13)	-0.0029 (13)
C9	0.0330 (17)	0.0362 (18)	0.050(2)	-0.0053 (14)	0.0168 (16)	-0.0043 (15)
C10	0.044 (2)	0.0309 (18)	0.054 (2)	-0.0087 (15)	0.0213 (17)	-0.0022 (15)

C11	0.0444 (19)	0.0281 (17)	0.045 (2)	0.0003 (14)	0.0172 (16)	0.0027 (14)
C12	0.0337 (17)	0.0282 (16)	0.0384 (18)	0.0024 (13)	0.0122 (14)	0.0026 (13)
C13	0.0317 (16)	0.0262 (15)	0.0330 (16)	-0.0021 (12)	0.0176 (13)	-0.0032 (12)
C14	0.0300 (18)	0.049 (2)	0.073 (3)	0.0037 (16)	0.0162 (18)	-0.020 (2)
C15	0.0327 (19)	0.046 (2)	0.056 (2)	0.0075 (16)	-0.0028 (16)	-0.0218 (18)
C16	0.058 (3)	0.059 (3)	0.068 (3)	0.031 (2)	-0.016 (2)	-0.027 (2)
C17	0.095 (4)	0.052 (3)	0.068 (3)	0.041 (3)	-0.027 (3)	-0.019 (2)
C18	0.098 (4)	0.042 (2)	0.049 (2)	0.020 (2)	-0.020(2)	-0.0059 (19)
C19	0.054 (2)	0.0320 (18)	0.043 (2)	0.0024 (16)	-0.0060 (17)	-0.0085 (15)
C20	0.054 (2)	0.0291 (18)	0.0378 (19)	-0.0060 (16)	0.0019 (16)	-0.0007 (14)
C21	0.069 (3)	0.045 (2)	0.042 (2)	-0.0137 (19)	0.020 (2)	-0.0004 (17)
C22	0.110 (4)	0.069 (3)	0.049 (3)	-0.016 (3)	0.044 (3)	-0.001 (2)
C23	0.093 (4)	0.080 (3)	0.063 (3)	-0.011 (3)	0.054 (3)	-0.008 (3)
C24	0.070 (3)	0.058 (3)	0.072 (3)	-0.001 (2)	0.042 (2)	-0.013 (2)
C25	0.058 (2)	0.047 (2)	0.051 (2)	0.0019 (18)	0.0310 (19)	-0.0018 (17)
C26	0.048 (2)	0.0347 (18)	0.044 (2)	-0.0115 (15)	0.0210 (16)	-0.0069 (15)
N1	0.0339 (14)	0.0228 (12)	0.0306 (13)	0.0019 (10)	0.0143 (11)	0.0002 (10)
N2	0.0276 (13)	0.0253 (13)	0.0342 (14)	0.0013 (10)	0.0124 (11)	-0.0012 (10)
N3	0.0255 (13)	0.0306 (14)	0.0428 (16)	0.0031 (11)	0.0109 (12)	-0.0021 (12)
N4	0.0343 (15)	0.0312 (15)	0.0485 (18)	0.0017 (12)	0.0004 (13)	-0.0095 (13)
N5	0.0421 (16)	0.0287 (14)	0.0378 (16)	-0.0047 (12)	0.0141 (13)	-0.0024 (11)
N6	0.093 (3)	0.0400 (19)	0.0360 (18)	-0.0024 (18)	0.0105 (18)	0.0061 (14)
01	0.0357 (13)	0.0314 (12)	0.0534 (15)	-0.0017 (10)	0.0111 (11)	0.0030 (11)
O2	0.0529 (17)	0.0332 (14)	0.082 (2)	-0.0138 (12)	0.0099 (15)	0.0031 (13)
O1W	0.063 (2)	0.130 (3)	0.157 (4)	0.002 (2)	0.056 (2)	0.065 (3)
O2W	0.064 (3)	0.174 (6)	0.278 (8)	-0.023 (3)	0.038 (4)	-0.033 (5)
03	0.0461 (15)	0.0418 (14)	0.0653 (17)	-0.0004 (11)	0.0321 (13)	-0.0061 (12)
04	0.0603 (19)	0.086 (2)	0.082 (2)	0.0234 (17)	0.0312 (17)	-0.0224 (18)
Col	0.0299 (3)	0.0230 (2)	0.0377 (3)	0.00136 (16)	0.01228 (19)	-0.00077 (17)

