

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pentaaqua(5-carboxypyridine-2carboxylato- $\kappa^2 N$, O^2)(pyridine-2,5dicarboxylato- $\kappa^2 N$, O^2)cerium(III) tetrahydrate

Ning Ma,^a* Tong Zhang^b and Guang-Rui Yang^a

^aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China, and ^bHenan Museum, Zhengzhou 450001, People's Republic of China Correspondence e-mail: hbsymaning@163.com

Received 20 November 2011; accepted 7 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.021; wR factor = 0.050; data-to-parameter ratio = 10.3.

In the title compound, $[Ce(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)_5]$ -4H₂O, the Ce³⁺ ion is nine-coordinated by two O atoms and two N atoms from one single and from one double deprotonated pyridine-2,5-dicarboxylate ligand and five water molecules in a distorted monocapped square-antiprismatic geometry. In the crystal, extensive $O-H\cdots O$ hydrogenbonding interactions result in a three-dimensional supramolecular architecture.

Related literature

For luminescent lanthanide complexes, see: Faulkner & Pope (2003). For carboxylic complexes of lanthanides, see: Cao *et al.* (2002). For a related europium structure, see: Song *et al.* (2005).

Experimental

Crystal data

 $[Ce(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)_5] - 4H_2O$ $M_r = 633.48$ Monoclinic, C2/c a = 14.0652 (10) Å b = 9.6485 (7) Å c = 33.345 (2) Å

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{min} = 0.518, T_{max} = 0.716$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	
$wR(F^2) = 0.050$	
S = 1.07	
3961 reflections	
383 parameters	
28 restraints	

 $\beta = 93.650 (1)^{\circ}$ $V = 4516.0 (6) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 2.10 \text{ mm}^{-1}$ T = 296 K $0.36 \times 0.24 \times 0.17 \text{ mm}$

11155 measured reflections 3961 independent reflections 3705 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.45~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.50~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WA\cdots O8W$	0.83 (1)	1.94 (1)	2.747 (3)	165 (3)
$O1W - H1WB \cdot \cdot \cdot O3^{i}$	0.83(1)	1.81 (1)	2.630 (3)	170 (3)
$O2W - H2WA \cdots O6W$	0.83 (1)	1.96 (1)	2.779 (3)	167 (3)
$O2W - H2WB \cdot \cdot \cdot O6W^{ii}$	0.83(1)	2.11 (2)	2.898 (3)	159 (3)
$O3W - H3WA \cdots O7W$	0.83 (1)	1.98 (1)	2.816 (3)	177 (3)
O3W−H3WB····O4 ⁱⁱⁱ	0.83(1)	2.01(1)	2.823 (3)	165 (4)
$O4W-H4WA\cdots O7W^{iv}$	0.83(1)	1.86 (1)	2.687 (3)	175 (3)
$O4W - H4WB \cdots O9W$	0.83(1)	1.88 (1)	2.689 (3)	166 (3)
$O5W - H5WA \cdots O8^{v}$	0.83 (1)	1.96 (1)	2.789 (3)	175 (3)
$O5W - H5WB \cdot \cdot \cdot O2^{vi}$	0.83(1)	2.01(1)	2.821(3)	167 (4)
O6W−H6WA···O2 ^{vi}	0.83 (1)	2.04(2)	2.823 (3)	157 (3)
O6W−H6WB···O3 ^{vii}	0.83(1)	1.97 (3)	2.698 (3)	146 (4)
$O7W - H7WA \cdots O8W^{vii}$	0.83(1)	1.94 (1)	2.747 (4)	164 (3)
O7W−H7WB···O6 ^{viii}	0.83(1)	2.28 (2)	3.054 (3)	157 (5)
$O7W - H7WB \cdot \cdot \cdot O8^{v}$	0.83(1)	2.45 (4)	2.898 (3)	115 (3)
$O8W - H8WA \cdots O2^{ix}$	0.82(1)	2.00(2)	2.765 (3)	155 (3)
$O8W - H8WA \cdots O1^{ix}$	0.82(1)	2.64(2)	3.364 (3)	148 (3)
$O8W - H8WB \cdot \cdot \cdot O7^{ix}$	0.83 (1)	2.12 (2)	2.901 (3)	158 (4)
$O9W - H9WA \cdots O4^{x}$	0.83(1)	1.94 (1)	2.750 (3)	167 (4)
$O9W - H9WB \cdots O5W^{xi}$	0.82(1)	2.33 (2)	3.087 (4)	154 (4)
O7−H7···O6 ^{xii}	0.82(1)	1.71 (1)	2.526 (3)	173 (5)

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2275).

