Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[bis(*u*-2-formyl-6-methoxyphenolato-1: $2\kappa^4O^1, O^6:O^1, O^2$)copper(II)sodium]- μ -tetrafluoridoborate-1:1' $\kappa^2 F:F'$]

Yu Yang, Po Gao, Jing-Lin Yang, Hai-Ge Hou and Ting Gao*

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: gaoting1218@yahoo.com.cn

Received 16 November 2011; accepted 1 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.061; wR factor = 0.143; data-to-parameter ratio = 14.4.

In the title heterodinuclear complex, $[CuNa(BF_4)(C_8H_7O_3)_2]_n$, the Cu^{II} ion is four-coordinated by four O atoms of two 2formyl-6-methoxyphenolate ligands, giving rise to a squareplanar geometry. The Na⁺ ion is six-coordinated by four O atoms from the two ligands and two F atoms of two tetrafluoridoborate anions. The tetrafluoridoborate anion links the Na⁺ ions, forming a one-dimensional structure along [001]. Three F atoms of the tetrafluoridoborate anion are disordered over two sets of sites, with an occupancy ratio of 0.790 (11):0.210 (11).

Related literature

For related heterodinuclear complexes, see: Gao et al. (2011); Kajiwara et al. (2008).

V = 1843.7 (7) Å³

Mo $K\alpha$ radiation $\mu = 1.28 \text{ mm}^-$

 $0.21 \times 0.18 \times 0.16 \; \mathrm{mm}$

17729 measured reflections

4201 independent reflections

2278 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.100$

Experimental

Crystal data

$CuNa(BF_4)(C_8H_7O_3)_2$
$M_r = 475.62$
Monoclinic, $P2_1/c$
a = 9.932 (2) Å
o = 19.349 (4) Å
r = 9.940 (2) Å
$\beta = 105.16 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.779, \ \tilde{T}_{\max} = 0.820$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	30 restraints
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.50 \text{ e} \text{ Å}^{-3}$
4201 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$
292 parameters	

Table 1 Selected bond lengths (Å).

Na1-O2	2.377 (3)		
Na1-O1	2.615 (3)	Na1-F4 ⁱ	2.243 (4)
Cu1-O6	1.936 (3)	Na1-F3'	2.344 (17)
Cu1-O5	1.889 (3)	Na1-F1	2.215 (7)
Cu1-O3	1.929 (3)	Na1-O5	2.370 (3)
Cu1-O2	1.888 (3)	Na1-O4	2.614 (4)

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors gratefully acknowledge financial support from Heilongjiang Province (11551334) and the Students Innovation Programme of Heilongjiang University (CX11073).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2490).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Gao, P., Hou, H.-G., Gao, T., Yang, J.-L. & Yang, Y. (2011). Acta Cryst. E67, m1522

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kajiwara, T., Nakano, M., Takaishi, S. & Yamashita, M. (2008). Inorg. Chem. 47. 8604-8606.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m37 [doi:10.1107/S1600536811051713]

catena-Poly[[bis(μ -2-formyl-6-methoxyphenolato-1:2 $\kappa^4 O^1, O^6: O^1, O^2$)copper(II)sodium]- μ tetrafluoridoborate-1:1' $\kappa^2 F: F'$]

Yu Yang, Po Gao, Jing-Lin Yang, Hai-Ge Hou and Ting Gao

S1. Comment

Orthovanillin is a commercial ligand that can yeild heterodinuclear 3d-4f complexes with two different coordination sites; 3d ions have a marked affinity for the inner O_2O_2 site, whereas 4f ions prefer the larger outer O_2O_2 coordination site (Kajiwara *et al.*, 2008). Recently, we were interested in the nature of the products obtained by reacting a 3d complex with alkali metal ions (Gao *et al.*, 2011). In this paper we reacted a Cu complex with sodium tetrafluoridoborate to yield a heterodinuclear complex. As shown in Fig. 1, the Cu^{II} ion is four-coordinated by two aldehyde O atoms and two phenolate O atoms from two orthovanillin ligands (Table 1). The Cu^{II} ion is inserted to inner cavity in a square-planar geometry. The Na⁺ ion is ligated by two phenolate O atoms, two methoxyl O atoms and two F atoms from two tetrafluoridoborate anions. The Cu^{II} and Na⁺ ions are bridged by the phenolate O atoms.

