

V = 1028.62 (7) Å³

Mo $K\alpha$ radiation

 $0.75 \times 0.47 \times 0.32 \text{ mm}$

14620 measured reflections

2023 independent reflections

1865 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.32 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.036$

refinement

 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Z = 2

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

trans-Bis(ethylenediamine- $\kappa^2 N, N'$)bis(6methyl-2,2,4-trioxo-3,4-dihydro-1,2 λ^6 ,3oxathiazin-3-ido- κN)copper(II)

Necmi Dege,^a Güneş Demirtaş^a* and Hasan Içbudak^b

^aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ^bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey Correspondence e-mail: gunesd@omu.edu.tr

Received 25 November 2011; accepted 30 November 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.065; data-to-parameter ratio = 13.5.

In the crystal structure of the title compound, $[Cu(C_4H_4-NO_4S)_2(C_2H_8N_2)_2]$, the Cu²⁺ ion resides on a centre of symmetry. The environment of Cu²⁺ ion is a distorted octahedron. The axial bond lengths between the Cu^{II} ion and the N atoms are considerably longer than the equatorial bond distances between the Cu^{II} ion and the N atoms of the ethylenediamine ligand as a consequence of the Jahn–Teller effect. The molecular conformation is stabilized by intramolecular N–H···O hydrogen bonds. In the crystal, molecules are connected by intermolecular N–H···O hydrogen bonds into chains running along the *a* axis.

Related literature

For background to acesulfame [systematic name: 6-methyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide], see: Clauss & Jensen (1973); Duffy & Anderson (1998); O'Brien Nabors (2001); Icbudak et al. (2006) For the crystal structures of acesulfame and its metal complexes, see: Beck et al. (1985); Bulut et al. (2005); Cavicchioli et al. (2010); İcbudak et al. (2005a, 2006, 2007b); Şahin et al. (2009, 2010); Velaga et al. (2010) and for spectroscopic, thermal analysis, magnetic susceptibility and conductivity studies on metal complexes of acesulfame, see: Beck et al. (1985); İçbudak et al. (2005a,b, 2006, 2007a,b). For Cu²⁺ complexes with an octahedral coordination geometry, see: Bulut et al. (2005); İcbudak et al. (2007b); Pariya et al. (1998a,b); Şahin et al. (2010). For the Jahn-Teller effect, see: Jahn & Teller (1937). For the structural flexibility owing to the electronic configuration, see: Kozlevčar et al. (2006). For the octahedral geometry of the Cu^{2+} ion, see: Petric *et al.* (1998);

