

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis(1-allyl-1*H*-imidazole- κN^3)bis-(thiocyanato- κN)manganese(II)

Juan Zhao^a* and Yan-Ling Jin^b

^aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China, and ^bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: zhaojuanqd@163.com

Received 19 November 2011; accepted 29 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.059; wR factor = 0.162; data-to-parameter ratio = 15.8.

The structure of the title compound, $[Mn(NCS)_2(C_6H_8N_2)_4]$, consists of isolated molecules of $[Mn(NCS)_2(Aim)_4]$ (Aim = 1allylimidazole), which contain a compressed octahedral MnN₆ chromophore (site symmetry $\overline{1}$). The NCS⁻ anions are *trans* and four N atoms from the Aim ligands define the equatorial plane. The mean Mn-N(Aim) and Mn-N(NCS) distances are 2.270 and 2.229 Å, respectively. Weak C-H···N interactions contribute to the crystal packing stability.

Related literature

In the corresponding manganese compound [Mn(NCS)₂(1ethylimidazole)₄] (Liu, et al., 2008), the Mn^{II} ions have a distorted octahedral environment.

 $V = 3091.0 (15) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.60 \text{ mm}^{-1}$

 $0.20 \times 0.10 \times 0.10 \; \mathrm{mm}$

2885 measured reflections

2814 independent reflections

1750 reflections with $I > 2\sigma(I)$

Z = 4

T = 293 K

 $R_{\rm int} = 0.033$

Experimental

Crystal data

$[Mn(NCS)_2(C_6H_8N_2)_4]$	
$M_r = 603.70$	
Monoclinic, C2/c	
a = 24.564 (5) Å	
b = 7.2200 (14) Å	
c = 21.287 (4) Å	
$\beta = 125.04 \ (3)^{\circ}$	

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.890, T_{\max} = 0.943$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059 $ 178	parameters
$wR(F^2) = 0.162$ H-a	atom parameters constrained
$S = 1.01$ $\Delta \rho$	$p_{\rm max} = 0.31 \ e \ {\rm \AA}^{-3}$
2814 reflections $\Delta \rho$	$p_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Jydrogen-bond	geometry	(Δ °`	۱.
Tyurogen-bonu	geometry	(<u>л</u> , ,	٫.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7A \cdots N3$	0.93	2.54	2.857 (9)	101
$C6-H6A\cdots N4$	0.93	2.88	3.355 (8)	113
$C5-H5B\cdots N4^{i}$	0.93	2.82	3.298 (7)	113
$C12-H12A\cdots N5^{i}$	0.93	2.72	3.224 (6)	115

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

This work was supported by the NSF of China (No. 20871072) and the Doctoral Science Foundation of Shandong Province (No. 2007BS04023).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5141).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, F. Q., Li, R. X. & Li, S. X. (2008). Chin. J. Inorg. Chem. 24, 141-144. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m9 [doi:10.1107/S1600536811051282]

Tetrakis(1-allyl-1*H*-imidazole- κN^3)bis(thiocyanato- κN)manganese(II)

Juan Zhao and Yan-Ling Jin

S1. Comment

The molecular structure of (I) is shown in Fig. 1. The Mn atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-allylimidazole ligands. The equatorial plane of the complex is formed by four Mn—N(1-allylimidazole) bonds with lengths of 2.269 (3) and 2.271 (3) Å, and the axial positions are occupied by two N-bonded NCS groups [Mn—N(NCS) = 2.229 (4) Å]. These values agree well with those observed in [Mn(NCS)₂(1-ethylimidazole)₄] (Liu *et al.*, 2008). The values of the bond angles around manganese are close to those expected for a regular octahedral geometry, the N—Mn—N angles range from 88.32 (13) to 91.68 (13) °, and the thiocyanate ligands are almost linear. Weak C—H…N interactions contribute to the crystal packing stability.

In the corresponding manganese compound $[Mn(NCS)_2(1-ethylimidazole)_4]$ (Liu, *et al.*, 2008), the Mn^{II} ions have a distorted octahedral environment.

S2. Experimental

The title compound was prepared by the reaction of 1-allylimidazole (1.21 g, 20 mmol) with $MnCl_2.4H_2O(0.99 g, 5 mmol)$ and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 383 K for 24 h. Analysis, calculated for $C_{26}H_{32}MnN_{10}S_2$: C 51.73, H 5.34, N 23.20%; found: C 51.97, H 5.29, N 23.01%. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

S3. Refinement

H atoms were positioned geometrically(C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The packing of (I), viewed down the b axis.

