Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[2-(1-iminoethyl)phenolato- $\kappa^2 N, O$]nickel(II)

Ning Wang

Department of Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China Correspondence e-mail: wangning7903@yahoo.com.cn

Received 19 November 2011; accepted 29 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.062; wR factor = 0.146; data-to-parameter ratio = 14.1.

There are one and a half independent molecules in the asymmetric unit of the title compound, $[Ni(C_8H_8NO)_2]$, one of which is situated on an inversion center. In both molecules, the Ni^{II} ion is coordinated by two O and two N atoms from two Schiff base ligands in an approximate square-planar geometry. Intermolecular N-H···O hydrogen bonds link three molecules into centrosymmetric trimer. The crystal packing exhibits weak intermolecular C-H···O hydrogen bonds and voids of 37 $Å^3$.

Related literature

For general background to the use of Schiff bases in coordination chemistry, see: Haikarainen et al. (2001); Miyasaka et al. (2002). For nickel complexes with Schiff base ligands, see: Liu et al. (2006); Wang (2010). For the crystal structure of a similar copper(II) complex, see: Marongiu & Lingafelter (1971).

Experimental

Crystal data $[Ni(C_8H_8NO)_2]$

 $M_r = 327.02$

V = 1121.1 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.18 \; \mathrm{mm}$

6121 measured reflections 4190 independent reflections

2297 reflections with $I > 2\sigma(I)$

 $\mu = 1.30 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.044$

7 - 3

Triclinic, $P\overline{1}$ a = 9.1084 (10) Åb = 11.3612 (16) Å c = 11.8249 (18) Å $\alpha = 101.006 (3)^{\circ}$ $\beta = 93.049 (3)^{\circ}$ $\gamma = 109.777$ (3)

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2004) $T_{\rm min}=0.781,\;T_{\rm max}=0.799$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	H atoms treated by a mixture of
wR(F^2) = 0.146	independent and constrained
S = 0.99	refinement
4190 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
298 parameters 3 restraints	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N3-H3A\cdotsO2^{i}$ $N1-H1\cdotsO3$	0.90(1) 0.90(1)	2.16(2) 2.25(2)	3.055 (6)	172 (6) 168 (6)
$C22-H22\cdots O1^{ii}$	0.93	2.46	3.332 (6)	157 (6)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5207).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Haikarainen, A., Sipila, J., Pietikainen, P., Pajunen, A. & Mutikainen, I. (2001). Bioorg. Med. Chem. 9, 1633-1638.

Liu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306m1308.

Marongiu, G. & Lingafelter, E. C. (1971). Acta Cryst. B27, 1195-1201.

- Miyasaka, H., Clerac, R., Ishii, T., Chang, H.-C., Kitagawa, S. & Yamashita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1528-1534.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, N. (2010). Acta Cryst. E66, m1033.

supporting information

Acta Cryst. (2012). E68, m11 [doi:10.1107/S1600536811051476]

Bis[2-(1-iminoethyl)phenolato- $\kappa^2 N$,O]nickel(II)

Ning Wang

S1. Comment

The Schiff bases are a kind of versatile ligands used in coordination chemistry (Haikarainen *et al.*, 2001; Miyasaka *et al.*, 2002). The complexes derived from Schiff bases have proved to be of significant interest in the areas of catalysis, magnetism, medicinal and material chemistry. In the present paper, the title compound (I) - a new Schiff base nickel(II) complex - is reported.

The molecule of (I) is mononuclear nickel(II) complex. The asymmetric unit of (I) contains two crystallographically independent molecules, one of which is situated on inversion center. The Ni atom is coordinated by two O and two N atoms from two Schiff base ligands, forming a square planar geometry. The bond lengths related to the Ni atoms are comparable to those observed in other nickel(II) complexes with Schiff bases (Liu *et al.*, 2006; Wang, 2010), but shorter than the Cu–N and Cu–O bonds observed in a structurally similar copper(II) complex (Marongiu & Lingafelter, 1971).

Intermolecular N—H…O hydrogen bonds link three molecules in (I) into centrosymmetric trimer (Fig. 1). The crystal packing exhibits weak intermolecular C—H…O hydrogen bonds and voids of 37 Å³.

S2. Experimental

To a stirred ethanolic solution (30 ml) of 2-acetylphenol (0.136 g, 1 mmol) was added a few drops of 30% ammonia and an ethanolic solution (20 ml) of nickel(II) nitrate hexahydrate (0.291 g, 1 mmol). The final mixture was further stirred at room temperature for 1 h. The clear solution was set aside for a week, yielding red small block-shaped single crystals.