References

- Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, R., Sun, D. F., Liang, Y. C., Hong, M. C., Tatsumi, K. & Shi, Q. (2002). *Inorg. Chem.* 41, 2087–2094.

Faulkner, S. & Pope, S. A. P. (2003). J. Am. Chem. Soc. 125, 10526–10527.Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 811–816. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2012). E68, m41-m42 [doi:10.1107/S1600536811052688]

Pentaaqua(5-carboxypyridine-2-carboxylato- $\kappa^2 N$, O^2)(pyridine-2,5-dicarboxylato- $\kappa^2 N$, O^2)cerium(III) tetrahydrate

Ning Ma, Tong Zhang and Guang-Rui Yang

S1. Comment

The design and synthesis of luminescent lanthanide complexes have been attracting chemists' interest, because of their interesting photophysical properties and their potential application in sensors, optical fiber lasers and amplifiers, luminescent labels for biomolecular interactions, and as electroluminescent materials (Faulkner & Pope, 2003). During the past years, lots of such lanthanide compounds based on multifunctional carboxylic acid ligands have been reported (Cao *et al.*, 2002). Herein, we report the title compound (I).

The title complex, $Ce(C_7H_4NO_4)(C_7H_3NO_4)(H_2O)_5 \cdot 4(H_2O)$, presents a mononuclear molecular structure, which contains a $Ce(C_7H_4NO_4)(C_7H_3NO_4)(H_2O)_5$ molecule and four water molecules (Fig.1), and which is isostructural with its europium analogue (Song *et al.*, 2005). In the molecular structure, the Ce atom resides in a distorted square antiprism geometry, which is defined by two oxygen atoms and two nitrogen atoms from two 2,5-pyridinedicarboxylate ligands and five water molecules. Two oxygen atoms from the two 2,5-pyridinedicarboxylate anions have bond distances of 2.4566 (18) Å [Ce(1)–O(1)] and 2.5098 (18) Å [Ce(1)–O(5)]. Two pyridine nitrogen atoms from the two dinic molecules have bond distances of 2.710 (2) Å [Ce(1)–N(1)] and 2.695 (2) Å [Ce(1)–N(2)]. Five oxygen atoms of the coordinated water molecules have Ce–O distances ranging from 2.449 (2) to 2.573 (2) Å. There are two 2,5-pyridinedicarboxylate anions per molecular unit: one is dianionic and the other must be monoprotonated to maintain electroneutrality.

In addition, the presence of many water molecules in the complex leads to numerous O—H…O hydrogen-bonding interactions including intra- and inter- hydrogen bonds (Fig.2, Table 1), which consolidate a stacked arrangement resulting in a three-dimensional supramolecular architecture.

S2. Experimental

All reagents were commercially available and of analytical grade. The mixture of $Ce(NO_3)_3.6H_2O(0.25 \text{ mmol}, 0.109 \text{ g})$ and 2,5-pyridinedicarboxylic acid (0.5 mmol, 0.084 g) was dissolved in 20 ml H₂O, and the mixture was adjusted to pH = 4.5 using NaOH solution. The mixture was stirred and refluxed at 80 °C for one hour. The resulting solution was filtered and the filtrate evaporated at room temperature. Two weeks later, colorless block crystals of (I) were obtained.

