

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile- $\kappa^2 N^4$, N^5]silver hexafluoridophosphate

Zi Jia Wang

Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China

Correspondence e-mail: wanchqing@yahoo.com.cn

Received 26 November 2011; accepted 29 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.090; data-to-parameter ratio = 16.7.

In the mononuclear title complex, $[Ag(C_{10}H_6N_4)_2]PF_6$, two $\kappa^2 N, N'$ -chelating 5-(pyridin-2-yl)pyrazine-2-carbonitrile ligands surround the Ag^I atom, forming a distorted N₄ tetrahedral coordination geometry. The mononuclear units are interconnected through $\pi - \pi$ interactions [centroidcentroid distances = 3.801(2) and 3.979(3)Å] and the hexafluoridophosphate anions are embedded within the interstices. $C \equiv N \cdots \pi$ interactions [N···centroid = 3.519 (2) Å] and C-H...N hydrogen-bonding interactions also occur.

Related literature

For coordination complexes with pyridyl-based ligands, see: Boudalis et al. (2003); Dunne et al. (1997); Huang et al. (2007); Wang et al. (2009). For a related complex with 5-(2-pyridyl)pyrazine-2-carbonitrile, see: Wang et al. (2010).

8106 measured reflections

 $R_{\rm int} = 0.017$

5438 independent reflections

4544 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Ag(C_{10}H_6N_4)_2]PF_6$	$\gamma = 84.809 \ (2)^{\circ}$
$M_r = 617.22$	V = 1114.5 (2) Å ³
Triclinic, P1	Z = 2
a = 8.8989 (9) Å	Mo $K\alpha$ radiation
b = 9.1711 (10) Å	$\mu = 1.05 \text{ mm}^{-1}$
c = 14.0804 (15) Å	T = 293 K
$\alpha = 77.023 \ (2)^{\circ}$	$0.38 \times 0.30 \times 0.30$ mm
$\beta = 86.926 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2007) $T_{\min} = 0.861, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	325 parameters
$vR(F^2) = 0.090$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.71 \ {\rm e} \ {\rm \AA}^{-3}$
5438 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11A\cdots N7^{i}$	0.93	2.47	3.201 (2)	135

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008): software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The author is grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5734).

References

- Boudalis, A. K., Dahan, F., Bousseksou, A., Tuchagues, J. P. & Perlepes, J. P. (2003). Dalton Trans. pp. 3411-3418.
- Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunne, S. J., Summers, L. A. & von Nagy-Felsobuki, E. I. (1997). Coord. Chem. Rev. 165, 1-92.

Huang, Y. G., Gong, Y. Q., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2007). Cryst. Growth Des. 7, 1385-1389.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wang, Z.-J., Zhang, F. & Wan, C.-Q. (2010). Acta Cryst. E66, m1232-m1233. Wang, Y., Zhao, X. Q., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2009). Cryst. Growth Des. 9, 2137-2145.

supporting information

Acta Cryst. (2012). E68, m5 [doi:10.1107/S1600536811051403]

Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile- $\kappa^2 N^4$, N^5]silver hexafluoridophosphate

Zi Jia Wang

S1. Comment

The coordination chemistry of pyridyl based ligands has intensively developed in the passed decades (Boudalis *et al.*, 2003; Dunne *et al.*, 1997; Wang *et al.*,2009). The devious rigid and/or flexible pyridyl based ligands were designed and synthesized to construct many fancy coordination frameworks (Huang *et al.* 2007). Herein, we report the structure of one new silver(I) complex ($[Ag(C_{10}H_6N_4)_2]PF_6$) derived from 5-(2-pyridyl)pyrazine-2-carbonitrile, a rigid ligand featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1).

