metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ_3 -N'-oxidopyridine-2-carboximidamidato(2-)]bis[μ_2 -N'-oxidopyridine-2-carboximidamidato(1-)]tetrapyridinetetranickel(II) dinitrate

Xiao-Hui Deng^a* and Jing-Wen Ran^b

^aInstitute of Cash Crops, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China, and ^bKey Laboratory of Industrial Ecology and Environmental Engineering (MOE) and State Key Laboratory of Fine Chemicals, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China Correspondence e-mail: xhdengyy@yahoo.com.cn

Received 8 November 2011; accepted 6 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.100; data-to-parameter ratio = 12.3.

The title compound, $[Ni_4(C_6H_5N_3O)_2(C_6H_6N_3O)_2(C_5H_5N)_4]$ -(NO₃)₂, is a tetranuclear nickel complex containing a singledecker cation, located on an inversion center. The two unique Ni^{II} cations are *N*,*N'*,*N''*,*O*-chelated by carboximidamidate-(2–) and carboximidamidate(1–) anions, forming a distorted four-coordinate planar structure, while the other two Ni^{II} atoms are *N*,*N'*,*O*,*O'*-chelated by the same bridging ligands and two pyridine molecules, affording six-coordinated metals in an octahedral geometry. The cation is isostructural with the complex crystallized with perchlorate counter-ions in place of nitrate.

Related literature

For similar metal complexes, see: Kou *et al.* (2010); Papatriantafyllopoulou *et al.* (2008); Inglis *et al.* (2010); Deng & Ran (2011). For the synthesis of the ligand pyridine-2amidoxine, see: Bernasek (1957).

Experimental

Crystal data

 $\begin{bmatrix} Ni_4(C_6H_5N_3O)_2(C_6H_6N_3O)_2 - & \beta \\ (C_5H_5N)_4 \end{bmatrix} (NO_3)_2 & \gamma \\ M_r = 1217.80 & M \\ Triclinic, P\overline{1} & 2 \\ a = 10.4356 (6) \text{ Å} & M \\ b = 10.7190 (8) \text{ Å} & \beta \\ c = 11.2908 (9) \text{ Å} & \alpha \\ a = 92.041 (6)^\circ & 0 \\ \end{bmatrix}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\rm min} = 0.569, T_{\rm max} = 0.606$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.100$ S = 1.034286 reflections 349 parameters 8 restraints $\begin{array}{l} \beta = 98.240 \ (5)^{\circ} \\ \gamma = 100.870 \ (5)^{\circ} \\ V = 1224.96 \ (15) \\ \text{Å}^{3} \\ Z = 1 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu = 1.59 \ \text{mm}^{-1} \\ T = 293 \ \text{K} \\ 0.40 \times 0.38 \times 0.35 \ \text{mm} \end{array}$

9481 measured reflections 4286 independent reflections 3180 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This research was supported by the Natural Science Fund of Hubei Province (project ZRZ0140) and the National Natural Science Foundation of China (Nos. 20877013 and 20837001). The authors thank Professor Z.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2397).

References

- Bernasek, E. (1957). J. Org. Chem. 22, 1263-1263.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, X.-H. & Ran, J.-W. (2011). Acta Cryst. E67, m1323-m1324.
- Inglis, R., Stoumpos, C. C., Prescimone, A., Siczek, M., Lis, T., Wernsdorfer, W., Brechin, E. K. & Milios, C. J. (2010). Dalton Trans. 39, 4777–4785.
- Kou, H.-Z., An, G.-Y., Ji, C.-M., Wang, B.-W. & Cui, A.-L. (2010). Dalton Trans. 39, 9604–9610.
- Papatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Almeida Paz, F. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). *Dalton Trans.* pp. 3153–3155.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m40 [doi:10.1107/S1600536811052524]

Bis[μ_3 -N'-oxidopyridine-2-carboximidamidato(2–)]bis[μ_2 -N'-oxidopyridine-2-carboximidamidato(1–)]tetrapyridinetetranickel(II) dinitrate

Xiao-Hui Deng and Jing-Wen Ran

S1. Comment

Transition metal compounds have been of great interest for many years. They are very important in the development of coordination chemistry. As an extension of work on the structural characterization of Ni compounds, we report here the crystal structure of a new tetranuclear nickel(II) compound.