S3. Refinement

The H atoms bonded to water were located in a difference synthesis and refined with distance restraints of O—H = 0.83 (1) Å and H···H = 1.37 (2) Å. The hydroxy H atom (H7) was located in a difference Fourier map and refined with an O—H distance of 0.82 (1) Å. All the remaining H atoms were positioned geometrically, with C—H = 0.93 Å, and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Three-dimensional structure of (I) by means of hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Pentaaqua(5-carboxypyridine-2-carboxylato- $\kappa^2 N$, O^2)(pyridine- 2,5-dicarboxylato- $\kappa^2 N$, O^2)cerium(III) tetrahydrate

F(000) = 2536 $D_x = 1.863 \text{ Mg m}^{-3}$

 $\theta = 2.6-22.7^{\circ}$ $\mu = 2.10 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.36 \times 0.24 \times 0.17 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 2168 reflections

Crystal data

[Ce(C7H3NO4)(C7H4NO4)(H2O)5]·4H2O
$M_r = 633.48$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 14.0652 (10) Å
b = 9.6485 (7) Å
c = 33.345 (2) Å
$\beta = 93.650 (1)^{\circ}$
V = 4516.0 (6) Å ³
Z = 8

Data collection

Bruker SMART APEX CCD	11155 measured reflections
diffractometer	3961 independent reflections
Radiation source: fine-focus sealed tube	3705 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
phi and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.5^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 12$
(SADABS; Sheldrick, 2001)	$k = -11 \rightarrow 11$
$T_{\min} = 0.518, \ T_{\max} = 0.716$	$l = -38 \rightarrow 39$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.050$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
3961 reflections	and constrained refinement
383 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0224P)^2 + 6.9052P]$
28 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , and the provided of the pr

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cel	0.894634 (10)	-0.318396 (14)	0.381434 (4)	0.01818 (6)
O1	0.97858 (13)	-0.54167 (19)	0.38596 (5)	0.0277 (4)

O2	1.07372 (15)	-0.70191 (18)	0.41446 (6)	0.0304 (4)
O3	1.10159 (16)	-0.0673 (2)	0.53150 (6)	0.0372 (5)
O4	1.17536 (16)	-0.2284(2)	0.56975 (6)	0.0370 (5)
05	0.88653 (14)	-0.15016 (18)	0.32391 (5)	0.0285 (4)