S3. Refinement

The amino H atoms were located in a difference Fourier map and were refined with distance restraints of N—H = 0.90 (1) Å. All other H atoms were positioned geometrically and were constrained as riding atoms, with C—H distances of 0.93–0.96 Å, and U_{iso} (H) set to 1.2 or 1.5 U_{eq} (C) of the parent atom. Rotating group models were used for the methyl groups. The structure contains voids of 37 Å³.

Figure 1

The hydrogen-bonded (dashed lines) trimer in (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related to the labeled ones by the symmetry operation (1 - x, 1 - y, 1 - z).

Bis[2-(1-iminoethyl)phenolato- $\kappa^2 N, O$]nickel(II)

Crystal data

[Ni(C₈H₈NO)₂] $M_r = 327.02$ Triclinic, $P\overline{1}$ a = 9.1084 (10) Å b = 11.3612 (16) Å c = 11.8249 (18) Å $a = 101.006 (3)^{\circ}$ $\beta = 93.049 (3)^{\circ}$ $\gamma = 109.777 (3)^{\circ}$ $V = 1121.1 (3) \text{ Å}^{3}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{\min} = 0.781, T_{\max} = 0.799$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.146$ S = 0.99 Z = 3 F(000) = 510 $D_x = 1.453 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 772 reflections $\theta = 2.3-24.5^{\circ}$ $\mu = 1.30 \text{ mm}^{-1}$ T = 298 K Block, red $0.20 \times 0.20 \times 0.18 \text{ mm}$

6121 measured reflections 4190 independent reflections 2297 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 25.7^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 14$