As shown in Fig.1,two κ^2 N:N chelating 5-(2-pyridyl)pyrazine-2-carbonitrile ligands surround the Ag¹ center to form a distorted *N*4-tetrahedral coordination geometry. The Ag—N bond lengthes lie within the range of 2.289 (2)-2.472 (2)Å, with the Ag1—N5 being slight longer than the others, comparable to these in [Ag(C₁₀H₆N₄)₂]BF₄ (2.196 (2)-2.685 (2) Å), a similar complex of 5-(2-pyridyl)pyrazine-2-carbonitrile reported (Wang *et al.* 2010). The two hetero rings of one 5-(2-pyridyl)pyrazine-2-carbonitrile exhibit a dihedral angle of 29.07 (1)°, while in the other one ligand the value is 5.50 (1)°. Such two chelating ligands are almost in an orthogonal orientation, which is remarkablely different from that an anti-relationship in [Ag(C₁₀H₆N₄)₂]BF₄ reported by us (Wang *et al.* 2010). Two mononuclear units arranged in an invert center are interconnected through π (pyrazinyl)… π (pyrazinyl) (Cg1…Cg1ⁱ = 3.453 (2) Å, Cg1 = N5-C16-C17-N6-C19-C18 ring, i: -x+1, -y+2, -z+1) and C20=N8(cyano)… π (pyridyl) interactions (Table 2) to form a dimeric unit. Along the *a* axis, the dimeric units are stacked and interconnected via C11—H11A…N7^{iv}(cyano) interaction (Table 1), leading to a column motif. Along the [010] direction, the column motifs interconnect through π (pyridyl)… π (pyridyl)… π (pyridyl) interactions (Cg3…Cg2ⁱⁱ = 3.801 (2) Å, Cg2 = N4-C11-C12-C13-C14-C15 ring, ii: -x+1, -y+1, -z+1) interaction (Table 2), forming a lay in the *ab*plane. Along [001] direction, the formed layers are stacked, and π (pyridyl)… π (pyridyl) interactions (Cg3…Cg3ⁱⁱⁱ = 3.979 (3) Å, Cg3 = N1-C1-C2-C3-C4-C5, iii -x+1, -x+2, -x+2) occur to help to stablize the whole supramolecular structure with the hexa-fluorophosphate embedded within the interstices.

S2. Experimental

The ligand 5-(2-pyridyl)-2-cyanopyrazine ligand was obtained commercially. The ligand (18.1 mg, 0.2 mmol) and $AgPF_6$ (26 mg, 0.1mmol) were mixed and dissolved in 5 ml solvent of methanol (3 ml) and acetonitrile (2 ml). After stirring at room temperature for 4 hours, the resulted solution was filtrated, and the clear solution was kepted in air for slow evaporation. After about one week, the colorless block-like crystals were deposited (32.7 mg, 53% yeild).

S3. Refinement

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The atom-numbering scheme of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The C=N··· π (pyridyl) and π - π interactions between the mononuclear units, forming the dimer in the title complex.

Figure 3

The packing structure of the title complex viewed down the *a* direction, a layer formed in the *ab* plane. All non-covalent interactions are omitted for clarity.

Bis[5-(pyridin-2-yl)pyrazine-2-carbonitrile- $\kappa^2 N^4$, N^5]silver hexafluoridophosphate

Crystal data

 $[Ag(C_{10}H_6N_4)_2]PF_6$ $M_r = 617.22$ Triclinic, $P\overline{1}$ a = 8.8989 (9) Å b = 9.1711 (10) Å c = 14.0804 (15) Å $a = 77.023 (2)^{\circ}$ $\beta = 86.926 (2)^{\circ}$ $\gamma = 84.809 (2)^{\circ}$ $V = 1114.5 (2) Å^3$

Data collection

Bruker APEXII CCD area-detector	8106 measured reflections
diffractometer	5438 independent reflections
Radiation source: fine-focus sealed tube	4544 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.017$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2007)	$k = -12 \rightarrow 11$
$T_{\min} = 0.861, \ T_{\max} = 1.000$	$l = -14 \rightarrow 18$
$T_{\min} = 0.861, T_{\max} = 1.000$	$l = -14 \rightarrow 18$

Z = 2

F(000) = 608

 $\theta = 2.3 - 28.3^{\circ}$

 $\mu = 1.05 \text{ mm}^{-1}$

Block, colorless

 $0.38 \times 0.30 \times 0.30$ mm

T = 293 K

 $D_{\rm x} = 1.839 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 252 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
5438 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 0.4779P]P = (F_o^2)^2$
325 parameters	$+2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.71 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.48500 (2)	0.72149 (2)	0.719902 (13)	0.05876 (9)	
N1	0.5186 (2)	0.8140 (2)	0.85560 (14)	0.0472 (4)	
N2	0.2770 (2)	0.6575 (2)	0.83133 (14)	0.0488 (4)	
N3	0.0214 (2)	0.6780 (2)	0.95255 (15)	0.0519 (5)	