Geometric parameters (Å, °)

C1—O2	1.228 (4)	C16—H16A	0.9500
C101	1.273 (4)	C17—C18	1.389 (8)
C1—C2	1.520 (5)	C17—H17A	0.9500
C2—N1	1.324 (4)	C18—C19	1.390 (5)
С2—С3	1.383 (5)	C18—H18A	0.9500
С3—С4	1.369 (5)	C19—N4	1.344 (5)
С3—НЗА	0.9500	C19—C20	1.463 (6)
C4—C5	1.396 (5)	C20—N5	1.322 (4)
C4—H4A	0.9500	C20—N6	1.337 (5)
С5—С6	1.381 (4)	C21—N6	1.362 (6)
C5—H5A	0.9500	C21—C22	1.403 (6)
C6—N1	1.343 (4)	C21—C26	1.404 (5)
С6—С7	1.466 (4)	C22—C23	1.356 (7)
C7—N2	1.326 (4)	C22—H22A	0.9500
C7—N3	1.347 (4)	C23—C24	1.398 (7)
C8—N3	1.383 (4)	C23—H23A	0.9500

C8—C9	1.392 (4)	C24—C25	1.386 (5)
C8—C13	1.400 (4)	C24—H24A	0.9500
C9—C10	1.379 (5)	C25—C26	1.388 (5)
С9—Н9А	0.9500	С25—Н25А	0.9500
C10—C11	1.402 (5)	C26—N5	1.381 (4)
C10—H10A	0.9500	N1—Co1	2.034 (2)
C11—C12	1.369 (5)	N2—Co1	2.137 (3)
C11—H11A	0.9500	N3—H3	0.8800
C12—C13	1.395 (4)	N4—Co1	2.028 (3)
C12—H12A	0.9500	N5—Co1	2.132 (3)
C13—N2	1.384 (4)	N6—H6	0.8800
C14—O4	1.231 (5)	O1—Co1	2.093 (2)
C14—O3	1.285 (5)	O1W—H1A	0.8661
C14—C15	1.506 (6)	O1W—H1B	0.8622
C15—N4	1.318 (5)	O2W—H2A	0.8899
C15—C16	1 380 (5)	O2W—H2B	0.9083
C16 - C17	1 388 (8)	O_3 —Col	2144(3)
	1.500 (0)	05 001	2.144 (3)
02—C1—O1	125.8 (3)	N5-C20-C19	118.9 (3)
O2—C1—C2	119.0 (3)	N6—C20—C19	128.3 (3)
01-C1-C2	115.1 (3)	N6—C21—C22	133.8 (4)
N1—C2—C3	120.9 (3)	N6—C21—C26	105.9 (3)
N1—C2—C1	112.9 (3)	C22—C21—C26	120.3 (4)
C3—C2—C1	126.3 (3)	C23—C22—C21	117.4 (4)
C4—C3—C2	118.6 (3)	C23—C22—H22A	121.3
С4—С3—НЗА	120.7	C21—C22—H22A	121.3
C2—C3—H3A	120.7	C22—C23—C24	122.7 (4)
$C_{3}-C_{4}-C_{5}$	120.5 (3)	C22—C23—H23A	118.6
C3—C4—H4A	119.7	C24—C23—H23A	118.6
C5-C4-H4A	119.7	C_{25} C_{24} C_{23}	120 7 (4)
C6-C5-C4	117.8 (3)	C25—C24—H24A	119.6
C6—C5—H5A	121.1	C23—C24—H24A	119.6
C4—C5—H5A	121.1	C_{24} C_{25} C_{26} C_{26}	117.2 (4)
N1-C6-C5	120.6 (3)	C_{24} C_{25} H_{25A}	121.4
N1-C6-C7	110.8(3)	$C_{26} = C_{25} = H_{25A}$	121.1
C_{5} C_{6} C_{7}	128 6 (3)	N5-C26-C25	129.9 (3)
N2-C7-N3	112.7(3)	N5-C26-C21	1085(3)
$N_{2} - C_{7} - C_{6}$	1191(3)	C_{25} C_{26} C_{21}	121.6(4)
N_{3} C7 C6	128 2 (3)	$C_2 = N_1 = C_6$	121.6(3)
N3 - C8 - C9	1325(3)	$C_2 = N_1 = C_0 I$	121.0(3) 1179(2)
$N_3 - C_8 - C_{13}$	105.7(3)	C6-N1-Co1	120.3(2)
C_{9} C_{8} C_{13}	105.7(3) 121.8(3)	$C7_{-N2}^{-C13}$	120.5(2) 105 5(3)
$C_{10} - C_{9} - C_{8}$	121.0(3) 1164(3)	C7 - N2 - Co1	103.3(3) 112.7(2)
$C_{10} - C_{9} - H_{9A}$	121.8	$C_1^{-112} = C_0^{-112}$	141 4 (2)
C8 - C9 - H0A	121.0	$C_{13} - N_{2} - C_{01}$	1071(2)
$C_0 = C_1 = C_1 = C_1$	121.0 1223 (3)	C7 N3 H3	126.5
$C_{0} = C_{10} = C_{11}$	122.3 (3)	$C_{1} = 113 = 113$	120.5
$C_{11} = C_{10} = H_{10A}$	110.7	$C_{0} = N_{0} = M_{0}$	120.3 121.2(2)
Сп-Ст0-пт0А	110.9	U13—1N4—U19	121.2(3)