4190 reflections298 parameters3 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0585P)^2]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nil	0.5000	0.5000	0.5000	0.0392 (3)
Ni2	0.35993 (9)	0.05065 (7)	0.23238 (6)	0.0385 (3)
01	0.1878 (5)	-0.0945 (3)	0.2135 (3)	0.0472 (11)
O2	0.5346 (5)	0.1953 (3)	0.2545 (3)	0.0473 (11)
O3	0.4558 (5)	0.4475 (3)	0.3430 (3)	0.0477 (11)
N1	0.2586 (6)	0.1539 (4)	0.3058 (4)	0.0423 (12)
N2	0.4618 (6)	-0.0507 (4)	0.1545 (4)	0.0423 (12)
N3	0.4211 (6)	0.6312 (4)	0.5050 (4)	0.0416 (12)
C1	0.0143 (7)	-0.0061 (6)	0.3199 (5)	0.0451 (15)
C2	0.0540 (7)	-0.1072 (6)	0.2547 (5)	0.0445 (16)
C3	-0.0595 (8)	-0.2330 (6)	0.2351 (6)	0.0571 (18)
H3	-0.0379	-0.3009	0.1913	0.069*
C4	-0.1993 (8)	-0.2566 (7)	0.2789 (6)	0.067 (2)
H4	-0.2708	-0.3403	0.2651	0.080*
C5	-0.2365 (9)	-0.1581 (8)	0.3436 (6)	0.070 (2)
H5	-0.3316	-0.1752	0.3741	0.084*
C6	-0.1317 (8)	-0.0350 (7)	0.3621 (6)	0.0594 (19)
H6	-0.1581	0.0314	0.4039	0.071*
C7	0.1213 (7)	0.1262 (6)	0.3398 (5)	0.0423 (15)
C8	0.0716 (8)	0.2323 (6)	0.4004 (6)	0.065 (2)
H8A	0.1536	0.3133	0.4047	0.098*
H8B	0.0519	0.2216	0.4775	0.098*
H8C	-0.0226	0.2298	0.3579	0.098*
C9	0.7050 (7)	0.1099 (6)	0.1411 (5)	0.0419 (15)
C10	0.6652 (7)	0.2101 (6)	0.2071 (5)	0.0433 (15)
C11	0.7740 (8)	0.3369 (6)	0.2241 (6)	0.0563 (18)
H11	0.7512	0.4047	0.2672	0.068*
C12	0.9132 (9)	0.3605 (7)	0.1774 (6)	0.066 (2)
H12	0.9839	0.4444	0.1908	0.080*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.9520 (9)	0.2637 (9)	0.1111 (7)	0.075 (2)
H13	1.0458	0.2816	0.0787	0.090*
C14	0.8479 (8)	0.1411 (7)	0.0948 (6)	0.0613 (19)
H14	0.8730	0.0752	0.0508	0.074*
C15	0.5979 (7)	-0.0231 (5)	0.1195 (5)	0.0396 (15)
C16	0.6453 (8)	-0.1295 (6)	0.0558 (5)	0.0563 (18)
H16A	0.5654	-0.2106	0.0551	0.084*
H16B	0.7430	-0.1254	0.0941	0.084*
H16C	0.6577	-0.1204	-0.0226	0.084*
C17	0.3474 (6)	0.6042 (5)	0.3019 (5)	0.0354 (14)
C18	0.3980 (7)	0.4986 (5)	0.2679 (5)	0.0412 (15)
C19	0.3859 (7)	0.4450 (6)	0.1502 (5)	0.0491 (16)
H19	0.4205	0.3770	0.1271	0.059*
C20	0.3235 (8)	0.4911 (6)	0.0672 (6)	0.0562 (18)
H20	0.3155	0.4532	-0.0109	0.067*
C21	0.2730 (8)	0.5925 (6)	0.0987 (6)	0.0567 (18)
H21	0.2314	0.6234	0.0422	0.068*
C22	0.2843 (7)	0.6477 (6)	0.2141 (6)	0.0474 (16)
H22	0.2494	0.7159	0.2348	0.057*
C23	0.3618 (6)	0.6684 (5)	0.4228 (5)	0.0368 (14)
C24	0.3106 (9)	0.7818 (6)	0.4540 (5)	0.066 (2)
H24A	0.3309	0.8143	0.5366	0.099*
H24B	0.2000	0.7559	0.4291	0.099*
H24C	0.3680	0.8477	0.4161	0.099*
H1	0.306 (7)	0.2400 (13)	0.325 (5)	0.080*
H2	0.399 (6)	-0.134 (2)	0.139 (5)	0.080*
H3A	0.434 (8)	0.676 (5)	0.578 (2)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0459 (7)	0.0321 (6)	0.0439 (7)	0.0225 (6)	0.0028 (6)	0.0035 (5)
Ni2	0.0378 (5)	0.0330 (5)	0.0473 (5)	0.0168 (4)	0.0084 (4)	0.0063 (4)
01	0.038 (2)	0.038 (2)	0.067 (3)	0.018 (2)	0.012 (2)	0.006 (2)
O2	0.045 (3)	0.037 (2)	0.057 (3)	0.016 (2)	0.016 (2)	-0.001 (2)
O3	0.069 (3)	0.041 (2)	0.041 (3)	0.034 (2)	-0.001(2)	0.003 (2)
N1	0.047 (3)	0.035 (3)	0.044 (3)	0.017 (3)	0.003 (3)	0.004 (3)
N2	0.043 (3)	0.036 (3)	0.049 (3)	0.015 (3)	0.015 (3)	0.006 (3)
N3	0.046 (3)	0.038 (3)	0.044 (3)	0.024 (3)	0.000 (3)	0.003 (3)
C1	0.036 (4)	0.054 (4)	0.050 (4)	0.022 (3)	0.004 (3)	0.014 (3)
C2	0.036 (4)	0.046 (4)	0.058 (4)	0.018 (3)	0.005 (3)	0.023 (3)
C3	0.044 (4)	0.053 (4)	0.076 (5)	0.016 (4)	0.003 (4)	0.020 (4)
C4	0.044 (5)	0.069 (5)	0.079 (6)	0.001 (4)	0.001 (4)	0.033 (4)
C5	0.048 (5)	0.088 (6)	0.078 (6)	0.024 (5)	0.020 (4)	0.025 (5)
C6	0.045 (4)	0.073 (5)	0.067 (5)	0.026 (4)	0.014 (4)	0.021 (4)
C7	0.049 (4)	0.053 (4)	0.032 (4)	0.031 (4)	0.004 (3)	0.005 (3)
C8	0.058 (5)	0.069 (5)	0.077 (5)	0.038 (4)	0.015 (4)	0.004 (4)
C9	0.039 (4)	0.047 (4)	0.042 (4)	0.019 (3)	0.004 (3)	0.008 (3)