N4	0.6022 (2)	0.6137 (2)	0.60099 (14)	0.0421 (4)
N5	0.3774 (2)	0.8372 (2)	0.55962 (13)	0.0417 (4)
N6	0.3283 (2)	0.9988 (2)	0.37004 (15)	0.0512 (5)
N7	-0.2337 (3)	0.5344 (3)	0.8368 (2)	0.0701 (7)
N8	0.0293 (3)	1.2382 (3)	0.4069 (2)	0.0654 (6)
C1	0.6476 (3)	0.8679 (3)	0.8722 (2)	0.0577 (6)
H1A	0.7109	0.9045	0.8191	0.069*
C2	0.6908 (3)	0.8716 (4)	0.9636(2)	0.0644 (7)
H2A	0.7806	0.9108	0.9722	0.077*
C3	0.5984 (4)	0.8163 (4)	1.0420 (2)	0.0747 (9)
H3A	0.6266	0.8143	1.1049	0.090*
C4	0.4630(3)	0.7635 (4)	1.0269 (2)	0.0659 (7)
H4A	0.3982	0.7273	1.0793	0.079*
C5	0.4258 (3)	0.7655 (3)	0.93238 (17)	0.0471 (5)
C6	0.2814 (3)	0.7132 (3)	0.91130 (15)	0.0429 (5)
C7	0.1518 (3)	0.7245 (3)	0.97008 (17)	0.0494 (5)
H7A	0.1570	0.7666	1.0239	0.059*
C8	0.1461 (3)	0.6118 (3)	0.81258 (18)	0.0526 (6)
H8A	0.1394	0.5724	0.7577	0.063*
C9	0.0207 (3)	0.6218 (3)	0.87300 (18)	0.0478 (5)
C10	-0.1216 (3)	0.5724 (3)	0.8523 (2)	0.0555 (6)
C11	0.7058 (3)	0.4967 (3)	0.62202 (18)	0.0493 (5)
H11A	0.7194	0.4500	0.6871	0.059*
C12	0.7931 (3)	0.4422 (3)	0.5521 (2)	0.0531 (6)
H12A	0.8631	0.3601	0.5696	0.064*
C13	0.7749 (3)	0.5111 (3)	0.4566 (2)	0.0551 (6)
H13A	0.8345	0.4784	0.4080	0.066*
C14	0.6665 (3)	0.6305 (3)	0.43296 (18)	0.0474 (5)
H14A	0.6512	0.6779	0.3681	0.057*
C15	0.5814 (2)	0.6782 (2)	0.50681 (15)	0.0346 (4)
C16	0.4612 (2)	0.8042 (2)	0.48494 (15)	0.0345 (4)
C17	0.4369 (3)	0.8876 (3)	0.39062 (17)	0.0487 (5)
H17A	0.4991	0.8647	0.3398	0.058*
C18	0.2663 (2)	0.9470 (3)	0.53981 (18)	0.0453 (5)
H18A	0.2047	0.9712	0.5904	0.054*
C19	0.2421 (2)	1.0246 (2)	0.44564 (17)	0.0407 (4)
C20	0.1224 (3)	1.1448 (3)	0.4237 (2)	0.0494 (5)
P1	0.04799 (7)	1.12551 (7)	0.76794 (5)	0.04787 (15)
F5	0.0408 (3)	1.1620 (2)	0.65229 (13)	0.0903 (6)
F4	0.2221 (2)	1.0737 (3)	0.75732 (16)	0.0945 (7)
F3	-0.1266 (2)	1.1778 (3)	0.77714 (17)	0.0920 (6)
F6	0.0579 (3)	1.0844 (3)	0.88231 (14)	0.1011 (7)
F1	0.0880 (3)	1.2901 (2)	0.7634 (2)	0.1208 (9)
F2	0.0083 (3)	0.9602 (2)	0.77003 (17)	0.0918 (6)