Experimental

Crystal data $\begin{bmatrix} Cu(C_4H_4NO_4S)_2(C_2H_8N_2)_2 \end{bmatrix}$ $M_r = 508.03$ Monoclinic, $P2_1/c$ a = 6.9853 (3) Å b = 17.5355 (6) Å c = 8.4092 (4) Å $\beta = 93.017$ (3)° Data collection

```
Stoe IPDS 2 diffractometer
Absorption correction: integration
```

```
(X-RED32; \text{Stoe & Cie, 2002})
T_{\min} = 0.438, T_{\max} = 0.678
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.065$ S = 1.092023 reflections 150 parameters

Table 1

Selected bond lengths (Å).

Cu1_N1	2 7434 (15)	Cu1-N3	2 0101 (14)
Cu1–N2	2.0090 (16)	Cui-115	2.0101 (14)

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N3-H3B\cdots O4$ $N2-H2A\cdots O4^{i}$ $N2-H2B\cdots O1^{ii}$ $N3-H3A\cdots O2^{iii}$	0.82 (2) 0.82 (2) 0.87 (2) 0.85 (2)	2.20 (2) 2.13 (2) 2.57 (2) 2.23 (2)	2.905 (2) 2.931 (2) 3.250 (2) 2.974 (2)	143 (2) 167 (2) 137 (2) 147 (2)
Symmetry codes: -x + 1, -y + 1, -z + 1	(i) $x + 1$,	y, z; (ii)	-x + 1, -y + 1, -x + 1, -x + 1, -y +	-z + 2; (iii)

metal-organic compounds

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors thank the Ondokuz Mayis University Research Fund for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5731).

References

- Beck, W., Ambach, E. & Nagel, U. (1985). Chem. Ber. 118, 444-449.
- Bulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228– m230.
- Cavicchioli, M., Massabni, A. C., Heinrich, T. A., Costa-Neto, C. M., Abrão, E. P., Fonseca, B. A. L., Castellano, E. E., Corbi, P. P., Lustri, W. R. & Leite, C. Q. F. (2010). J. Inorg. Biochem. 104, 533–540.
- Clauss, K. & Jensen, H. (1973). Angew. Chem. Int. Ed. Engl. 12, 869-942.
- Duffy, V. D. & Anderson, G. H. (1998). J. Am. Diet. Assoc. 98, 580–587.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- İçbudak, H., Adıyaman, E., Çetin, N., Bulut, A. & Büyükgüngör, O. (2006). Transition Met. Chem. 31, 666–672.
- İçbudak, H., Adıyaman, E., Uyanık, A. & Cakir, S. (2007a). Transition Met. Chem. 32, 864–869.
- İçbudak, H., Bulut, A., Çetin, N. & Kazak, C. (2005*a*). *Acta Cryst.* C**61**, m1–m3. İçbudak, H., Heren, Z., Uyanık, A. & Odabaşoğlu, M. (2005*b*). *J. Therm. Anal. Calorim.* **82**, 303–306.
- İçbudak, H., Uyanık, A., Bulut, A., Arıcı, C. & Ülkü, D. (2007b). Z. Kristallogr. 222, 432–436.
- Jahn, H. A. & Teller, E. (1937). Proc. R. Soc. London Ser. A, 161, 220-235.
- Kozlevčar, B., Golobič, A. & Strauch, P. (2006). Polyhedron, 25, 2824-2828.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- O'Brien Nabors, L. (2001). *Alternative Sweeteners*, 3rd ed. New York: Marcel Dekker.
- Pariya, C., Liao, F.-L., Wang, S.-L. & Chung, C.-S. (1998a). Polyhedron, 17, 547–554.
- Pariya, C., Panneerselvan, K., Chung, C.-S. & Lu, T.-H. (1998b). Polyhedron, 17, 2555–2561.
- Petric, M., Pohleven, F., Turel, I., Šegedin, P., White, A. J. P. & Williams, D. J. (1998). *Polyhedron*, **17**, 255–260.
- Şahin, Z. S., İçbudak, H. & Işık, Ş. (2009). Acta Cryst. C65, m463-m465.
- Şahin, Z. S., Sevindi, F., İçbudak, H. & Işik, Ş. (2010). Acta Cryst. C66, m314– m318.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Velaga, S. P., Vangala, V. R., Basavoju, S. & Boström, D. (2010). Chem. Commun. 46, 3562–3564.