O6	0.87079 (16)	-0.08997 (19)	0.25957 (5)	0.0357 (5)
07	0.88037 (18)	-0.8380 (2)	0.27999 (6)	0.0374 (5)
08	0.85018 (17)	-0.79869 (19)	0.21507 (6)	0.0385 (5)
N1	1.02240 (15)	-0.3588(2)	0.44467 (6)	0.0211 (5)
N2	0.87500 (15)	-0.4203(2)	0.30610 (6)	0.0212 (5)
C1	1.04597 (19)	-0.2665(3)	0.47348 (8)	0.0235(6)
HIA	1 0159	-0.1805	0 4724	0.028*
C2	1 11345 (19)	-0.2927(3)	0.50507 (8)	0.0229 (6)
C3	1 1603 (2)	-0.4173(3)	0.50519(8)	0.0225(0)
НЗА	1.1003 (2)	-0.4375	0.5254	0.0255 (0)
	1.2000 1.1381(2)	-0.5126(3)	0.3254 0.47515(8)	0.0300 (6)
	1.1301 (2)	-0.5068	0.47313 (8)	0.0368
114A C5	1.1702	-0.4811(2)	0.4740 0.44501 (7)	0.030*
C5	1.00/01 (18)	-0.4811(3)	0.44391(7)	0.0202(3)
C0 C7	1.1322(2)	-0.1885(3)	0.33820 (8)	0.0233(0)
C7	1.03803 (18)	-0.5827(3)	0.41309(7)	0.0219 (6)
C8	0.87469 (19)	-0.3296 (3)	0.27554 (8)	0.0209 (5)
C9	0.8724 (2)	-0.3/06(3)	0.23619 (8)	0.0307(7)
H9A	0.8722	-0.3052	0.2157	0.037*
C10	0.8705 (2)	-0.5100 (3)	0.22733 (8)	0.0316 (7)
H10A	0.8691	-0.5399	0.2008	0.038*
C11	0.87054 (19)	-0.6052 (3)	0.25841 (8)	0.0231 (6)
C12	0.87281 (18)	-0.5545 (3)	0.29736 (7)	0.0228 (6)
H12A	0.8728	-0.6177	0.3184	0.027*
C13	0.87783 (19)	-0.1775 (3)	0.28743 (8)	0.0222 (6)
C14	0.86649 (19)	-0.7566 (3)	0.24921 (8)	0.0237 (6)
O1W	0.92616 (16)	-0.0802(2)	0.40398 (6)	0.0348 (5)
H1WA	0.939 (2)	-0.024(2)	0.3864 (6)	0.039 (10)*
H1WB	0.911 (2)	-0.037 (3)	0.4241 (6)	0.049 (10)*
O2W	0.81108 (15)	-0.2775 (2)	0.44579 (6)	0.0351 (5)
H2WA	0.7607 (14)	-0.313 (3)	0.4527 (9)	0.048 (11)*
H2WB	0.837 (2)	-0.235 (4)	0.4650 (8)	0.074 (14)*
O3W	0.78056 (16)	-0.5204 (2)	0.38981 (7)	0.0369 (5)
H3WA	0.7345 (15)	-0.528 (3)	0.3730(7)	0.041 (10)*
H3WB	0.796 (2)	-0.5992 (18)	0.3977 (10)	0.060 (12)*
O4W	1.05648 (15)	-0.2898 (2)	0.35667 (7)	0.0334 (5)
H4WA	1.076 (2)	-0.2140 (18)	0.3486 (10)	0.042 (10)*
H4WB	1.1030 (15)	-0.339 (3)	0.3637 (11)	0.052 (11)*
O5W	0.72275 (14)	-0.2396 (2)	0.36277 (6)	0.0329 (5)
H5WA	0.6985 (19)	-0.254(4)	0.3399 (4)	0.044 (10)*
H5WB	0.6823 (18)	-0.240(4)	0.3798 (7)	0.056 (12)*
O6W	0.64591 (16)	-0.3678 (3)	0.47916 (7)	0.0428 (5)
H6WA	0.611 (2)	-0.333(3)	0.4610 (9)	0.065(13)*
H6WB	0.626 (3)	-0.444(2)	0.4860 (13)	0.099 (18)*
07W	0.62864(17)	-0.5498(2)	0.33125 (8)	0.0420 (5)
2		··· ··· ··· ··· ··· ··················		