S2. Experimental

To a solution of *o*-vanillin (0.046 g, 0.20 mmol) in dichloromethane (5 ml) was added to a solution of copper(II) acetate monohydrate (0.040 g, 0.20 mmol) and sodium tetrafluoridoborate (0.034 g, 0.20 mmol) in ethanol (5 ml). The mixture was stirred, heated under reflux (30 min) and then allowed to cool to room temperature (yield: 70%). The crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the solution for one week. Analysis, calculated for $C_{16}H_{14}BCuF_4NaO_6$: C 40.40, H 2.97%; found: C 40.38, H 2.98%.

S3. Refinement

Three F atoms were disordered each in two positions with an occupancy factors of 0.790 (11) for F1, F2, F3 and 0.210 (11) for F1', F2', F3'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic and aldehyde) and 0.96 (methyl) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing the 30% probability displacement ellipsoids. [Symmetry code: (i) x, 3/2-y, 1/2+z.]

catena-Poly[[bis(μ -2-formyl-6-methoxyphenolato- 1:2 κ^4O^1 , O^6 : O^1 , O^2)copper(II)sodium]- μ -tetrafluoridoborate-1:1' κ^2F :F']

Crystal data
$[CuNa(BF_4)(C_8H_7O_3)_2]$
$M_r = 475.62$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 9.932 (2) Å
<i>b</i> = 19.349 (4) Å
c = 9.940(2) Å
$\beta = 105.16 (3)^{\circ}$
V = 1843.7 (7) Å ³
Z=4

F(000) = 956 $D_x = 1.714 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9827 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 1.28 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.21 \times 0.18 \times 0.16 \text{ mm}$ Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.779, T_{max} = 0.820$ <i>Refinement</i>	17729 measured reflections 4201 independent reflections 2278 reflections with $I > 2\sigma(I)$ $R_{int} = 0.100$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -25 \rightarrow 25$ $l = -11 \rightarrow 12$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.143$	neighbouring sites
S = 1.04	H-atom parameters constrained
4201 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2]$
292 parameters	where $P = (F_o^2 + 2F_c^2)/3$
30 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.50$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.34$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1′	0.821 (3)	0.8431 (15)	0.453 (4)	0.135 (10)	0.210 (11)
F2′	0.979 (4)	0.8027 (19)	0.428 (4)	0.174 (14)	0.210 (11)
F3′	0.874 (2)	0.7798 (9)	0.6030 (15)	0.075 (6)	0.210 (11)
F1	0.7789 (9)	0.8066 (5)	0.5476 (9)	0.144 (3)	0.790 (11)
F2	0.8679 (9)	0.8364 (4)	0.3784 (7)	0.132 (3)	0.790 (11)
F3	0.9995 (6)	0.7795 (3)	0.5612 (7)	0.131 (3)	0.790 (11)
F4	0.8288 (4)	0.72587 (18)	0.4087 (4)	0.1037 (13)	
B1	0.8662 (8)	0.7866 (3)	0.4740 (7)	0.0628 (17)	
C1	1.1275 (4)	0.9403 (3)	0.8798 (5)	0.0456 (11)	
C2	1.2649 (5)	0.9573 (3)	0.9383 (5)	0.0550 (13)	
H2	1.3310	0.9224	0.9656	0.066*	
C3	1.3060 (5)	1.0264 (3)	0.9568 (5)	0.0615 (14)	
Н3	1.3991	1.0372	0.9971	0.074*	
C4	1.2118 (5)	1.0780 (3)	0.9166 (5)	0.0549 (13)	
H4	1.2412	1.1238	0.9266	0.066*	
C5	1.0682 (4)	1.0625 (2)	0.8591 (4)	0.0427 (11)	
C6	1.0246 (4)	0.9926 (2)	0.8378 (4)	0.0402 (10)	
C7	0.9744 (5)	1.1182 (3)	0.8252 (4)	0.0503 (12)	
H7	1.0138	1.1621	0.8362	0.060*	
C8	1.1712 (5)	0.8188 (3)	0.8887 (6)	0.0687 (15)	
H8A	1.2427	0.8250	0.8409	0.103*	
H8B	1.1231	0.7761	0.8600	0.103*	
H8C	1.2127	0.8178	0.9875	0.103*	
C9	0.4449 (5)	0.8729 (3)	0.6389 (5)	0.0559 (13)	
C10	0.3042 (5)	0.8629 (3)	0.5859 (5)	0.0650 (15)	