supporting information

Acta Cryst. (2012). E68, m47-m48 [doi:10.1107/S1600536811051658]

trans-Bis(ethylenediamine- $\kappa^2 N, N'$)bis(6-methyl-2,2,4-trioxo-3,4-dihydro-1,2 λ^6 ,3-oxathiazin-3-ido- κN)copper(II)

Necmi Dege, Güneş Demirtaş and Hasan Içbudak

S1. Comment

Clauss and Jensen discovered acesulfame (Clauss & Jensen, 1973). Acesulfame (acs), (C₄H₅SO₄N), is systematically named 6-methyl-1,2,3-oxathiazin-4(3*H*)-one 2,2-dioxide and an oxathiazinone dioxide. It, meanwhile, is known as 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide or acetosulfam. Acesulfame has been widely used as a non-caloric artificial sweetener (Duffy *et al.* 1998; O'Brien Nabors, 2001) since 1988, after the FDA (US Food and Drug Administration) granted approval. Acesulfame which is nonnutritive sweetener have been widely used by the food industries to replace sugars in foods. Acesulfame is without calories and it is not digested, accumulated and changed in the human metabolism and quickly excreted from the body (Duffy *et al.*, 1998; O'Brien Nabors, 2001). Furthermore, acesulfam K can withstand high cooking temperature (Duffy *et al.*, 1998). The artificial sweetener acesulfame has not only biological importance but also interest chemical properties. Because acesulfame ion (acs) has potential donor atoms as the imino nitrogen, ring oxygen, one carbonyl and two sulfonyl O atoms, which can be utilized in forming coordination bonds with different metal ions (İçbudak *et al.*, 2006).

The crystal structures of acesulfame and its metal complexes have been reported previously (Beck *et al.*, 1985; Bulut *et al.*, 2005; Cavicchioli *et al.*, 2010; İçbudak *et al.*, 2005*a*; İçbudak *et al.*, 2006; İçbudak *et al.*, 2007*b*; Şahin *et al.*, 2009; Şahin *et al.*, 2010; Velaga *et al.*, 2010). Furthermore, NMR (Beck *et al.*, 1985), electronic (İçbudak *et al.*, 2006; İçbudak *et al.*, 2007*a*; İçbudak *et al.*, 2007*b*), IR (Beck *et al.*, 1985; İçbudak *et al.*, 2006; İçbudak *et al.*, 2007*a*; İçbudak *et al.*, 2007*b*), mass (İçbudak *et al.*, 2007*b*) spectroscopies, thermal analysis (İçbudak *et al.*, 2005*b*; İçbudak *et al.*, 2006; İçbudak *et al.*, 2007*b*), magnetic susceptibility (İçbudak *et al.*, 2006; İçbudak *et al.*, 2007*a*), conductivity (İçbudak *et al.*, 2007*b*) studies have been performed on the metal complexes of acesulme. In addition, the stability belong to different form of the acesulfame have being studied (Velaga *et al.*, 2010).

Here, we report *trans*-bis(acesulfamato-*N*)bis(ethylenediamine-N,*N'*)copper(II) coplex as shown Fig. 1. In the crystal structure, Cu²⁺ ion is six-coordination by six N atoms from two ethylenediamine and two acesulfamato ligands in a octahedron coordination geometry. Similarly, the Cu²⁺ complexes in literature had been reported in octahedron coordination geometry (Bulut *et al.*, 2005; İçbudak *et al.*, 2007*b*; Pariya *et al.*, 1998*a*; Pariya *et al.*, 1998*b*; Şahin *et al.