The title compound is a tetranuclear nickel(II) complex (Fig. 1). The Ni(II) ions form a central deck, but show different coordinate ways. Two are coordinated by N_{py} , N_{ox} , N_{am} and O_{ox} (where the abbreviations *py*, *ox* and *am* are for the 2-pyridyl, oximate and deprotonated amino donor atoms, respectively), and form square planar geometry. The other two metals are coordinated by two solvent pyridine molecules and two chelating ligands, to form octahedral structures. The different coordinated-nickel(II) ions are bridged by the O_{ox} groups. The Ni1—(N,O) bond lengths are longer than the Ni2—(N,O) bond distances. The angles are also different, as a consequence of the different coordination geometry. The cation is indeed isostructural with that found in the perchlorate complex previously reported (Kou *et al.*, 2010). Related complexes have also been characterized (Papatriantafyllopoulou *et al.*, 2008; Inglis *et al.*, 2010; Deng & Ran, 2011).

S2. Experimental

The synthesis of pyridine-2-amidoxine was carried out according to literature (Bernasek, 1957). The title compound was synthesized by adding a solution of Ni(NO₃)₂.6H₂O (290.8 mg, 1 mmol) in H₂O (20 ml) to a solution of the ligand (137 mg, 1 mmol) and NaOH (80 mg, 2 mmol) in ethanol/water (3:1, 20 ml). The mixture was stirred at room temperature. The resulting precipitate was collected and dissolved in a mixture of ethanol and pyridine (3:1 ν/ν) at 50°C. The solution was allowed to stand in air for one day, and brown crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature. Yield: 56%. Anal. Calcd for C₄₄H₄₂N₁₈Ni₄O₁₀: C 43.40, H 3.48, N 20.70. Found: C 43.36, H 3.53, N 20.94. IR (KBr, cm⁻¹): $\nu = 3412$ (w), 3268 (w), 1605 (s), 1552 (s), 1390 (very strong), 1347 (very strong), 1107 (m), 1450 (very strong), 705 (m).

S3. Refinement

H atoms were included in calculated positions with C—H = 0.93, N—H = 0.86 Å. For the terminal amine group N6, H atoms were refined freely, with restrained N—H bond lengths. Other H atoms were refined using a riding-model. Isotropic displacement parameters for H atoms were calculated as $U_{iso}(H) = 1.2 U_{eq}(C,N)$. Anisotropic displacement parameters for nitrate O atoms were restrained.

Figure 1

The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.

Bis[μ_3 -N'-oxidopyridine-2-carboximidamidato(2-)]bis[μ_2 -N'- oxidopyridine-2-

$carboximidamidato (1-)] tetrapyridinetetranickel (II)\ dinitrate$

$= 1$ $= 1.651 \text{ Mg m}^{-3}$
b K α radiation, $\lambda = 0.71073$ A ll parameters from 1738 reflections $3.1-21.8^{\circ}$ 1.59 mm^{-1}
293 K ock, brown 0 × 0.38 × 0.35 mm
B1 measured reflections B6 independent reflections B0 reflections with $I > 2\sigma(I)$ = 0.039 $x = 25.0^{\circ}, \theta_{min} = 2.5^{\circ}$ = -12 \rightarrow 12 -12 \rightarrow 11 -9 \rightarrow 13

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
4286 reflections	and constrained refinement
349 parameters	$w = 1/[\sigma^2(F_o^2) + (0.042P)^2 + 0.4034P]$
8 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}_{2}^{2}