H7WA	0.5957 (19)	-0.486 (2)	0.3394 (8)	0.034 (10)*	
H7WB	0.639 (3)	-0.539 (4)	0.3073 (5)	0.104 (19)*	
O8W	0.99039 (18)	0.1264 (2)	0.35587 (7)	0.0412 (5)	
H8WA	1.001 (3)	0.192 (2)	0.3712 (9)	0.061 (13)*	
H8WB	0.948 (2)	0.143 (3)	0.3385 (8)	0.060 (13)*	
O9W	1.22355 (19)	-0.4211 (3)	0.37170 (9)	0.0614 (8)	
H9WA	1.253 (2)	-0.387 (3)	0.3916 (7)	0.057 (12)*	
H9WB	1.242 (3)	-0.5001 (19)	0.3673 (11)	0.076 (15)*	
H7	0.872 (3)	-0.9185 (19)	0.2726 (13)	0.092 (16)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cel	0.02396 (9)	0.01492 (9)	0.01536 (9)	0.00190 (6)	-0.00097 (6)	-0.00118 (6)
01	0.0359 (11)	0.0211 (9)	0.0247 (10)	0.0035 (8)	-0.0088 (8)	-0.0039 (8)
O2	0.0415 (12)	0.0176 (10)	0.0313 (11)	0.0075 (8)	-0.0046 (9)	-0.0043 (8)
O3	0.0661 (15)	0.0216 (11)	0.0231 (10)	0.0080 (10)	-0.0039 (10)	-0.0027 (8)
O4	0.0574 (14)	0.0276 (11)	0.0237 (11)	0.0007 (10)	-0.0157 (10)	-0.0027 (9)
O5	0.0482 (12)	0.0171 (9)	0.0197 (10)	-0.0011 (8)	-0.0015 (9)	-0.0011 (8)
O6	0.0706 (15)	0.0152 (9)	0.0207 (10)	-0.0017 (9)	-0.0025 (10)	0.0026 (8)
O7	0.0731 (16)	0.0152 (10)	0.0222 (11)	-0.0016 (10)	-0.0101 (10)	-0.0005 (9)
08	0.0713 (16)	0.0210 (11)	0.0220 (11)	0.0018 (10)	-0.0055 (10)	-0.0049 (8)
N1	0.0262 (12)	0.0199 (11)	0.0167 (11)	0.0053 (9)	-0.0028 (9)	-0.0024 (9)
N2	0.0299 (12)	0.0148 (11)	0.0186 (11)	0.0009 (9)	-0.0013 (9)	-0.0001 (9)
C1	0.0297 (15)	0.0191 (13)	0.0212 (13)	0.0062 (11)	-0.0021 (11)	-0.0022 (11)
C2	0.0283 (14)	0.0203 (13)	0.0202 (13)	-0.0014 (11)	0.0015 (11)	-0.0005 (11)
C3	0.0358 (16)	0.0270 (15)	0.0242 (14)	0.0074 (12)	-0.0102 (12)	-0.0016 (12)
C4	0.0383 (16)	0.0230 (15)	0.0276 (15)	0.0116 (12)	-0.0059 (12)	-0.0025 (12)
C5	0.0251 (13)	0.0184 (13)	0.0171 (13)	0.0015 (10)	0.0011 (10)	0.0012 (10)
C6	0.0333 (15)	0.0220 (14)	0.0205 (14)	-0.0038 (12)	0.0018 (12)	-0.0008 (11)
C7	0.0264 (14)	0.0200 (14)	0.0194 (13)	0.0008 (11)	0.0027 (11)	0.0010 (11)
C8	0.0256 (14)	0.0166 (13)	0.0205 (13)	0.0003 (10)	0.0002 (11)	0.0011 (10)
C9	0.0567 (19)	0.0186 (14)	0.0170 (14)	-0.0001 (13)	0.0035 (13)	0.0031 (11)
C10	0.0559 (19)	0.0238 (15)	0.0150 (13)	-0.0010 (13)	0.0005 (13)	-0.0034 (11)
C11	0.0299 (14)	0.0178 (13)	0.0215 (13)	0.0015 (11)	-0.0003 (11)	-0.0020 (11)
C12	0.0338 (15)	0.0164 (13)	0.0179 (13)	0.0007 (11)	-0.0006 (11)	0.0029 (10)
C13	0.0273 (14)	0.0163 (13)	0.0227 (14)	0.0012 (10)	0.0001 (11)	0.0001 (11)
C14	0.0291 (14)	0.0213 (14)	0.0203 (14)	0.0008 (11)	-0.0022 (11)	-0.0008 (11)
O1W	0.0619 (14)	0.0211 (10)	0.0218 (11)	-0.0011 (10)	0.0059 (10)	-0.0045 (9)
O2W	0.0323 (12)	0.0480 (14)	0.0254 (11)	-0.0050 (10)	0.0057 (9)	-0.0072 (10)
O3W	0.0375 (13)	0.0286 (12)	0.0431 (13)	-0.0053 (10)	-0.0086 (10)	0.0091 (10)
O4W	0.0310 (12)	0.0286 (12)	0.0412 (12)	0.0020 (10)	0.0078 (10)	0.0096 (10)
O5W	0.0303 (11)	0.0440 (13)	0.0238 (11)	0.0048 (10)	-0.0025 (9)	-0.0030 (10)
O6W	0.0406 (13)	0.0395 (14)	0.0476 (15)	0.0021 (11)	-0.0033 (11)	0.0162 (12)
O7W	0.0461 (14)	0.0355 (13)	0.0439 (14)	-0.0044 (11)	-0.0002 (11)	0.0143 (11)
O8W	0.0617 (16)	0.0291 (12)	0.0316 (12)	-0.0064 (11)	-0.0068 (11)	-0.0066 (10)
O9W	0.0550 (16)	0.0467 (16)	0.078 (2)	0.0185 (13)	-0.0337 (14)	-0.0271 (15)