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ag1	0.06857 (14)	0.07215 (15)	0.03810 (11)	-0.00412 (10)	0.00886 (8)	-0.02065 (9)
N1	0.0422 (10)	0.0584 (12)	0.0420 (10)	0.0000 (8)	0.0002 (8)	-0.0152 (9)
N2	0.0525 (11)	0.0576 (12)	0.0382 (10)	-0.0042 (9)	0.0012 (8)	-0.0152 (8)
N3	0.0503 (11)	0.0603 (12)	0.0461 (11)	-0.0050 (9)	0.0022 (9)	-0.0146 (9)
N4	0.0423 (9)	0.0452 (10)	0.0400 (9)	0.0016 (8)	-0.0038 (7)	-0.0136 (8)
N5	0.0372 (9)	0.0492 (10)	0.0403 (9)	0.0015 (7)	0.0019 (7)	-0.0156 (8)
N6	0.0467 (10)	0.0569 (12)	0.0464 (11)	0.0084 (9)	-0.0023 (8)	-0.0088 (9)
N7	0.0617 (14)	0.0812 (17)	0.0726 (16)	-0.0124 (13)	-0.0100 (12)	-0.0234 (13)
N8	0.0524 (12)	0.0628 (14)	0.0816 (17)	0.0149 (11)	-0.0132 (12)	-0.0223 (12)
C1	0.0458 (13)	0.0699 (17)	0.0585 (15)	-0.0028 (12)	0.0013 (11)	-0.0181 (13)
C2	0.0472 (13)	0.083 (2)	0.0680 (18)	-0.0040 (13)	-0.0085 (12)	-0.0263 (15)
C3	0.0706 (18)	0.109 (3)	0.0515 (16)	-0.0126 (17)	-0.0169 (14)	-0.0258 (16)
C4	0.0655 (16)	0.096 (2)	0.0383 (13)	-0.0135 (15)	-0.0038 (11)	-0.0151 (13)
C5	0.0469 (12)	0.0547 (13)	0.0395 (11)	-0.0005 (10)	-0.0023 (9)	-0.0114 (10)
C6	0.0481 (11)	0.0473 (12)	0.0322 (10)	-0.0012 (9)	-0.0012 (8)	-0.0071 (9)
C7	0.0528 (13)	0.0593 (14)	0.0382 (11)	-0.0051 (11)	0.0016 (9)	-0.0156 (10)
C8	0.0591 (14)	0.0607 (14)	0.0415 (12)	-0.0079 (11)	-0.0018 (10)	-0.0175 (11)
C9	0.0507 (12)	0.0477 (12)	0.0437 (12)	-0.0036 (10)	-0.0045 (10)	-0.0064 (10)
C10	0.0570 (15)	0.0587 (15)	0.0513 (14)	-0.0068 (12)	-0.0052 (11)	-0.0116 (11)
C11	0.0507 (13)	0.0499 (13)	0.0471 (13)	0.0053 (10)	-0.0126 (10)	-0.0114 (10)
C12	0.0461 (12)	0.0479 (13)	0.0665 (16)	0.0111 (10)	-0.0114 (11)	-0.0189 (12)
C13	0.0518 (13)	0.0567 (14)	0.0570 (15)	0.0116 (11)	0.0060 (11)	-0.0214 (12)
C14	0.0487 (12)	0.0505 (13)	0.0420 (12)	0.0065 (10)	0.0043 (9)	-0.0134 (10)
C15	0.0311 (9)	0.0349 (9)	0.0395 (10)	-0.0028 (7)	0.0001 (7)	-0.0121 (8)
C16	0.0302 (9)	0.0368 (10)	0.0389 (10)	-0.0037 (7)	0.0001 (7)	-0.0137 (8)
C17	0.0461 (12)	0.0562 (13)	0.0402 (12)	0.0100 (10)	0.0041 (9)	-0.0098 (10)
C18	0.0372 (10)	0.0525 (13)	0.0480 (12)	0.0043 (9)	0.0032 (9)	-0.0194 (10)
C19	0.0310 (9)	0.0394 (10)	0.0540 (13)	-0.0015 (8)	-0.0045 (8)	-0.0148 (9)
C20	0.0384 (11)	0.0507 (13)	0.0610 (15)	0.0020 (10)	-0.0063 (10)	-0.0176 (11)
P1	0.0530 (3)	0.0482 (3)	0.0428 (3)	-0.0012 (3)	0.0021 (2)	-0.0128 (3)
F5	0.1156 (16)	0.0957 (14)	0.0469 (9)	0.0363 (12)	-0.0066 (10)	-0.0060 (9)
F4	0.0560 (10)	0.1330 (19)	0.0913 (15)	0.0151 (11)	-0.0017 (10)	-0.0271 (13)
F3	0.0626 (11)	0.1042 (15)	0.1056 (16)	0.0126 (10)	0.0113 (10)	-0.0262 (13)
F6	0.1187 (17)	0.140 (2)	0.0472 (10)	-0.0087 (15)	-0.0014 (10)	-0.0267 (11)
F1	0.146 (2)	0.0698 (13)	0.160 (2)	-0.0404 (14)	0.0392 (18)	-0.0522 (15)
F2	0.1197 (17)	0.0551 (10)	0.1022 (16)	-0.0126 (10)	-0.0138 (13)	-0.0163 (10)