Tetrakis(1-allyl-1*H*-imidazole- κN^3)bis(thiocyanato- κN)manganese(II)

Crystal data

 $[Mn(NCS)_{2}(C_{6}H_{8}N_{2})_{4}]$ $M_{r} = 603.70$ Monoclinic, C2/cHall symbol: -C 2yc a = 24.564 (5) Å b = 7.2200 (14) Å c = 21.287 (4) Å $\beta = 125.04$ (3)° V = 3091.0 (15) Å³ Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator thin–slice ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\min} = 0.890, T_{\max} = 0.943$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.162$	neighbouring sites
S = 1.01	H-atom parameters constrained
2814 reflections	$w = 1/[\sigma^2(F_o^2) + (0.075P)^2]$
178 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1260

 $\theta = 9 - 12^{\circ}$

T = 293 K

 $R_{\rm int} = 0.033$

 $h = 0 \rightarrow 29$

 $l = -25 \rightarrow 20$

 $k = 0 \rightarrow 8$

 $\mu = 0.60 \text{ mm}^{-1}$

Block, colorless

 $0.20 \times 0.10 \times 0.10$ mm

2885 measured reflections 2814 independent reflections

 $\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

1750 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.297 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn	0.2500	0.7500	0.0000	0.0393 (3)	
S	0.38490 (7)	1.1290 (2)	0.23301 (7)	0.0754 (5)	
N1	0.20466 (18)	0.4508 (6)	0.1457 (2)	0.0542 (10)	
N2	0.21204 (16)	0.6197 (5)	0.06496 (19)	0.0447 (9)	

N3	0.41287 (16)	0.3410 (5)	0.0976 (2)	0.0457 (9)
N4	0.34393 (16)	0.5759 (5)	0.06687(19)	0.0448 (9)
N5	0.29713 (18)	0.9709 (5)	0.0893 (2)	0.0543 (10)
C1	0.1320 (3)	0.1161 (10)	0.1924 (4)	0.116 (3)
HIA	0.1358	0.1802	0.2327	0.139*
HIB	0.1016	0.0196	0.1686	0.139*
C2	0.1692 (3)	0.1613 (9)	0.1695 (3)	0.0911 (19)
H2A	0.1640	0.0938	0.1291	0.109*
C3	0.2181 (3)	0.3078 (8)	0.2018 (3)	0.0725 (16)
H3A	0.2616	0.2548	0.2227	0.087*
H3B	0.2191	0.3649	0.2437	0.087*
C4	0.1559 (2)	0.5784 (7)	0.1165 (3)	0.0570(13)
H4A	0.1250	0.5921	0.1281	0.068*
C5	0.1607 (2)	0.6819 (7)	0.0675 (3)	0.0540 (12)
H5B	0.1332	0.7812	0.0394	0.065*
C6	0.2375 (2)	0.4801 (7)	0.1133 (3)	0.0533 (12)
H6A	0.2736	0.4103	0.1238	0.064*
C7	0.4849 (3)	0.2836 (9)	0.0313 (3)	0.0841 (18)
H7A	0.4652	0.3981	0.0257	0.101*
H7B	0.5106	0.2656	0.0126	0.101*
C8	0.4765 (2)	0.1509 (8)	0.0647 (3)	0.0626 (14)
H8A	0.4972	0.0392	0.0689	0.075*
C9	0.4373 (2)	0.1569 (7)	0.0974 (3)	0.0577 (13)
H9A	0.3996	0.0740	0.0683	0.069*
H9B	0.4647	0.1113	0.1497	0.069*
C10	0.4487 (2)	0.4823 (7)	0.1465 (3)	0.0584 (13)
H10A	0.4939	0.4811	0.1855	0.070*
C11	0.4066 (2)	0.6240 (7)	0.1280 (3)	0.0556 (12)
H11A	0.4182	0.7378	0.1530	0.067*
C12	0.3500 (2)	0.4037 (7)	0.0506 (2)	0.0470 (11)
H12A	0.3150	0.3340	0.0114	0.056*
C13	0.3337 (2)	1.0360 (6)	0.1494 (3)	0.0467 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Mn	0.0374 (5)	0.0426 (5)	0.0373 (5)	0.0014 (5)	0.0210 (4)	0.0017 (5)
S	0.0671 (9)	0.1062 (13)	0.0473 (8)	-0.0215 (8)	0.0295 (7)	-0.0212 (8)
N1	0.048 (2)	0.070 (3)	0.047 (2)	-0.002(2)	0.0289 (19)	0.012 (2)
N2	0.047 (2)	0.049 (2)	0.042 (2)	0.0012 (18)	0.0277 (17)	0.0060 (19)
N3	0.0365 (19)	0.052 (2)	0.047 (2)	0.0070 (18)	0.0229 (17)	0.0047 (19)
N4	0.040 (2)	0.050(2)	0.041 (2)	0.0055 (18)	0.0210 (17)	0.0058 (18)
N5	0.056 (2)	0.052 (2)	0.053 (2)	-0.010 (2)	0.030 (2)	-0.011 (2)
C1	0.107 (5)	0.108 (6)	0.130 (6)	-0.023 (5)	0.067 (5)	0.032 (5)
C2	0.116 (5)	0.065 (4)	0.073 (4)	-0.007 (4)	0.043 (4)	0.011 (3)
C3	0.069 (3)	0.081 (4)	0.064 (3)	-0.003 (3)	0.036 (3)	0.023 (3)
C4	0.055 (3)	0.072 (3)	0.056 (3)	-0.001 (3)	0.039 (2)	0.002 (3)
C5	0.059 (3)	0.052 (3)	0.056 (3)	0.004 (2)	0.036 (3)	0.003 (2)