supporting information

C10	0.043 (4)	0.045 (4)	0.039 (4)	0.012 (3)	-0.002 (3)	0.010 (3)	
C11	0.047 (4)	0.049 (4)	0.067 (5)	0.012 (4)	0.003 (4)	0.012 (4)	
C12	0.054 (5)	0.065 (5)	0.068 (5)	0.001 (4)	0.005 (4)	0.023 (4)	
C13	0.044 (5)	0.102 (7)	0.069 (6)	0.010 (5)	0.011 (4)	0.020 (5)	
C14	0.042 (4)	0.080 (5)	0.062 (5)	0.024 (4)	0.013 (4)	0.011 (4)	
C15	0.045 (4)	0.045 (4)	0.036 (4)	0.024 (3)	0.002 (3)	0.013 (3)	
C16	0.066 (5)	0.056 (4)	0.059 (4)	0.038 (4)	0.020 (4)	0.010 (4)	
C17	0.028 (3)	0.032 (3)	0.046 (4)	0.012 (3)	0.004 (3)	0.006 (3)	
C18	0.036 (4)	0.038 (3)	0.051 (4)	0.015 (3)	0.011 (3)	0.011 (3)	
C19	0.056 (4)	0.047 (4)	0.043 (4)	0.021 (3)	0.006 (3)	0.004 (3)	
C20	0.058 (4)	0.059 (4)	0.040 (4)	0.010 (4)	-0.001 (4)	0.006 (4)	
C21	0.058 (5)	0.059 (5)	0.056 (5)	0.019 (4)	0.001 (4)	0.026 (4)	
C22	0.046 (4)	0.045 (4)	0.056 (5)	0.018 (3)	0.006 (3)	0.019 (3)	
C23	0.032 (3)	0.030 (3)	0.050 (4)	0.013 (3)	0.010 (3)	0.007 (3)	
C24	0.102 (6)	0.063 (4)	0.059 (5)	0.062 (5)	0.017 (4)	0.013 (4)	

Geometric parameters (Å, °)

Ni1—O3 ⁱ	1.816 (4)	C8—H8C	0.9600
Ni1—O3	1.816 (4)	C9—C14	1.398 (8)
Ni1—N3	1.853 (5)	C9—C10	1.417 (8)
Ni1—N3 ⁱ	1.853 (5)	C9—C15	1.459 (8)
Ni2—O1	1.817 (4)	C10—C11	1.414 (8)
Ni2—O2	1.822 (4)	C11—C12	1.374 (9)
Ni2—N1	1.847 (5)	C11—H11	0.9300
Ni2—N2	1.856 (5)	C12—C13	1.382 (10)
O1—C2	1.310(7)	C12—H12	0.9300
O2—C10	1.315 (7)	C13—C14	1.364 (9)
O3—C18	1.326 (6)	C13—H13	0.9300
N1C7	1.289 (7)	C14—H14	0.9300
N1—H1	0.902 (10)	C15—C16	1.501 (7)
N2-C15	1.283 (7)	C16—H16A	0.9600
N2—H2	0.899 (10)	C16—H16B	0.9600
N3—C23	1.294 (7)	C16—H16C	0.9600
N3—H3A	0.897 (10)	C17—C22	1.406 (7)
C1—C6	1.400 (8)	C17—C18	1.422 (7)
C1—C2	1.420 (8)	C17—C23	1.453 (7)
C1—C7	1.454 (8)	C18—C19	1.391 (8)
C2—C3	1.418 (8)	C19—C20	1.378 (8)
C3—C4	1.361 (9)	С19—Н19	0.9300
С3—Н3	0.9300	C20—C21	1.375 (8)
C4—C5	1.383 (9)	C20—H20	0.9300
C4—H4	0.9300	C21—C22	1.371 (8)
C5—C6	1.369 (9)	C21—H21	0.9300
С5—Н5	0.9300	C22—H22	0.9300
С6—Н6	0.9300	C23—C24	1.502 (7)
С7—С8	1.498 (8)	C24—H24A	0.9600
C8—H8A	0.9600	C24—H24B	0.9600