Geometric parameters (Å, °)

Ce1—O1W	2.4493 (19)	C4—H4A	0.9300
Cel—Ol	2.4566 (18)	C5—C7	1.508 (4)
Ce1—O4W	2.486 (2)	C8—C9	1.369 (4)
Ce1—O5	2.5098 (18)	C8—C13	1.520 (3)
Cel—O2W	2.542 (2)	C9—C10	1.377 (4)
Cel—O3W	2.551 (2)	С9—Н9А	0.9300
Cel—O5W	2.573 (2)	C10—C11	1.384 (4)
Ce1—N2	2.695 (2)	C10—H10A	0.9300
Ce1—N1	2.710(2)	C11—C12	1.386 (4)
O1—C7	1.256 (3)	C11—C14	1.493 (4)
O2—C7	1.254 (3)	C12—H12A	0.9300
O3—C6	1.259 (3)	O1W—H1WA	0.828 (10)
O4—C6	1.241 (3)	O1W—H1WB	0.830 (10)
O5—C13	1.243 (3)	O2W—H2WA	0.832 (10)
O6—C13	1.255 (3)	O2W—H2WB	0.829 (10)
O7—C14	1.297 (3)	O3W—H3WA	0.833 (10)
O7—H7	0.820 (10)	O3W—H3WB	0.831 (10)
O8—C14	1.217 (3)	O4W—H4WA	0.830 (10)
N1C1	1.337 (3)	O4W—H4WB	0.828 (10)
N1—C5	1.340 (3)	O5W—H5WA	0.828 (10)
N2-C12	1.327 (3)	O5W—H5WB	0.829 (10)
N2—C8	1.343 (3)	O6W—H6WA	0.826 (10)
C1—C2	1.395 (4)	O6W—H6WB	0.827 (10)
C1—H1A	0.9300	O7W—H7WA	0.825 (10)
C2—C3	1.370 (4)	O7W—H7WB	0.826 (10)
C2—C6	1.508 (4)	O8W—H8WA	0.824 (10)
C3—C4	1.381 (4)	O8W—H8WB	0.825 (10)
С3—НЗА	0.9300	O9W—H9WA	0.825 (10)
C4—C5	1.380 (4)	O9W—H9WB	0.821 (10)
01W—Ce1—O1	136.63 (7)	С4—С3—НЗА	120.1
O1W—Ce1—O4W	81.14 (7)	C5—C4—C3	119.0 (2)
O1—Ce1—O4W	70.80 (7)	C5—C4—H4A	120.5
01W—Ce1—O5	68.06 (6)	C3—C4—H4A	120.5
01—Ce1—05	127.76 (6)	N1—C5—C4	122.3 (2)
O4W—Ce1—O5	70.87 (7)	N1—C5—C7	116.2 (2)
O1W—Ce1—O2W	71.32 (7)	C4—C5—C7	121.5 (2)
O1—Ce1—O2W	109.29 (7)	O4—C6—O3	125.8 (3)
O4W—Ce1—O2W	138.20 (7)	O4—C6—C2	117.7 (2)
O5—Ce1—O2W	122.95 (7)	O3—C6—C2	116.5 (2)
O1W—Ce1—O3W	141.81 (7)	O2—C7—O1	124.2 (2)
O1—Ce1—O3W	68.07 (7)	O2—C7—C5	118.6 (2)
O4W—Ce1—O3W	135.80 (7)	O1—C7—C5	117.2 (2)
O5-Ce1-O3W	125.42 (7)	N2—C8—C9	122.5 (2)
O2W—Ce1—O3W	72.45 (7)	N2—C8—C13	115.6 (2)
O1W—Ce1—O5W	86.90 (7)	C9—C8—C13	121.8 (2)