C12—C11—C10	121.1 (3)	C15—N4—Co1	118.5 (3)
C12—C11—H11A	119.5	C19—N4—Co1	119.5 (2)
C10-C11-H11A	119.5	C20—N5—C26	105.4 (3)
C11—C12—C13	117.8 (3)	C20—N5—Co1	112.7 (2)
C11—C12—H12A	121.1	C26—N5—Co1	141.9 (2)
C13—C12—H12A	121.1	C20—N6—C21	107.5 (3)
N2-C13-C12	130.3 (3)	C20—N6—H6	126.2
N2—C13—C8	109.1 (3)	C21—N6—H6	126.2
C12—C13—C8	120.6 (3)	C1	116.6 (2)
O4—C14—O3	124.6 (4)	H1A—O1W—H1B	109.2
O4—C14—C15	119.7 (4)	H2A—O2W—H2B	110.8
O3—C14—C15	115.6 (3)	C14—O3—Co1	114.7 (3)
N4—C15—C16	121.9 (4)	N4—Co1—N1	174.98 (11)
N4—C15—C14	113.6 (3)	N4—Co1—O1	107.37 (10)
C16—C15—C14	124.4 (4)	N1—Co1—O1	77.25 (10)
C15—C16—C17	117.6 (4)	N4—Co1—N5	77.12 (12)
C15—C16—H16A	121.2	N1—Co1—N5	100.74 (10)
C17—C16—H16A	121.2	O1—Co1—N5	95.12 (10)
C16—C17—C18	121.0 (4)	N4—Co1—N2	98.86 (10)
C16—C17—H17A	119.5	N1—Co1—N2	76.70 (10)
C18—C17—H17A	119.5	O1—Co1—N2	153.43 (10)
C17—C18—C19	117.4 (5)	N5—Co1—N2	94.71 (10)
C17—C18—H18A	121.3	N4—Co1—O3	76.70 (12)
C19—C18—H18A	121.3	N1—Co1—O3	105.66 (10)
N4—C19—C18	121.0 (4)	O1—Co1—O3	89.01 (10)
N4—C19—C20	111.3 (3)	N5—Co1—O3	153.54 (11)
C18—C19—C20	127.6 (4)	N2—Co1—O3	93.05 (10)
N5—C20—N6	112.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N3—H3···O3 ⁱ	0.88	2.21	2.917 (4)	137	
N6—H6…O1 ⁱⁱ	0.88	2.30	2.971 (4)	133	
O1 <i>W</i> —H1 <i>A</i> ···O3 ⁱⁱⁱ	0.87	2.26	2.923 (4)	134	
O1 <i>W</i> —H1 <i>B</i> ···O4	0.86	1.87	2.727 (6)	170	
O2 <i>W</i> —H2 <i>A</i> ···O2	0.89	2.21	2.962 (6)	142	
O2W— $H2B$ ···O1 W ⁱⁱⁱ	0.91	2.05	2.867 (8)	149	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+2.