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.45373 (3)	0.49188 (3)	0.66926 (3)	0.03132 (8)
Ni2	0.37394 (3)	0.76610 (3)	0.59280 (3)	0.03324 (9)
N1	0.45234 (18)	0.33873 (19)	0.77743 (18)	0.0346 (5)
N2	0.50204 (18)	0.35800 (18)	0.55758 (17)	0.0323 (5)
N3	0.65769 (18)	0.5669 (2)	0.75316 (18)	0.0364 (6)
N4	0.24626 (18)	0.4257 (2)	0.61209 (18)	0.0371 (6)
N5	0.35016 (18)	0.70397 (19)	0.74148 (18)	0.0340 (5)
N6	0.2507 (2)	0.7224 (2)	0.9124 (2)	0.0510 (7)
H6B	0.2906 (19)	0.6662 (16)	0.941 (2)	0.061*
H6A	0.235 (2)	0.7699 (19)	0.9683 (17)	0.061*
N7	0.27188 (19)	0.88369 (19)	0.63555 (19)	0.0384 (6)
N8	0.4142 (2)	0.82419 (19)	0.44897 (19)	0.0419 (6)
H8	0.3973	0.8940	0.4213	0.050*
N9	0.2065 (2)	0.9041 (2)	0.1685 (2)	0.0626 (7)
01	0.40271 (16)	0.60905 (16)	0.79192 (15)	0.0387 (5)
O2	0.45424 (15)	0.63556 (15)	0.55536 (14)	0.0346 (4)
O3	0.2335 (2)	0.9647 (2)	0.2650 (2)	0.0902 (8)
O4	0.1740 (3)	0.7894 (3)	0.1607 (3)	0.1234 (12)
05	0.2296 (4)	0.9553 (3)	0.0776 (2)	0.1285 (11)
C1	0.4176 (3)	0.3303 (3)	0.8866 (2)	0.0477 (8)
H1	0.3974	0.4017	0.9234	0.057*
C2	0.4105 (3)	0.2203 (3)	0.9472 (3)	0.0562 (9)
H2	0.3853	0.2171	1.0229	0.067*
C3	0.4416 (3)	0.1151 (3)	0.8929 (3)	0.0532 (9)
H3	0.4352	0.0390	0.9307	0.064*
C4	0.4823 (2)	0.1235 (3)	0.7816 (2)	0.0410 (7)
H4	0.5067	0.0544	0.7447	0.049*
C5	0.4859 (2)	0.2373 (2)	0.7266 (2)	0.0332 (7)
C6	0.5271 (2)	0.2555 (2)	0.6071 (2)	0.0321 (6)
C7	0.7375 (2)	0.4927 (3)	0.8027 (3)	0.0480 (8)
H7	0.7126	0.4051	0.7865	0.058*
C8	0.8551 (3)	0.5403 (3)	0.8767 (3)	0.0612 (10)
H8A	0.9077	0.4856	0.9101	0.073*