*, 2010). The bond distances between Cu²⁺ and N atoms for the Cu1—N1, Cu1—N2 and Cu1—N3 were found as 2.7432 (15) Å, 2.0091 (15) Å and 2.0103 (14) Å, respectively. As can be seen, the Cu1—N1 bond distance longer than the Cu1—N2 and Cu1—N3 bond distances and this is called as the Jahn-Teller effect (Jahn & Teller, 1937). Cu(II) with d⁹ electronic configuration is Jahn-Teller active in an octahedron coordination sphere. Because of odd d electron occupies one of the d-orbitals, crystal structure has structural flexibility (Kozlevčar *et al.*, 2006). The crystal structure reported by (Şahin *et al.*, 2010) is similarly the our crystal structure with Jahn-Teller effect. The bond distance between N atoms in axial positions and Cu²⁺ ion had been reported as 2.7175 (16) Å by (Şahin *et al.*, 2010). The bond distances of some

crystal structures that has Jahn-Teller effect in literature are given in Table 3. Because of the N1—Cu1—N2 and N1—Cu1—N3 bond angles are 86.96 (5)° and 87.86 (5)°, repectively, the ethylenediamine group in equatorial plane and acesulfamato ligand axial position are almost perpendicular to each other. Some of the bond distances and bond angles belong to crystal structure are given in Table 1.

The title compound, *trans*-bis(acesulfamato-*N*)bis(ethylenediamine-N,*N*)copper(II), has intramolecular and intermolecular N—H···O hydrogen bonds. These hydrogen bonds play an important role for packing of molecules. The intra- and intermolecular hydrogen bonds are occurred *via* the O_{carbonyl} and O_{suphonyl} of acesulfamoto ligand which are donor atoms. Inramolecular N3—H3B···O4 and N3—H3A···O2ⁱⁱⁱ [symmetry code iii: -*x* + 1, -*y* + 1, -*z* + 1] hydrogen bonds are between the N atoms of ethylenediamine coordinated with the Cu²⁺ ion and the O_{sulfonyl} and O_{carbonyl} of acesulfamato ligand. The geometric parameters of these hydrogen bonds are 0.82 (2) Å, 2.21 (82) Å, 2.905 (2) Å, 144 (2)° and 0.87 (2) Å, 2.21 (2) Å, 2.973 (2) Å, 147.5 (19)°, respectively. The intermolecular hydrogen bonds are between the N atoms of ethylenediamine of acesulfamato ligand. The details of hydrogen bonds are shown in Table 2. In the crystal structure, the N2—H2B···O1 intermolecular hydrogen bonds along the [001] produce $R_2^2(12)$ motifs. Similarly, the N2—H2A···O4 intermolecular hydrogen bonds along the [100] create $R_2^2(12)$ ring motifs. The two-dimensional sheet are produced by the combination of the N—H···O intermolecular hydrogen bonds at the *ac*-plane as shown Fig. 2.

S2. Experimental

The complex was prepared upon treatment of 1 mmol $[Cu(acs)_2(H_2O)]$ in 50 ml e thanol with 2 mmol e thylenediamine in 50 ml e thanol by stirring for 2 h at 50 C temperature. After cooling the reaction mixture to room temperature, the formed violet crystals were filtered, washed with alcohol and acetone, and dried in vacuum.

S3. Refinement

H atoms attached to C atoms were positioned geometrically [C—H=0.930, 0.960 or 0.970 Å] and treated as riding with $U_{iso}(H)=1.2U_{eq}(C)$ and $1.5U_{eq}(C)$. Other H atoms were located in a difference map and refined freely.

Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The two-dimensional sheet structure of the title compound with the hydrogen bonds.

trans-Bis(ethylenediamine- $\kappa^2 N$, N')bis(6-methyl-2,2,4- trioxo-3,4-dihydro-1,2 λ^6 ,3-oxathiazin-3-ido- κN)copper(II)

Crystal data

 $[Cu(C_4H_4NO_4S)_2(C_2H_8N_2)_2]$ $M_r = 508.03$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.9853 (3) Å*b* = 17.5355 (6) Å c = 8.4092 (4) Å $\beta = 93.017 (3)^{\circ}$ V = 1028.62 (7) Å³ Z = 2

Data collection

Stoe IPDS 2	14620 measured reflections
diffractometer	2023 independent reflections
Radiation source: fine-focus sealed tube	1865 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
w-scan rotation	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: integration	$h = -8 \rightarrow 8$
(X-RED32; Stoe & Cie, 2002)	$k = -21 \rightarrow 21$
$T_{\min} = 0.438, \ T_{\max} = 0.678$	$l = -10 \rightarrow 10$

F(000) = 526 $D_{\rm x} = 1.640 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 28030 reflections $\theta = 2.3 - 28.0^{\circ}$ $\mu = 1.32 \text{ mm}^{-1}$ T = 296 KPrism, violet $0.75 \times 0.47 \times 0.32 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.065$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
2023 reflections	and constrained refinement
150 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0309P)^2 + 0.3289P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1200 (3)	0.55390 (12)	0.7619 (2)	0.0473 (4)	
C2	0.0228 (3)	0.59733 (13)	0.8823 (2)	0.0526 (5)	
H2	-0.0916	0.5781	0.9177	0.063*	
C3	0.0877 (3)	0.66195 (12)	0.9434 (2)	0.0483 (4)	
C4	-0.0106 (3)	0.71462 (15)	1.0516 (3)	0.0697 (6)	
H4A	-0.1428	0.7001	1.0557	0.105*	
H4B	-0.0027	0.7659	1.0123	0.105*	
H4C	0.0502	0.7118	1.1565	0.105*	
C5	0.5868 (3)	0.36713 (11)	0.6731 (2)	0.0508 (5)	
H5A	0.6284	0.3403	0.7697	0.061*	
H5B	0.6471	0.3438	0.5839	0.061*	
C6	0.3715 (3)	0.36387 (11)	0.6486 (3)	0.0539 (5)	
H6A	0.3310	0.3119	0.6257	0.065*	
H6B	0.3123	0.3805	0.7444	0.065*	
Cu1	0.5000	0.5000	0.5000	0.03988 (11)	
N1	0.2955 (2)	0.57689 (9)	0.71898 (19)	0.0463 (4)	
N2	0.6387 (2)	0.44831 (9)	0.6856 (2)	0.0435 (3)	
N3	0.3116 (2)	0.41394 (9)	0.51456 (19)	0.0404 (3)	
01	0.5067 (2)	0.59346 (10)	0.96415 (19)	0.0653 (4)	
O2	0.5347 (2)	0.68003 (9)	0.7441 (2)	0.0699 (5)	
03	0.26382 (19)	0.69080 (8)	0.90616 (17)	0.0539 (3)	
O4	0.0388 (2)	0.49923 (9)	0.6937 (2)	0.0673 (4)	
S 1	0.41531 (6)	0.63171 (3)	0.83179 (6)	0.04469 (13)	
H2A	0.755 (3)	0.4555 (13)	0.691 (3)	0.054 (6)*	

supporting information

H2B	0.602 (3)	0.4650 (14)	0.776 (3)	0.055 (6)*
H3A	0.307 (3)	0.3881 (13)	0.429 (3)	0.053 (6)*
H3B	0.207 (3)	0.4339 (13)	0.526 (3)	0.056 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0385 (9)	0.0561 (11)	0.0471 (10)	-0.0003 (8)	0.0002 (8)	-0.0054 (8)
C2	0.0387 (9)	0.0678 (13)	0.0519 (11)	-0.0002 (9)	0.0087 (8)	-0.0065 (10)
C3	0.0449 (10)	0.0571 (11)	0.0431 (10)	0.0123 (9)	0.0050 (8)	0.0006 (8)
C4	0.0639 (14)	0.0801 (16)	0.0662 (13)	0.0215 (12)	0.0136 (11)	-0.0153 (12)
C5	0.0590 (12)	0.0398 (9)	0.0528 (11)	0.0035 (8)	-0.0063 (9)	0.0067 (8)
C6	0.0591 (12)	0.0445 (10)	0.0572 (12)	-0.0135 (9)	-0.0039 (9)	0.0123 (9)