Geometric parameters (Å, °)

Ag1—N4	2.2887 (18)	C5—C6	1.478 (3)	
Ag1—N1	2.301 (2)	C6—C7	1.393 (3)	
Ag1—N2	2.389 (2)	C7—H7A	0.9300	
Ag1—N5	2.4714 (19)	C8—C9	1.376 (4)	
N1—C5	1.343 (3)	C8—H8A	0.9300	
N1—C1	1.342 (3)	C9—C10	1.448 (4)	

N2—C8	1.331 (3)	C11—C12	1.374 (4)
N2—C6	1.340 (3)	C11—H11A	0.9300
N3—C7	1.326 (3)	C12—C13	1.362 (4)
N3—C9	1.334 (3)	C12—H12A	0.9300
N4—C15	1.341 (3)	C13—C14	1.386 (3)
N4—C11	1.341 (3)	С13—Н13А	0.9300
N5—C16	1.331 (3)	C14—C15	1.381 (3)
N5—C18	1.339 (3)	C14—H14A	0.9300
N6—C19	1.330 (3)	C15—C16	1.492 (3)
N6—C17	1.333 (3)	C16—C17	1.393 (3)
N7—C10	1.134 (4)	С17—Н17А	0.9300
N8—C20	1.131 (3)	C18—C19	1.375 (3)
C1-C2	1 371 (4)	C18—H18A	0.9300
C1—H1A	0.9300	C19-C20	1454(3)
$C^2 - C^3$	1 371 (5)	P1F1	1.568 (2)
$C_2 = H_2 \Delta$	0.9300	P1F6	1.505(2) 1.575(2)
$C_2 = M_2 R$	1.382(4)	P1 F2	1.575(2) 1 5812(10)
C_{3} H_{2} Λ	0.0300	1 1 - 12 D1 = F4	1.3812(19) 1.5882(10)
C_{3}	0.9300	$\Gamma 1 - \Gamma 4$ D1 E5	1.3865(19)
C4 - C3	1.383 (3)	F1 - F3	1.5900 (18)
C4—H4A	0.9300	P1—F3	1.5908 (19)
N4—Ag1—N1	145.43 (7)	C8—C9—C10	121.0 (2)
N4—Ag1—N2	133.18 (7)	N7-C10-C9	179.3 (3)
N1 - Ag1 - N2	72, 30 (7)	N4-C11-C12	1233(2)
N4 $Ag1$ $N5$	69.52 (6)	N4-C11-H11A	118.4
N1 - Ag1 - N5	$132\ 63\ (7)$	C12— $C11$ — $H11A$	118.4
$N_2 \wedge g_1 N_5$	106.77(7)	C_{12} C_{12} C_{11}	118.4
112—Ag1— 113	100.77(7) 118.0(2)	$C_{13} = C_{12} = C_{11}$	110.0(2)
$C_5 = N_1 = C_1$	116.0(2) 115.17(16)	$C_{13} - C_{12} - H_{12A}$	120.7
$C_1 = N_1 = Ag_1$	113.17(10) 122.14(16)	C12 - C12 - C14	120.7
CI-NI-Agi	125.14(10)	C12 - C13 - C14	119.1 (2)
$C_8 = N_2 = C_6$	117.4 (2)	C12—C13—H13A	120.4
C8—N2—Agi	127.48 (16)	C14—C13—H13A	120.4
C6—N2—Agi	112.57 (15)	C15—C14—C13	119.2 (2)
C/—N3—C9	115.6 (2)	C15—C14—H14A	120.4
C15—N4—C11	117.90 (19)	C13—C14—H14A	120.4
C15—N4—Ag1	119.88 (13)	N4—C15—C14	121.82 (19)
C11—N4—Ag1	121.75 (15)	N4—C15—C16	117.00 (17)
C16—N5—C18	117.68 (19)	C14—C15—C16	121.18 (19)
C16—N5—Ag1	113.32 (13)	N5—C16—C17	120.12 (19)
C18—N5—Ag1	127.61 (14)	N5—C16—C15	117.60 (18)
C19—N6—C17	115.7 (2)	C17—C16—C15	122.27 (18)
N1—C1—C2	123.2 (3)	N6—C17—C16	122.8 (2)
N1—C1—H1A	118.4	N6—C17—H17A	118.6
C2—C1—H1A	118.4	C16—C17—H17A	118.6
C1—C2—C3	118.5 (3)	N5-C18-C19	120.9 (2)
C1—C2—H2A	120.8	N5-C18-H18A	119.6
C3—C2—H2A	120.8	C19—C18—H18A	119.6
C2—C3—C4	119.6 (3)	N6-C19-C18	122.76 (19)