C9	0 8934 (3)	0.6691 (3)	0.9002(3)	0.0651.(11)
С9 H0	0.0934 (3)	0.0091 (3)	0.9002 (3)	0.0031 (11)
C10	0.9709	0.7055	0.9517 0.8465 (3)	0.078° 0.0587 (10)
U10	0.8154 (5)	0.7400 (5)	0.8585	0.0307 (10)
C11	0.6403	0.6020 (2)	0.0303	0.070*
	0.0988 (2)	0.6920 (3)	0.7743 (3)	0.0443 (8)
HII	0.6461	0.7455	0.7385	0.053*
C12	0.1604 (2)	0.4086 (3)	0.6893 (3)	0.0497 (8)
H12	0.1919	0.4291	0.7703	0.060*
C13	0.0283 (3)	0.3623 (3)	0.6558 (3)	0.0654 (10)
H13	-0.0283	0.3513	0.7128	0.079*
C14	-0.0189 (3)	0.3328 (3)	0.5370 (4)	0.0708 (11)
H14	-0.1084	0.3014	0.5114	0.085*
C15	0.0670 (3)	0.3500 (3)	0.4571 (3)	0.0664 (10)
H15	0.0371	0.3309	0.3757	0.080*
C16	0.1994 (3)	0.3960 (3)	0.4975 (3)	0.0503 (8)
H16	0.2577	0.4065	0.4419	0.060*
C17	0.2787 (2)	0.7604 (2)	0.8038 (2)	0.0374 (7)
C18	0.2286 (2)	0.8621 (2)	0.7436 (2)	0.0368 (7)
C19	0.1439 (2)	0.9336 (3)	0.7852 (3)	0.0529 (9)
H19	0.1137	0.9175	0.8577	0.063*
C20	0.1053 (3)	1.0286 (3)	0.7175 (3)	0.0617 (10)
H20	0.0498	1.0780	0.7446	0.074*
C21	0.1495 (3)	1.0495 (3)	0.6102 (3)	0.0585 (9)
H21	0.1239	1.1132	0.5639	0.070*
C22	0.2319 (3)	0.9763 (3)	0.5708 (3)	0.0488 (8)
H22	0.2608	0.9911	0.4975	0.059*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.03287 (15)	0.03169 (17)	0.03126 (17)	0.01043 (13)	0.00592 (13)	0.00101 (13)
Ni2	0.03572 (15)	0.03221 (17)	0.03383 (17)	0.01353 (13)	0.00404 (14)	-0.00190 (14)
N1	0.0353 (10)	0.0386 (12)	0.0312 (11)	0.0102 (9)	0.0055 (9)	0.0022 (9)
N2	0.0389 (10)	0.0305 (11)	0.0292 (11)	0.0082 (9)	0.0091 (9)	0.0017 (9)
N3	0.0362 (10)	0.0368 (11)	0.0378 (12)	0.0088 (9)	0.0088 (9)	0.0010 (10)
N4	0.0353 (10)	0.0417 (12)	0.0359 (11)	0.0088 (9)	0.0094 (9)	0.0008 (10)
N5	0.0349 (10)	0.0352 (11)	0.0342 (11)	0.0131 (9)	0.0061 (9)	-0.0035 (9)
N6	0.0580 (12)	0.0633 (15)	0.0413 (13)	0.0282 (11)	0.0185 (11)	0.0009 (12)
N7	0.0382 (10)	0.0358 (11)	0.0401 (12)	0.0112 (9)	-0.0011 (10)	-0.0057 (10)
N8	0.0565 (12)	0.0310 (11)	0.0451 (13)	0.0210 (10)	0.0133 (10)	0.0057 (10)
N9	0.0837 (15)	0.0704 (16)	0.0504 (15)	0.0439 (13)	0.0246 (13)	0.0175 (13)
01	0.0458 (9)	0.0395 (10)	0.0345 (9)	0.0176 (8)	0.0066 (8)	0.0013 (8)
02	0.0448 (8)	0.0347 (9)	0.0299 (9)	0.0180 (7)	0.0107 (7)	0.0037 (7)
03	0.1267 (16)	0.1144 (18)	0.0461 (13)	0.0744 (14)	0.0053 (13)	-0.0103 (13)
04	0.151 (2)	0.079 (2)	0.138 (3)	-0.0138 (19)	0.064 (2)	0.0039 (19)
05	0.243 (3)	0.0930 (18)	0.0743 (17)	0.0774 (19)	0.044 (2)	0.0252 (15)
C1	0.0498 (14)	0.0572 (18)	0.0381 (15)	0.0145 (13)	0.0081 (13)	0.0043 (14)
C2	0.0515 (15)	0.085 (2)	0.0355 (15)	0.0151 (16)	0.0099 (13)	0.0193 (15)

C3	0.0510 (15)	0.0552 (18)	0.0529 (17)	0.0102 (14)	0.0022 (14)	0.0224 (14)
C4	0.0394 (13)	0.0388 (15)	0.0435 (15)	0.0086 (12)	-0.0005 (12)	0.0071 (12)
C5	0.0303 (11)	0.0332 (13)	0.0347 (14)	0.0042 (10)	0.0028 (11)	0.0020 (11)
C6	0.0332 (11)	0.0274 (13)	0.0346 (13)	0.0061 (10)	0.0017 (11)	-0.0005 (11)
C7	0.0384 (13)	0.0400 (15)	0.0642 (19)	0.0097 (12)	0.0004 (14)	0.0037 (14)
C8	0.0447 (15)	0.0564 (18)	0.078 (2)	0.0122 (14)	-0.0111 (16)	0.0107 (17)
C9	0.0421 (15)	0.068 (2)	0.074 (2)	0.0004 (16)	-0.0103 (16)	-0.0087 (18)
C10	0.0466 (15)	0.0435 (17)	0.081 (2)	0.0018 (14)	0.0066 (16)	-0.0128 (16)
C11	0.0408 (13)	0.0436 (15)	0.0519 (17)	0.0136 (12)	0.0096 (13)	0.0020 (13)
C12	0.0398 (13)	0.0613 (18)	0.0474 (17)	0.0088 (13)	0.0082 (13)	-0.0031 (15)
C13	0.0443 (15)	0.060(2)	0.096 (3)	0.0107 (14)	0.0270 (16)	-0.0007 (19)
C14	0.0370 (14)	0.0539 (19)	0.115 (3)	0.0073 (14)	-0.0030 (17)	-0.021 (2)
C15	0.0554 (17)	0.069 (2)	0.066 (2)	0.0117 (16)	-0.0144 (16)	-0.0184 (18)
C16	0.0502 (15)	0.0569 (18)	0.0431 (16)	0.0117 (14)	0.0049 (13)	-0.0024 (14)
C17	0.0351 (12)	0.0359 (14)	0.0399 (15)	0.0069 (11)	0.0032 (11)	-0.0039 (12)
C18	0.0296 (11)	0.0358 (14)	0.0429 (15)	0.0048 (11)	0.0025 (11)	-0.0080 (12)
C19	0.0429 (13)	0.0549 (17)	0.066 (2)	0.0190 (13)	0.0163 (14)	-0.0062 (15)
C20	0.0542 (15)	0.0575 (18)	0.083 (2)	0.0327 (14)	0.0162 (16)	-0.0032 (17)
C21	0.0596 (15)	0.0522 (17)	0.070 (2)	0.0339 (13)	0.0009 (16)	0.0024 (16)
C22	0.0548 (15)	0.0467 (16)	0.0481 (17)	0.0232 (13)	0.0015 (14)	0.0013 (14)