supporting information

0.049 (3)	0.060 (3)	0.051 (3)	0.007 (2)	0.029 (2)	0.010 (3)
0.093 (4)	0.094 (5)	0.094 (4)	0.008 (4)	0.070 (4)	0.001 (4)
0.057 (3)	0.062 (3)	0.073 (3)	0.008 (3)	0.040 (3)	-0.007 (3)
0.051 (3)	0.052 (3)	0.067 (3)	0.009 (2)	0.032 (3)	0.007 (3)
0.041 (3)	0.070 (4)	0.052 (3)	0.005 (3)	0.020 (2)	-0.006 (3)
0.049 (3)	0.056 (3)	0.054 (3)	-0.001 (2)	0.025 (2)	-0.010 (3)
0.039 (2)	0.055 (3)	0.044 (2)	0.002 (2)	0.022 (2)	0.002 (2)
0.046 (3)	0.048 (3)	0.054 (3)	0.003 (2)	0.033 (2)	0.003 (2)
	0.049 (3) 0.093 (4) 0.057 (3) 0.051 (3) 0.041 (3) 0.049 (3) 0.039 (2) 0.046 (3)	0.049 (3)0.060 (3)0.093 (4)0.094 (5)0.057 (3)0.062 (3)0.051 (3)0.052 (3)0.041 (3)0.070 (4)0.049 (3)0.056 (3)0.039 (2)0.055 (3)0.046 (3)0.048 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Mn—N5 ⁱ	2.229 (4)	C1—H1B	0.9300
Mn—N5	2.229 (4)	C2—C3	1.444 (7)
Mn—N2	2.269 (3)	C2—H2A	0.9300
Mn—N2 ⁱ	2.269 (3)	С3—НЗА	0.9700
Mn—N4 ⁱ	2.271 (3)	С3—Н3В	0.9700
Mn—N4	2.271 (3)	C4—C5	1.342 (6)
S—C13	1.621 (5)	C4—H4A	0.9300
N1—C6	1.345 (5)	С5—Н5В	0.9300
N1—C4	1.346 (6)	С6—Н6А	0.9300
N1—C3	1.465 (6)	С7—С8	1.279 (7)
N2—C6	1.315 (5)	С7—Н7А	0.9300
N2—C5	1.368 (5)	С7—Н7В	0.9300
N3—C12	1.348 (5)	C8—C9	1.477 (6)
N3—C10	1.358 (6)	C8—H8A	0.9300
N3—C9	1.460 (6)	С9—Н9А	0.9700
N4—C12	1.322 (5)	С9—Н9В	0.9700
N4—C11	1.373 (5)	C10—C11	1.342 (6)
N5—C13	1.160 (5)	C10—H10A	0.9300
C1—C2	1.301 (8)	C11—H11A	0.9300
C1—H1A	0.9300	C12—H12A	0.9300
N5 ⁱ —Mn—N5	180.0 (2)	N1—C3—H3A	109.0
N5 ⁱ —Mn—N2	91.68 (13)	С2—С3—Н3В	109.0
N5—Mn—N2	88.32 (13)	N1—C3—H3B	109.0
$N5^{i}$ — Mn — $N2^{i}$	88.32 (13)	НЗА—СЗ—НЗВ	107.8
N5—Mn—N2 ⁱ	91.68 (13)	C5—C4—N1	106.8 (4)
N2-Mn-N2 ⁱ	180.00 (19)	C5—C4—H4A	126.6
$N5^{i}$ — Mn — $N4^{i}$	91.04 (14)	N1—C4—H4A	126.6
N5—Mn—N4 ⁱ	88.96 (14)	C4—C5—N2	110.0 (4)
N2—Mn—N4 ⁱ	89.22 (12)	C4—C5—H5B	125.0
$N2^{i}$ — Mn — $N4^{i}$	90.78 (12)	N2—C5—H5B	125.0
N5 ⁱ —Mn—N4	88.96 (14)	N2—C6—N1	111.5 (4)
N5—Mn—N4	91.04 (14)	N2—C6—H6A	124.2
N2—Mn—N4	90.78 (12)	N1—C6—H6A	124.2
N2 ⁱ —Mn—N4	89.22 (12)	C8—C7—H7A	120.0
N4 ⁱ —Mn—N4	180.0	С8—С7—Н7В	120.0
C6—N1—C4	106.9 (4)	H7A—C7—H7B	120.0