H10	0.2700	0.8181	0.5687	0.078*
C11	0.2110 (5)	0.9186 (3)	0.5569 (5)	0.0659 (16)
H11	0.1160	0.9107	0.5212	0.079*
C12	0.2593 (5)	0.9832 (3)	0.5809 (5)	0.0621 (15)
H12	0.1971	1.0201	0.5627	0.075*
C13	0.4038 (5)	0.9963 (3)	0.6338 (4)	0.0477 (12)
C14	0.4998 (4)	0.9407 (2)	0.6613 (4)	0.0435 (11)
C15	0.4493 (5)	1.0659 (3)	0.6616 (5)	0.0598 (14)
H15	0.3793	1.0992	0.6435	0.072*
C16	0.5011 (7)	0.7525 (3)	0.6450 (9)	0.120 (3)
H16A	0.4328	0.7411	0.6941	0.180*
H16B	0.5804	0.7225	0.6753	0.180*
H16C	0.4614	0.7465	0.5467	0.180*
Cu1	0.73679 (5)	1.03129 (3)	0.74231 (6)	0.0460 (2)
Na1	0.80631 (19)	0.85912 (9)	0.75096 (19)	0.0555 (5)
O1	1.0749 (3)	0.87466 (17)	0.8560 (3)	0.0542 (8)
O2	0.8957 (3)	0.97361 (15)	0.7830 (3)	0.0468 (8)
O3	0.8430 (3)	1.11575 (16)	0.7817 (3)	0.0538 (8)
O4	0.5441 (3)	0.82251 (18)	0.6728 (4)	0.0732 (11)
O5	0.6356 (3)	0.94771 (15)	0.7049 (3)	0.0482 (8)
O6	0.5707 (3)	1.08808 (17)	0.7071 (3)	0.0589 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1′	0.144 (13)	0.108 (12)	0.148 (14)	0.046 (9)	0.031 (9)	0.023 (9)
F2′	0.165 (16)	0.181 (17)	0.184 (17)	-0.004 (10)	0.061 (10)	-0.001 (10)
F3′	0.108 (11)	0.074 (9)	0.043 (7)	0.021 (8)	0.021 (7)	-0.014 (6)
F1	0.160 (6)	0.160 (6)	0.149 (6)	-0.009 (5)	0.106 (5)	-0.052 (5)
F2	0.175 (6)	0.118 (5)	0.116 (4)	0.009 (4)	0.058 (4)	0.059 (4)
F3	0.110 (5)	0.084 (4)	0.151 (6)	-0.006 (3)	-0.051 (4)	0.006 (3)
F4	0.133 (3)	0.070 (3)	0.095 (3)	-0.002 (2)	0.008 (2)	-0.034 (2)
B1	0.083 (4)	0.038 (3)	0.068 (4)	0.008 (3)	0.020 (4)	0.009 (3)
C1	0.044 (2)	0.049 (3)	0.044 (2)	0.003 (2)	0.010 (2)	0.006 (2)
C2	0.047 (3)	0.063 (4)	0.053 (3)	0.006 (2)	0.010 (2)	0.003 (3)
C3	0.041 (2)	0.082 (4)	0.061 (3)	-0.009 (3)	0.014 (2)	-0.006 (3)
C4	0.050 (3)	0.063 (4)	0.052 (3)	-0.018 (3)	0.015 (2)	-0.010 (3)
C5	0.045 (2)	0.046 (3)	0.037 (2)	-0.006 (2)	0.013 (2)	-0.001 (2)
C6	0.043 (2)	0.042 (3)	0.035 (2)	-0.007 (2)	0.0077 (19)	-0.0005 (19)
C7	0.063 (3)	0.039 (3)	0.048 (3)	-0.008 (2)	0.012 (2)	-0.005 (2)
C8	0.073 (3)	0.052 (3)	0.079 (4)	0.022 (3)	0.017 (3)	0.008 (3)
C9	0.047 (3)	0.062 (4)	0.055 (3)	-0.011 (2)	0.007 (2)	-0.006 (3)
C10	0.055 (3)	0.074 (4)	0.069 (3)	-0.018 (3)	0.021 (3)	-0.012 (3)
C11	0.042 (3)	0.095 (5)	0.060 (3)	-0.014 (3)	0.012 (2)	0.000 (3)
C12	0.041 (3)	0.089 (5)	0.054 (3)	0.007 (3)	0.008 (2)	0.010 (3)
C13	0.046 (2)	0.055 (3)	0.040 (2)	-0.003 (2)	0.009 (2)	-0.001 (2)
C14	0.043 (2)	0.050 (3)	0.036 (2)	-0.002 (2)	0.007 (2)	-0.005 (2)
C15	0.049 (3)	0.064 (4)	0.062 (3)	0.014 (3)	0.007 (2)	0.002 (3)