135.61 (7)	C8—C9—C10	119.1 (2)
138.86 (7)	С8—С9—Н9А	120.4
68.15 (7)	С10—С9—Н9А	120.4
71.37 (7)	C9—C10—C11	119.2 (2)
70.39 (7)	C9—C10—H10A	120.4
129.35 (6)	C11—C10—H10A	120.4
75.98 (6)	C10-C11-C12	117.8 (2)
76.86 (7)	C10-C11-C14	119.8 (2)
61.75 (6)	C12—C11—C14	122.4 (2)
144.87 (7)	N2-C12-C11	123.3 (2)
78.20 (7)	N2—C12—H12A	118.4
80.99 (6)	C11—C12—H12A	118.4
78.35 (7)	O5—C13—O6	125.5 (2)
62.21 (6)	O5—C13—C8	117.3 (2)
72.46 (7)	O6—C13—C8	117.2 (2)
133.10 (7)	O8—C14—O7	123.3 (2)
71.63 (7)	O8—C14—C11	121.4 (2)
101.26 (7)	O7—C14—C11	115.3 (2)
142.85 (6)	Ce1—O1W—H1WA	116 (2)
134.12 (6)	Ce1—O1W—H1WB	132 (2)
128.03 (16)	H1WA—O1W—H1WB	108 (2)
127.41 (16)	Ce1—O2W—H2WA	128 (2)
109 (3)	Ce1—O2W—H2WB	122 (2)
118.0 (2)	H2WA—O2W—H2WB	109 (2)
125.81 (17)	Ce1—O3W—H3WA	117 (2)
116.15 (16)	Ce1—O3W—H3WB	125 (2)
118.1 (2)	H3WA—O3W—H3WB	109 (2)
124.06 (16)	Ce1—O4W—H4WA	122 (2)
117.68 (16)	Ce1—O4W—H4WB	124 (2)
123.2 (2)	H4WA—O4W—H4WB	109 (2)
118.4	Ce1—O5W—H5WA	120 (2)
118.4	Ce1—O5W—H5WB	121 (2)
117.7 (2)	H5WA—O5W—H5WB	112 (2)
121.5 (2)	H6WA—O6W—H6WB	112 (2)
120.8 (2)	H7WA—O7W—H7WB	111 (2)
119.7 (3)	H8WA—O8W—H8WB	112 (2)
120.1	H9WA—O9W—H9WB	111 (2)
	135.61 (7) $138.86 (7)$ $68.15 (7)$ $71.37 (7)$ $70.39 (7)$ $129.35 (6)$ $75.98 (6)$ $76.86 (7)$ $61.75 (6)$ $144.87 (7)$ $78.20 (7)$ $80.99 (6)$ $78.35 (7)$ $62.21 (6)$ $72.46 (7)$ $133.10 (7)$ $71.63 (7)$ $101.26 (7)$ $142.85 (6)$ $134.12 (6)$ $127.41 (16)$ $109 (3)$ $118.0 (2)$ $125.81 (17)$ $116.15 (16)$ $118.1 (2)$ $124.06 (16)$ $117.68 (16)$ $123.2 (2)$ 118.4 118.4 $117.7 (2)$ $121.5 (2)$ 120.1	135.61 (7) $C8-C9-C10$ 138.86 (7) $C8-C9-H9A$ 68.15 (7) $C10-C9-H9A$ 71.37 (7) $C9-C10-C11$ 70.39 (7) $C9-C10-H10A$ 129.35 (6) $C11-C10-H10A$ 75.98 (6) $C10-C11-C12$ 76.86 (7) $C10-C11-C14$ 61.75 (6) $C12-C11-C14$ 144.87 (7) $N2-C12-H12A$ 80.99 (6) $C11-C12-H12A$ 80.99 (6) $C11-C12-H12A$ 78.35 (7) $O5-C13-O6$ 62.21 (6) $O5-C13-C8$ 72.46 (7) $O6-C13-C8$ 133.10 (7) $O8-C14-O7$ 71.63 (7) $O8-C14-C11$ 101.26 (7) $O7-C14-C11$ 142.85 (6) $Ce1-O1W-H1WA$ 134.12 (6) $Ce1-O2W-H2WA$ 109 (3) $Ce1-O2W-H2WB$ 125.81 (17) $Ce1-O3W-H3WB$ 118.0 (2) $H2WA-O2W-H2WB$ 125.81 (17) $Ce1-O3W-H3WB$ 118.1 (2) $H3WA-O3W-H3WB$ 118.1 (2) $H3WA-O3W-H3WB$ 118.4 $Ce1-O5W-H5WA$ 118.4 $Ce1-O5W-H5WA$ 118.4 $Ce1-O5W-H5WB$ 117.7 (2) $H5WA-O5W-H5WB$ 117.7 (2) $H5WA-O5W-H5WB$ 120.8 (2) $H7WA-O7W-H7WB$ 119.7 (3) $H8WA-O8W-H8WB$ 120.1 $H9WA-O9W-H9WB$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
01 <i>W</i> —H1 <i>WA</i> ···O8 <i>W</i>	0.83 (1)	1.94 (1)	2.747 (3)	165 (3)
O1 <i>W</i> —H1 <i>WB</i> ···O3 ⁱ	0.83 (1)	1.81 (1)	2.630(3)	170 (3)
O2 <i>W</i> —H2 <i>WA</i> ···O6 <i>W</i>	0.83 (1)	1.96(1)	2.779 (3)	167 (3)
$O2W$ — $H2WB$ ···O $6W^{ii}$	0.83 (1)	2.11 (2)	2.898 (3)	159 (3)
O3 <i>W</i> —H3 <i>W</i> A····O7 <i>W</i>	0.83 (1)	1.98 (1)	2.816 (3)	177 (3)
O3 <i>W</i> —H3 <i>WB</i> ···O4 ⁱⁱⁱ	0.83 (1)	2.01 (1)	2.823 (3)	165 (4)
$O4W$ — $H4WA$ ···O $7W^{iv}$	0.83 (1)	1.86 (1)	2.687 (3)	175 (3)