Geometric parameters (Å, °)

Nil—Ol	2.0295 (17)	С2—Н2	0.9300
Ni1—O2	2.0410 (17)	C3—C4	1.383 (4)
Ni1—N2	2.057 (2)	С3—Н3	0.9300
Ni1—N1	2.080 (2)	C4—C5	1.386 (4)
Ni1—N4	2.1435 (19)	C4—H4	0.9300
Ni1—N3	2.1900 (18)	C5—C6	1.481 (3)
Ni2—O2	1.8278 (17)	C6—N8 ⁱ	1.333 (3)
Ni2—N8	1.836 (2)	C7—C8	1.381 (4)
Ni2—N5	1.860 (2)	С7—Н7	0.9300
Ni2—N7	1.888 (2)	C8—C9	1.368 (4)
N1—C1	1.335 (3)	C8—H8A	0.9300
N1—C5	1.339 (3)	C9—C10	1.367 (4)
N2—C6	1.303 (3)	С9—Н9	0.9300
$N2-O2^i$	1.414 (3)	C10—C11	1.378 (4)
N3—C11	1.331 (3)	C10—H10	0.9300
N3—C7	1.336 (3)	C11—H11	0.9300
N4—C16	1.321 (3)	C12—C13	1.367 (4)
N4—C12	1.330 (3)	C12—H12	0.9300
N5—C17	1.306 (3)	C13—C14	1.366 (5)
N501	1.350 (3)	C13—H13	0.9300
N6-C17	1.360 (3)	C14—C15	1.354 (5)
N6—H6B	0.843 (15)	C14—H14	0.9300
N6—H6A	0.851 (16)	C15—C16	1.380 (4)
N7—C22	1.347 (3)	C15—H15	0.9300
N7—C18	1.373 (3)	C16—H16	0.9300