supporting information

C8—H8B	0.9600	C24—H24C	0.9600
$O3^{i}$ —Ni1—O3	180.000 (1)	C10—C9—C15	120.8 (5)
O3 ⁱ —Ni1—N3	86.81 (18)	O2-C10-C11	116.8 (6)
03—Ni1—N3	93 19 (18)	0^{2} - C10 - C9	1254(5)
$O3^{i}$ Ni1 N 3^{i}	93 19 (18)	$C_{11} - C_{10} - C_{9}$	117.9 (6)
03—Ni1—N3 ⁱ	86.81 (18)	C_{12} C_{11} C_{10} C_{10}	1203(7)
N3—Ni1—N3 ⁱ	180000(2)	C12 - C11 - H11	119.8
01—Ni2— 02	17857(18)	C10-C11-H11	119.8
01 - Ni2 - 02	93 24 (19)	C_{11} C_{12} C_{13}	122 3 (7)
$\Omega^2 = Ni^2 = N1$	87.0(2)	$C_{11} = C_{12} = H_{12}$	118.9
01 Ni2 N2	87.43 (19)	C_{13} C_{12} H_{12}	118.9
Ω^2 _Ni2_N2	92 39 (19)	C_{14} C_{13} C_{12} C_{12}	117.7(7)
N1Ni2N2	178.2(2)	C14 - C13 - H13	121.2
$C_{2}=01=Ni^{2}$	170.2(2) 127.8(4)	C_{12} C_{13} H_{13}	121.2
$C_1 = 0$ $C_2 = 0$ $C_1 = 0$	127.8(4)	$C_{12} = C_{13} = I_{113}$	121.2 123.1(7)
$C_{10} = O_2 = N_1^2$	127.0(4) 120.2(4)	C_{13} C_{14} H_{14}	118.4
C7 N1 Ni2	129.2 (4) 131.3 (4)	C_{13} C_{14} H_{14}	118.4
C7 N1 H1	108(4)	$N_{2} = C_{14} = 1114$	110.4
$N_{1}^{2} N_{1}^{1} H_{1}^{1}$	100(4)	$N_2 - C_{15} - C_{9}$	120.3(3)
$\frac{1}{12} - \frac{1}{11} - \frac{1}{11}$	121(4) 132.2(4)	$N_2 - C_{15} - C_{16}$	119.1(3) 1204(5)
C15 = N2 = H2	132.2(4)	C_{9} C_{15} C_{16} H_{16A}	120.4 (3)
C13— $IN2$ — $II2$	110 (4)	C15 - C16 - H16A	109.5
NI2 - N2 - H2	110(4)		109.5
C_{23} N2 H2A	131.0 (4)	H10A - C10 - H10B	109.5
C_{23} —N3—H3A	119 (4)		109.5
N11 - N3 - H3A	110 (4)	H16A - C16 - H16C	109.5
	119.1 (6)	H16B - C16 - H16C	109.5
C6-C1-C7	120.2 (6)	C_{22} C_{17} C_{18}	118.0 (5)
C2—C1—C7	120.6 (5)	C_{22} C_{17} C_{23}	119.9 (5)
01-02-03	117.3 (6)	C18 - C17 - C23	122.1 (5)
OI - C2 - CI	125.5 (5)	03-018-017	117.8 (5)
C3-C2-C1	117.2 (6)	03-018-017	123.3 (5)
C4—C3—C2	121.7 (7)	C19—C18—C17	118.9 (5)
С4—С3—Н3	119.2	C20—C19—C18	121.1 (6)
С2—С3—Н3	119.2	С20—С19—Н19	119.5
C3—C4—C5	121.0 (7)	С18—С19—Н19	119.5
C3—C4—H4	119.5	C21—C20—C19	120.8 (6)
C5—C4—H4	119.5	C21—C20—H20	119.6
C6—C5—C4	119.2 (7)	C19—C20—H20	119.6
С6—С5—Н5	120.4	C22—C21—C20	119.4 (6)
C4—C5—H5	120.4	C22—C21—H21	120.3
C5—C6—C1	121.9 (7)	C20—C21—H21	120.3
С5—С6—Н6	119.0	C21—C22—C17	121.9 (6)
C1—C6—H6	119.0	C21—C22—H22	119.1
N1—C7—C1	121.0 (5)	C17—C22—H22	119.1
N1—C7—C8	119.3 (6)	N3—C23—C17	121.1 (5)
C1—C7—C8	119.7 (6)	N3—C23—C24	118.8 (5)
С7—С8—Н8А	109.5	C17—C23—C24	120.1 (5)

С7—С8—Н8В	109.5	C23—C24—H24A	109.5
H8A—C8—H8B	109.5	C23—C24—H24B	109.5
С7—С8—Н8С	109.5	H24A—C24—H24B	109.5
H8A—C8—H8C	109.5	C23—C24—H24C	109.5
H8B—C8—H8C	109.5	H24A—C24—H24C	109.5
C14—C9—C10	118.7 (6)	H24B—C24—H24C	109.5
C14—C9—C15	120.5 (6)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N3—H3A····O2 ⁱ	0.90(1)	2.16 (2)	3.055 (6)	172 (6)
N1—H1…O3	0.90(1)	2.25 (2)	3.138 (6)	168 (6)
C22—H22…O1 ⁱⁱ	0.93	2.46	3.332 (6)	157 (6)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z.