C6—N1—C3	127.5 (4)	C7—C8—C9	126.7 (5)
C4—N1—C3	125.6 (4)	C7—C8—H8A	116.7
C6—N2—C5	104.8 (4)	C9—C8—H8A	116.7
C6—N2—Mn	128.2 (3)	N3—C9—C8	114.1 (4)
C5—N2—Mn	126.8 (3)	N3—C9—H9A	108.7
C12—N3—C10	106.2 (4)	С8—С9—Н9А	108.7
C12—N3—C9	127.0 (4)	N3—C9—H9B	108.7
C10—N3—C9	126.9 (4)	C8—C9—H9B	108.7
C12—N4—C11	104.6 (4)	H9A—C9—H9B	107.6
C12—N4—Mn	125.7 (3)	C11—C10—N3	107.3 (4)
C11—N4—Mn	129.6 (3)	C11-C10-H10A	126.4
C13—N5—Mn	157.6 (4)	N3—C10—H10A	126.4
C2—C1—H1A	120.0	C10-C11-N4	109.9 (4)
C2—C1—H1B	120.0	C10-C11-H11A	125.0
H1A—C1—H1B	120.0	N4—C11—H11A	125.0
C1—C2—C3	125.2 (7)	N4—C12—N3	112.0 (4)
C1—C2—H2A	117.4	N4—C12—H12A	124.0
C3—C2—H2A	117.4	N3—C12—H12A	124.0
C2—C3—N1	113.1 (4)	N5—C13—S	179.4 (5)
С2—С3—НЗА	109.0		
N5 ⁱ —Mn—N2—C6	81.3 (4)	C4—N1—C3—C2	72.8 (7)
N5—Mn—N2—C6	-98.7 (4)	C6—N1—C4—C5	-0.2 (5)
N4 ⁱ —Mn—N2—C6	172.3 (4)	C3—N1—C4—C5	-179.9 (4)
N4—Mn—N2—C6	-7.7 (4)	N1-C4-C5-N2	0.5 (6)
N5 ⁱ —Mn—N2—C5	-105.3 (4)	C6—N2—C5—C4	-0.5 (5)
N5—Mn—N2—C5	74.7 (4)	Mn—N2—C5—C4	-175.1 (3)
$N4^{i}$ Mn $N2$ $C5$	-14.3 (4)	C5—N2—C6—N1	0.3 (5)
N4—Mn—N2—C5	165.7 (4)	Mn—N2—C6—N1	174.8 (3)
N5 ⁱ —Mn—N4—C12	-8.1 (3)	C4—N1—C6—N2	-0.1 (5)
N5-Mn-N4-C12	171.9 (3)	C3—N1—C6—N2	179.6 (4)
N2—Mn—N4—C12	83.6 (3)	C12—N3—C9—C8	105.3 (5)
N2 ⁱ —Mn—N4—C12	-96.4 (3)	C10—N3—C9—C8	-76.3 (6)
N5 ⁱ —Mn—N4—C11	167.3 (4)	C7—C8—C9—N3	-7.1 (8)
N5—Mn—N4—C11	-12.7 (4)	C12—N3—C10—C11	0.5 (5)
N2—Mn—N4—C11	-101.0 (4)	C9—N3—C10—C11	-178.2 (4)
$N2^{i}$ —Mn—N4—C11	79.0 (4)	N3-C10-C11-N4	-0.7 (6)
N2—Mn—N5—C13	67.0 (9)	C12—N4—C11—C10	0.7 (5)
$N2^{i}$ Mn N5 C13	-113.0(9)	Mn—N4—C11—C10	-175.4 (3)
N4 ⁱ —Mn—N5—C13	156.3 (9)	C11—N4—C12—N3	-0.4 (5)
N4—Mn—N5—C13	-23.7 (9)	Mn—N4—C12—N3	175.9 (3)
C1—C2—C3—N1	-120.3 (7)	C10—N3—C12—N4	-0.1 (5)
C6—N1—C3—C2	-106.9 (6)	C9—N3—C12—N4	178.6 (4)

Symmetry code: (i) -x+1/2, -y+3/2, -z.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C7—H7 <i>A</i> ···N3	0.93	2.54	2.857 (9)	101
C6—H6A…N4	0.93	2.88	3.355 (8)	113
C5— $H5B$ ···N4 ⁱ	0.93	2.82	3.298 (7)	113
C12—H12A····N5 ⁱ	0.93	2.72	3.224 (6)	115

Hydrogen-bond geometry (Å, °)

Symmetry code: (i) -*x*+1/2, -*y*+3/2, -*z*.