С2—С3—НЗА	120.2	N6-C19-C20	116.0(2)
C4 - C3 - H3A	120.2	C_{18} C_{19} C_{20}	121.2(2)
$C_3 - C_4 - C_5$	120.2 118 7 (3)	N8-C20-C19	121.2(2) 1799(3)
$C_3 = C_4 = C_3$	120.7	F_1 F_1 F_6	(17).7(3)
$C_{5} = C_{4} = H_{4}$	120.7	$\begin{array}{cccc} \Gamma 1 & -\Gamma 1 & -\Gamma 0 \\ \Gamma 1 & \Gamma 1 & \Gamma 2 \end{array}$	91.37(13) 179.75(15)
С5—С4—П4А	120.7	$\Gamma I \longrightarrow \Gamma I \longrightarrow \Gamma Z$	1/8.73(13)
NI = C5 = C4	122.0(2)	FO - PI - F2	89.84 (15)
NI-C5-C6	116.7 (2)	$F1 \longrightarrow P1 \longrightarrow F4$	90.26 (15)
C4—C5—C6	121.3 (2)	F6—P1—F4	90.18 (13)
N2—C6—C7	120.2 (2)	F2—P1—F4	89.45 (13)
N2—C6—C5	117.8 (2)	F1—P1—F5	89.97 (15)
C7—C6—C5	121.9 (2)	F6—P1—F5	178.18 (13)
N3—C7—C6	122.9 (2)	F2—P1—F5	88.81 (12)
N3—C7—H7A	118.6	F4—P1—F5	88.57 (11)
С6—С7—Н7А	118.6	F1—P1—F3	89.76 (14)
N2—C8—C9	121.1 (2)	F6—P1—F3	90.52 (13)
N2—C8—H8A	119.4	F2—P1—F3	90.52 (13)
С9—С8—Н8А	119.4	F4—P1—F3	179.29 (12)
N3—C9—C8	122.9 (2)	F5—P1—F3	90.72 (12)
N3—C9—C10	116.1 (2)		()
	(_)		
N4 - Ag1 - N1 - C5	-132.25(17)	C4—C5—C6—C7	29.9 (4)
N_2 —Ag1—N1—C5	11 13 (16)	C9-N3-C7-C6	-14(4)
$N_5 Ag1 N_1 C_5$	107 90 (18)	N_{2} C6 C7 N3	21(4)
$N4 \Delta g1 N1 C1$	25.6.(3)	C_{5} C_{6} C_{7} N_{3}	-1798(2)
$N_2 A_{g1} N_1 C_1$	25.0(5)	C_{5} C_{6} C_{7} C_{7} C_{7}	179.0(2)
$N_2 - Ag_1 - N_1 - C_1$	-04.3(2)	$A_{\alpha 1} = N_2 = C_3 = C_3$	-160.12(10)
$N_{A} = 1$ $N_{A} = 0$	-94.3(2)	Agi = N2 = C0 = C9	-100.13(19)
N4 - Ag1 - N2 - C8	-43.4(3)	$C_{1} = N_{3} = C_{9} = C_{8}$	0.2 (4)
NI—AgI—N2—C8	164.3 (2)	$C/=N_{3}=C_{9}=C_{10}$	-1/9.2(2)
N5—Ag1—N2—C8	34.0 (2)	N2—C8—C9—N3	0.5 (4)
N4—Ag1—N2—C6	155.58 (14)	N2—C8—C9—C10	179.8 (2)
N1—Ag1—N2—C6	3.24 (16)	N3—C9—C10—N7	11 (29)
N5—Ag1—N2—C6	-127.02 (16)	C8—C9—C10—N7	-169 (100)
N1—Ag1—N4—C15	-124.46 (16)	C15—N4—C11—C12	1.3 (4)
N2—Ag1—N4—C15	106.73 (17)	Ag1—N4—C11—C12	-170.83 (19)
N5—Ag1—N4—C15	12.60 (15)	N4—C11—C12—C13	0.7 (4)
N1—Ag1—N4—C11	47.6 (2)	C11—C12—C13—C14	-1.9 (4)
N2—Ag1—N4—C11	-81.3 (2)	C12—C13—C14—C15	1.1 (4)
N5—Ag1—N4—C11	-175.4 (2)	C11—N4—C15—C14	-2.2(3)
N4—Ag1—N5—C16	-14.09 (14)	Ag1-N4-C15-C14	170.13 (17)
N1 - Ag1 - N5 - C16	134.22 (14)	$C_{11} = N_{4} = C_{15} = C_{16}$	177.62 (19)
N_2 —Ag1—N5—C16	-14466(14)	Ag1 - N4 - C15 - C16	-101(2)
$N4$ $\Delta g1$ $N5$ $C18$	179 8 (2)	C_{13} C_{14} C_{15} N_4	10.1(2)
$N_1 Ag1 N_5 C18$	-210(2)	$C_{13}^{13} = C_{14}^{14} = C_{15}^{15} = C_{16}^{16}$	-1788(2)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	$J_{1,2}(2)$	C13 = C14 = C13 = C10 C18 = N5 = C16 = C17	$\frac{1}{0.0}(2)$
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	+7.2(2)	10 - 10 - 10 - 17	3.1(3)
C_{3} N_{1} C_{1} C_{2}	1.9 (4)	AgI - N5 - CIO - CI/	-104.33(17)
$Ag_1 - N_1 - C_1 - C_2$	-155.3 (2)	C18 - N5 - C16 - C15	-1//.86(18)
NI-CI-C2-C3	0.7 (5)	Ag1—N5—C16—C15	14.5 (2)
C1—C2—C3—C4	-2.2 (5)	N4—C15—C16—N5	-4.1 (3)