Cu1	0.03489 (16)	0.03563 (17)	0.04820 (19)	-0.00665 (12)	-0.00646 (12)	0.00794 (12)
N1	0.0406 (8)	0.0500 (8)	0.0490 (8)	-0.0035 (7)	0.0078 (6)	-0.0126 (7)
N2	0.0373 (8)	0.0447 (8)	0.0481 (9)	-0.0025 (7)	-0.0033 (7)	0.0033 (7)
N3	0.0376 (8)	0.0395 (8)	0.0440 (9)	-0.0044 (6)	0.0015 (6)	-0.0016 (7)
01	0.0569 (9)	0.0708 (10)	0.0666 (9)	0.0108 (7)	-0.0126 (7)	-0.0071 (8)
O2	0.0744 (10)	0.0541 (8)	0.0844 (11)	-0.0224 (8)	0.0346 (9)	-0.0203 (8)
O3	0.0539 (8)	0.0445 (7)	0.0645 (9)	0.0039 (6)	0.0136 (7)	-0.0125 (6)
O4	0.0424 (8)	0.0831 (11)	0.0769 (10)	-0.0151 (7)	0.0067 (7)	-0.0326 (9)
S1	0.0409 (2)	0.0421 (2)	0.0517 (3)	-0.00205 (18)	0.00779 (19)	-0.01057 (19)

Geometric parameters (Å, °)

C1—O4	1.239 (2)	С6—Н6В	0.9700
C1—N1	1.357 (2)	Cu1—N1	2.7434 (15)
C1—C2	1.462 (3)	Cu1—N1 ⁱ	2.7434 (15)
C2—C3	1.315 (3)	Cu1—N2	2.0090 (16)
С2—Н2	0.9300	Cu1—N2 ⁱ	2.0090 (16)
C3—O3	1.381 (2)	Cu1—N3	2.0101 (14)
C3—C4	1.489 (3)	Cu1—N3 ⁱ	2.0102 (14)
C4—H4A	0.9600	N1—S1	1.5624 (15)
C4—H4B	0.9600	N2—H2A	0.82 (2)
C4—H4C	0.9600	N2—H2B	0.87 (2)
C5—N2	1.471 (2)	N3—H3A	0.85 (2)
C5—C6	1.509 (3)	N3—H3B	0.82 (2)
С5—Н5А	0.9700	O1—S1	1.4218 (16)
С5—Н5В	0.9700	O2—S1	1.4220 (15)
C6—N3	1.472 (2)	O3—S1	1.6292 (13)
С6—Н6А	0.9700		
O4—C1—N1	120.27 (17)	N1—Cu1—N3	87.84 (5)
O4—C1—C2	120.39 (17)	N2—Cu1—N2 ⁱ	180.0
N1—C1—C2	119.23 (17)	N2—Cu1—N3	84.51 (7)
C3—C2—C1	123.79 (18)	N2 ⁱ —Cu1—N3	95.49 (7)
С3—С2—Н2	118.1	N2—Cu1—N3 ⁱ	95.49 (7)
C1—C2—H2	118.1	N2 ⁱ —Cu1—N3 ⁱ	84.51 (7)

C2—C3—O3	121.33 (17)	N3—Cu1—N3 ⁱ	180.00 (6)
C2—C3—C4	127.8 (2)	C1—N1—S1	118.93 (13)
O3—C3—C4	110.88 (19)	C5—N2—Cu1	105.92 (12)
C3—C4—H4A	109.5	C5—N2—H2A	113.1 (16)
C3—C4—H4B	109.5	Cu1—N2—H2A	114.0 (16)
H4A—C4—H4B	109.5	C5—N2—H2B	107.8 (16)
C3—C4—H4C	109.5	Cu1—N2—H2B	112.0 (15)
H4A—C4—H4C	109.5	H2A—N2—H2B	104 (2)
H4B—C4—H4C	109.5	C6—N3—Cu1	109.52 (11)
N2—C5—C6	106.65 (15)	C6—N3—H3A	109.1 (15)
N2—C5—H5A	110.4	Cu1—N3—H3A	110.4 (15)
С6—С5—Н5А	110.4	C6—N3—H3B	112.7 (16)
N2—C5—H5B	110.4	Cu1—N3—H3B	106.0 (16)
С6—С5—Н5В	110.4	H3A—N3—H3B	109 (2)
H5A—C5—H5B	108.6	C3—O3—S1	117.28 (12)
N3—C6—C5	108.84 (15)	O1—S1—O2	115.84 (11)
N3—C6—H6A	109.9	O1—S1—N1	112.91 (10)
С5—С6—Н6А	109.9	O2—S1—N1	111.20 (9)
N3—C6—H6B	109.9	O1—S1—O3	105.87 (9)
С5—С6—Н6В	109.9	O2—S1—O3	103.33 (8)
H6A—C6—H6B	108.3	N1—S1—O3	106.64 (8)
N1—Cu1—N2	86.97 (6)		
O4—C1—C2—C3	-170.1 (2)	N2—Cu1—N3—C6	1.51 (14)
N1—C1—C2—C3	6.0 (3)	N2 ⁱ —Cu1—N3—C6	-178.49 (14)
C1—C2—C3—O3	-5.2 (3)	C2—C3—O3—S1	-18.8 (2)
C1—C2—C3—C4	172.3 (2)	C4—C3—O3—S1	163.28 (15)
N2-C5-C6-N3	52.2 (2)	C1-N1-S1-01	78.40 (17)
O4—C1—N1—S1	-165.20 (17)	C1—N1—S1—O2	-149.42 (16)
C2-C1-N1-S1	18.7 (3)	C1—N1—S1—O3	-37.46 (18)
C6—C5—N2—Cu1	-49.01 (18)	C3—O3—S1—O1	-82.80 (15)
N3—Cu1—N2—C5	26.67 (13)	C3—O3—S1—O2	154.99 (15)
N3 ⁱ —Cu1—N2—C5	-153.33 (13)	C3—O3—S1—N1	37.68 (16)
C5—C6—N3—Cu1	-29.1 (2)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>B</i> ···O4	0.82 (2)	2.20 (2)	2.905 (2)	143 (2)
N2—H2A····O4 ⁱⁱ	0.82 (2)	2.13 (2)	2.931 (2)	167 (2)
N2—H2B····O1 ⁱⁱⁱ	0.87 (2)	2.57 (2)	3.250 (2)	137 (2)
N3—H3A····O2 ⁱ	0.85 (2)	2.23 (2)	2.974 (2)	147 (2)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2.