supporting information

C16	0.079 (4)	0.054 (4)	0.212 (8)	-0.016 (3)	0.010 (5)	-0.023 (5)
Cu1	0.0427 (3)	0.0384 (3)	0.0514 (3)	-0.0002(3)	0.0023 (2)	-0.0014 (3)
Na1	0.0595 (10)	0.0392 (11)	0.0616 (11)	-0.0008 (9)	0.0046 (9)	0.0018 (9)
O1	0.0483 (17)	0.041 (2)	0.068 (2)	0.0085 (15)	0.0063 (15)	0.0036 (16)
O2	0.0418 (15)	0.0359 (17)	0.0562 (18)	-0.0042 (14)	0.0011 (14)	-0.0001 (15)
O3	0.0541 (19)	0.042 (2)	0.058 (2)	-0.0009 (15)	0.0031 (16)	0.0009 (15)
O4	0.055 (2)	0.045 (2)	0.110 (3)	-0.0091 (17)	0.0063 (19)	-0.014 (2)
O5	0.0379 (15)	0.0449 (19)	0.0561 (19)	-0.0041 (13)	0.0019 (14)	-0.0034 (15)
06	0.0485 (18)	0.049 (2)	0.074 (2)	0.0037 (16)	0.0064 (17)	-0.0013 (18)

Geometric parameters (Å, °)

F1′—B1	1.18 (3)	C10—C11	1.400 (7)
F2'—B1	1.35 (3)	C10—H10	0.9300
F3'—B1	1.270 (16)	C11—C12	1.339 (8)
F1—B1	1.331 (9)	C11—H11	0.9300
F2—B1	1.357 (9)	C12—C13	1.416 (6)
F3—B1	1.387 (8)	C12—H12	0.9300
F4—B1	1.346 (7)	C13—C14	1.415 (6)
C101	1.370 (5)	C13—C15	1.425 (7)
C1—C2	1.376 (6)	C14—O5	1.311 (5)
C1—C6	1.422 (6)	C15—O6	1.248 (5)
C2—C3	1.397 (7)	C15—H15	0.9300
С2—Н2	0.9300	C16—O4	1.426 (6)
C3—C4	1.354 (7)	C16—H16A	0.9600
С3—Н3	0.9300	C16—H16B	0.9600
C4—C5	1.423 (6)	C16—H16C	0.9600
C4—H4	0.9300	Cu1—O2	1.888 (3)
С5—С7	1.407 (6)	Cu1—O3	1.929 (3)
C5—C6	1.418 (6)	Cu1—O5	1.889 (3)
C6—O2	1.306 (5)	Cu1—O6	1.936 (3)
С7—О3	1.263 (5)	Cu1—Na1	3.399 (2)
С7—Н7	0.9300	Na1—O1	2.615 (3)
C8—O1	1.423 (5)	Na1—O2	2.377 (3)
C8—H8A	0.9600	Na1—O4	2.614 (4)
C8—H8B	0.9600	Na1—O5	2.370 (3)
C8—H8C	0.9600	Na1—F1	2.215 (7)
С9—О4	1.364 (6)	Na1—F3′	2.344 (17)
C9—C10	1.373 (6)	Na1—F4 ⁱ	2.243 (4)
C9—C14	1.415 (6)		
B1—F3'—Na1	127.8 (12)	O6—C15—H15	115.7
B1—F1—Na1	133.9 (6)	C13—C15—H15	115.7
B1—F4—Na1 ⁱⁱ	160.3 (4)	O4—C16—H16A	109.5
F1'—B1—F3'	101 (2)	O4—C16—H16B	109.5
F1'—B1—F2'	92 (2)	H16A—C16—H16B	109.5
F3'—B1—F2'	121.7 (19)	O4—C16—H16C	109.5
F1′—B1—F4	132.8 (15)	H16A—C16—H16C	109.5