N8—C6 ⁱ	1.333 (3)	C17—C18	1.446 (4)
N8—H8	0.8600	C18—C19	1.391 (4)
N9—O4	1,209 (4)	C19—C20	1.381 (4)
N9—O5	1.214 (4)	C19—H19	0.9300
N9-03	1.217(3)	C20—C21	1 368 (5)
$\Omega^2 - N^2^i$	1.217(3)	C20—H20	0.9300
C1-C2	1 380 (4)	$C_{21} - C_{22}$	1 376 (4)
C1—H1	0.9300	C21—H21	0.9300
$C^2 - C^3$	1 378 (4)	C22—H22	0.9300
02 00	1.570(1)		0.9500
O1—Ni1—O2	87.43 (7)	С2—С3—Н3	120.2
01—Ni1—N2	173.84 (8)	С4—С3—Н3	120.2
02—Ni1—N2	98.68 (7)	C3—C4—C5	118.3 (3)
01—Ni1—N1	95.46 (8)	C3—C4—H4	120.8
02—Ni1—N1	176.94 (7)	С5—С4—Н4	120.8
N2—Ni1—N1	78.42 (8)	N1—C5—C4	122.4 (2)
01—Ni1—N4	86.65 (7)	N1—C5—C6	115.2(2)
02—Ni1—N4	90.52 (7)	C4—C5—C6	122.4(2)
N2—Ni1—N4	92.45 (8)	$N2-C6-N8^{i}$	120.5(2)
N1—Ni1—N4	88.65 (8)	N2-C6-C5	115.1(2)
01—Ni1—N3	85.71 (7)	$N8^{i}$ —C6—C5	124.5(2)
02—Ni1—N3	92.71 (7)	N3—C7—C8	123.0(3)
N2—Ni1—N3	94.77 (8)	N3—C7—H7	118.5
N1—Ni1—N3	88.52 (7)	С8—С7—Н7	118.5
N4—Ni1—N3	171.56 (8)	C9—C8—C7	119.1 (3)
O2—Ni2—N8	84.38 (8)	С9—С8—Н8А	120.5
O2—Ni2—N5	91.50 (8)	С7—С8—Н8А	120.5
N8—Ni2—N5	174.27 (9)	C10—C9—C8	118.7 (3)
O2—Ni2—N7	172.23 (8)	С10—С9—Н9	120.7
N8—Ni2—N7	100.57 (9)	С8—С9—Н9	120.7
N5—Ni2—N7	83.96 (9)	C9—C10—C11	118.9 (3)
C1—N1—C5	118.4 (2)	C9—C10—H10	120.6
C1—N1—Ni1	127.43 (19)	C11—C10—H10	120.6
C5—N1—Ni1	114.07 (16)	N3—C11—C10	123.4 (3)
$C6-N2-O2^{i}$	109.62 (19)	N3—C11—H11	118.3
C6—N2—Ni1	115.76 (16)	C10-C11-H11	118.3
O2 ⁱ —N2—Ni1	132.58 (14)	N4—C12—C13	123.4 (3)
C11—N3—C7	116.9 (2)	N4—C12—H12	118.3
C11—N3—Ni1	119.41 (17)	C13—C12—H12	118.3
C7—N3—Ni1	122.75 (16)	C14—C13—C12	118.7 (3)
C16—N4—C12	117.3 (2)	C14—C13—H13	120.7
C16—N4—Ni1	120.50 (18)	C12—C13—H13	120.7
C12—N4—Ni1	122.16 (16)	C15—C14—C13	118.7 (3)
C17—N5—O1	117.4 (2)	C15—C14—H14	120.7
C17—N5—Ni2	116.46 (18)	C13—C14—H14	120.7
01—N5—Ni2	126.15 (15)	C14—C15—C16	119.5 (3)
C17—N6—H6B	115.2 (18)	C14—C15—H15	120.2
C17—N6—H6A	125.6 (16)	С16—С15—Н15	120.2

H6B—N6—H6A	111 (2)	N4—C16—C15	122.4 (3)
C22—N7—C18	118.8 (2)	N4—C16—H16	118.8
C22—N7—Ni2	128.23 (19)	C15—C16—H16	118.8
C18—N7—Ni2	112.85 (17)	N5—C17—N6	122.5 (2)
C6 ⁱ —N8—Ni2	111.45 (17)	N5-C17-C18	113.5 (2)
C6 ⁱ —N8—H8	124.3	N6-C17-C18	123.9 (2)
Ni2—N8—H8	124.3	N7—C18—C19	120.8 (3)
O4—N9—O5	116.9 (3)	N7—C18—C17	113.1 (2)
O4—N9—O3	121.9 (3)	C19—C18—C17	126.1 (3)
O5—N9—O3	120.3 (3)	C20-C19-C18	119.3 (3)
N5-01-Ni1	112.62 (13)	С20—С19—Н19	120.4
N2 ⁱ —O2—Ni2	114.03 (13)	C18—C19—H19	120.4
N2 ⁱ —O2—Ni1	127.93 (13)	C21—C20—C19	119.4 (3)
Ni2—O2—Ni1	117.72 (8)	С21—С20—Н20	120.3
N1—C1—C2	122.7 (3)	С19—С20—Н20	120.3
N1—C1—H1	118.6	C20—C21—C22	120.0 (3)
C2—C1—H1	118.6	C20—C21—H21	120.0
C3—C2—C1	118.5 (3)	C22—C21—H21	120.0
С3—С2—Н2	120.8	N7—C22—C21	121.8 (3)
C1—C2—H2	120.8	N7—C22—H22	119.1
C2—C3—C4	119.5 (3)	C21—C22—H22	119.1

Symmetry code: (i) -x+1, -y+1, -z+1.