C2—C3—C4—C5	1.2 (5)	C14—C15—C16—N5	175.7 (2)
C1—N1—C5—C4	-3.0 (4)	N4—C15—C16—C17	174.9 (2)
Ag1—N1—C5—C4	156.0 (2)	C14—C15—C16—C17	-5.3 (3)
C1—N1—C5—C6	177.3 (2)	C19—N6—C17—C16 N5—C16—C17—N6	-0.9(4) -2.1(4)
C3—C4—C5—N1	1.5 (5)	C15—C16—C17—N6	178.9 (2)
C3—C4—C5—C6	-178.8(3)	C16—N5—C18—C19	-1.2(3)
C8—N2—C6—C7	-1.3(3)	Ag1—N5—C18—C19	164.36(16)
Ag1—N2—C6—C7	161.78 (18)	C17—N6—C19—C18	2.8 (3)
C8—N2—C6—C5	-179.5 (2)	C17—N6—C19—C20	-179.4 (2)
Ag1—N2—C6—C5	-16.4 (3)	N5—C18—C19—N6	-1.8 (4)
N1—C5—C6—N2	27.7 (3)	N5-C18-C19-C20	-179.5 (2)
C4—C5—C6—N2	-152.0 (3)	N6C19C20N8	-163 (100)
N1—C5—C6—C7	-150.4 (2)	C18C19C20N8	14 (100)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C11—H11 A ···N7 ⁱ	0.93	2.47	3.201 (2)	135

Symmetry code: (i) x+1, y, z.