O4 <i>W</i> —H4 <i>WB</i> ···O9 <i>W</i>	0.83 (1)	1.88 (1)	2.689 (3)	166 (3)	
O5 <i>W</i> —H5 <i>WA</i> ···O8 ^v	0.83 (1)	1.96 (1)	2.789 (3)	175 (3)	
O5 <i>W</i> —H5 <i>WB</i> ···O2 ^{vi}	0.83 (1)	2.01 (1)	2.821 (3)	167 (4)	
O6 <i>W</i> —H6 <i>WA</i> ···O2 ^{vi}	0.83 (1)	2.04 (2)	2.823 (3)	157 (3)	
O6 <i>W</i> —H6 <i>WB</i> ···O3 ^{vii}	0.83 (1)	1.97 (3)	2.698 (3)	146 (4)	
O7 <i>W</i> —H7 <i>WA</i> ···O8 <i>W</i> ^{vii}	0.83 (1)	1.94 (1)	2.747 (4)	164 (3)	
O7 <i>W</i> —H7 <i>WB</i> ···O6 ^{viii}	0.83 (1)	2.28 (2)	3.054 (3)	157 (5)	
O7 <i>W</i> —H7 <i>WB</i> ···O8 ^v	0.83 (1)	2.45 (4)	2.898 (3)	115 (3)	
O8W—H8WA····O2 ^{ix}	0.82(1)	2.00 (2)	2.765 (3)	155 (3)	
O8W—H8WA···O1 ^{ix}	0.82(1)	2.64 (2)	3.364 (3)	148 (3)	
O8 <i>W</i> —H8 <i>WB</i> ···O7 ^{ix}	0.83 (1)	2.12 (2)	2.901 (3)	158 (4)	
O9 <i>W</i> —H9 <i>WA</i> ···O4 ^x	0.83 (1)	1.94 (1)	2.750 (3)	167 (4)	
O9 <i>W</i> —H9 <i>WB</i> ···O5 <i>W</i> ^{xi}	0.82(1)	2.33 (2)	3.087 (4)	154 (4)	
O7—H7···O6 ^{xii}	0.82(1)	1.71 (1)	2.526 (3)	173 (5)	

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+3/2, -*y*-1/2, -*z*+1; (iii) -*x*+2, -*y*-1, -*z*+1; (iv) *x*+1/2, *y*+1/2, *z*; (v) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) *x*-1/2, *y*+1/2, *z*; (vii) *x*-1/2, *y*+1/2, *z*; (viii) -*x*+3/2, *y*-1/2, -*z*+1/2; (ix) *x*, *y*+1, *z*; (x) -*x*+5/2, -*y*-1/2, -*z*+1; (ix) *x*+1/2, *y*-1/2, *z*; (xiii) *x*, *y*-1, *z*.