F3'—B1—F4	109.5 (10)	H16B—C16—H16C	109.5
F4—B1—F2′	100.8 (15)	O2—Cu1—O5	84.72 (13)
F1—B1—F2	107.9 (7)	O2—Cu1—O3	94.30 (13)
F4—B1—F2	109.6 (6)	O5—Cu1—O3	179.02 (12)
F1—B1—F3	109.8 (7)	O2—Cu1—O6	177.29 (14)
F4—B1—F3	108.3 (5)	O5—Cu1—O6	93.78 (13)
F2—B1—F3	108.9 (6)	O3—Cu1—O6	87.19 (13)
F1—B1—F4	112.4 (7)	O2—Cu1—Na1	42.47 (9)
O1—C1—C2	125.9 (4)	O5—Cu1—Na1	42.27 (9)
O1—C1—C6	113.4 (4)	O3—Cu1—Na1	136.76 (10)
C2—C1—C6	120.7 (5)	O6—Cu1—Na1	135.94 (11)
C1—C2—C3	120.5 (5)	F1—Na1—F4 ⁱ	105.5 (3)
C1—C2—H2	119.7	F1—Na1—F3'	27.6 (4)
C3—C2—H2	119.7	$F4^{i}$ —Na1—F3'	88.1 (4)
C4—C3—C2	120.7 (4)	F1—Na1—O5	104.2 (3)
C4—C3—H3	119.6	$F4^{i}$ —Na1—O5	126.93 (16)
C2-C3-H3	119.6	F3'-Na1-05	131 4 (5)
C_{3} C_{4} C_{5}	120 4 (5)	F_1 —Na1—O2	120.2(3)
$C_3 - C_4 - H_4$	119.8	$F4^{i}$ Na1-O2	128.2(3)
$C_5 - C_4 - H_4$	119.8	F3'—Na1—O2	120.02(11) 1224(5)
C_{7} C_{5} C_{6}	122 5 (4)	05-Na1-02	64 85 (11)
C7 - C5 - C4	117 8 (4)	$F_1 = N_2 = 04$	74 3 (2)
C6-C5-C4	119.7 (4)	$F4^{i}$ Na1 04	85 33 (15)
0^{2} C6 C5	119.7 (4) 124.0 (4)	$F_3' = N_{a1} = O_4$	03.7 (6)
02 - 00 - 03	124.0(4) 118.2(4)	15 - Na1 - 04	93.7(0)
02 - 00 - 01	110.2(4) 117.8(4)	$O_2 = Na1 = O_4$	126.01(11)
$C_{3} = C_{0} = C_{1}$	117.0(4) 127.8(4)	02—Na1—04 F1 Na1 O1	120.91(13)
03 - 07 - 03	127.0 (4)	$F_1 - Na_1 - O_1$	100.0(2)
$C_{2} = C_{1} = H_{1}$	110.1	$\Gamma 4 - Na1 - O1$ $\Gamma 2' - Na1 - O1$	82 0 (6)
C_{3}	110.1	$r_3 = Na1 = O1$	83.9(0)
$O1 = C_{0} = H_{0}$	109.5	03 Na1 01	(2, 17, (10))
$U_1 = C_0 = H_0 B$	109.5	02—Na1— 01	62.17(10)
$H\delta A = C\delta = H\delta B$	109.5	04-Nal- 01	109.41(13)
01 - 08 - H8C	109.5	FI-Nal-Cul	116.8 (3)
H8A - C8 - H8C	109.5	F4'—Nal—Cul	135.96 (13)
H8B - C8 - H8C	109.5	F3'—Nal—Cul	135.7 (4)
04-09-010	126.1 (5)	O5—Nal—Cul	32.42 (7)
04-09-014	113.6 (4)	O2—Nal—Cul	32.44 (7)
C10-C9-C14	120.2 (5)	O4—Nal—Cul	94.48 (10)
C9—C10—C11	121.4 (5)	Ol—Nal—Cul	94.40 (9)
С9—С10—Н10	119.3	C1—O1—C8	117.4 (4)
C11—C10—H10	119.3	C1—O1—Na1	118.6 (2)
C12—C11—C10	119.7 (5)	C8—O1—Na1	124.0 (3)
C12—C11—H11	120.1	C6—O2—Cu1	126.6 (3)
C10—C11—H11	120.1	C6—O2—Na1	127.5 (3)
C11—C12—C13	120.9 (5)	Cu1—O2—Na1	105.09 (12)
C11—C12—H12	119.5	C7—O3—Cu1	124.2 (3)
C13—C12—H12	119.5	C9—O4—C16	118.2 (4)
C14—C13—C12	120.1 (5)	C9—O4—Na1	118.6 (3)

C14—C13—C15	121.2 (4)	C16—O4—Na1	122.6 (3)
C12—C13—C15	118.7 (5)	C14—O5—Cu1	127.0 (3)
O5—C14—C9	117.9 (4)	C14—O5—Na1	127.7 (3)
O5-C14-C13	124.6 (4)	Cu1—O5—Na1	105.31 (13)
C9—C14—C13	117.5 (4)	C15—O6—Cu1	124.6 (3)
O6—C15—C13	128.5 (5)		

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2.