

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Diaquabis(2,2'-bipyrimidine- $\kappa^2 N^1, N^{1'}$)manganese(II) bis(perchlorate) nitromethane disolvate monohydrate

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 28 October 2011; accepted 30 October 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.059; wR factor = 0.199; data-to-parameter ratio = 17.4.

The asymmetric unit of the title compound, $[Mn(C_8H_6N_4)_2-(H_2O)_2](ClO_4)_2\cdot 2CH_3NO_2\cdot H_2O$, contains one half of a cationic Mn^{II} complex, a ClO_4^- anion, a nitromethane solvent molecule and one half-molecule of water. The complex molecule and the solvent water molecule are located on a twofold rotation axis. In the complex, the Mn^{II} ion has a distorted *cis*-N_4O_2 octahedral coordination geometry defined by four N atoms of the two chelating 2,2'-bipyrimidine ligands and two O atoms of water molecules. In the crystal, the complex cations, anions and solvent molecules are linked by intermolecular $O-H\cdots N$, $O-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds. The ClO_4^- anion is disordered over two sites with a site-occupancy factor of 0.512 (12) for the major component.

Related literature

For related structures of 2,2'-bipyrimidine Mn^{II} complexes, see: Hong *et al.* (1996); Ha (2011).

 $2 \text{ ClO}_4^- \cdot 2 \text{ CH}_3 \text{NO}_2 \cdot \text{H}_2 \text{O}$

 $\beta = 101.756 \ (3)^{\circ}$

Z = 4

V = 2980.1 (8) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.27 \times 0.24 \text{ mm}$

10552 measured reflections

3617 independent reflections

2302 reflections with $I > 2\sigma(I)$

 $\mu = 0.71 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.044$

Experimental

Crystal data

 $[Mn(C_8H_6N_4)_2(H_2O)_2](ClO_4)_2-2CH_3NO_2\cdot H_2O$ $M_r = 746.31$ Monoclinic, C2/c a = 21.913 (3) Å b = 9.1956 (14) Å c = 15.106 (2) Å

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.830, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	208 parameters
$wR(F^2) = 0.199$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
3617 reflections	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected bond lengths (Å).

Mn1-O1	2.176 (2)	Mn1-N4	2.249 (3)
Mn1-N1	2.258 (3)		

Table 2 Hydrogen-bond geometry (Å, °).

D_H4	<i>D_</i> Н	H4	D4	D_H4
<i>D</i> -11**71	$D = \Pi$	11	D	D-II···/I
$O1-H1A\cdots N2^{i}$	0.84	2.48	3.286 (4)	162
$O1 - H1A \cdots N3^{i}$	0.84	2.29	2.879 (4)	128
$O1 - H1B \cdots O8^{ii}$	0.84	1.97	2.757 (4)	156
$O8-H8A\cdots O2^{iii}$	0.84	1.95	2.792 (4)	175
C3−H3···O6 ^{iv}	0.95	2.54	3.346 (5)	143
$C6-H6\cdots O3A^{v}$	0.95	2.58	3.239 (7)	127
$C8-H8\cdots O6^{vi}$	0.95	2.59	3.175 (5)	120
$C9-H9C\cdots O5A$	0.98	2.52	3.388 (9)	148

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x, y + 1, z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This study was supported financially by Chonnam National University, 2010.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5372).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Ha, K. (2011). Acta Cryst. E67, m656-m657.

Hong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335–2340.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

supporting information

Acta Cryst. (2011). E67, m1679-m1680 [https://doi.org/10.1107/S1600536811045612]

cis-Diaquabis(2,2'-bipyrimidine- $\kappa^2 N^1$, N^1 ')manganese(II) bis(perchlorate) nitromethane disolvate monohydrate

Kwang Ha

S1. Comment

Mononuclear Mn^{II} complexes of 2,2'-bipyrimidine (bpym; $C_8H_6N_4$) ligand and ClO_4^- anions, such as $[Mn(bpym)_2(H_2O)_2]$ (ClO_4)₂.2H₂O (Hong *et al.*, 1996) and $[Mn(bpym)_2(CH_3CN)(H_2O)][Mn(bpym)_2(H_2O)_2](ClO_4)_4.2H_2O$ (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, $[Mn(bpym)_2(H_2O)_2](CIO_4)_2.2CH_3NO_2.H_2O$, contains one half of a cationic Mn^{II} complex, a CIO₄ anion, a nitromethane solvent molecule and one half of a water molecule (Fig. 1). The complex and the solvent water molecule are located on the twofold rotation axis running in the [010] direction and passing through the atoms Mn1 and O8. In the complex, the Mn^{II} ion has a distorted *cis*-N₄O₂ octahedral coordination geometry defined by four N atoms of the two chelating bpym ligands and two O atoms of water ligands. The tight N—Mn—N chelating angles contribute the distortion of the ocataheron [<N1—Mn1—N4 = 72.59 (10)°], which result in non-linear *trans* axes [<O1—Mn1—N4ⁱ = 161.83 (10)° and <N1—Mn1—N1ⁱ = 174.05 (14)°); symmetry code i: *-x*,*y*,1/2 *- z*]. The Mn—N bond lengths are almost equivalent and slightly longer than the Mn—O bond (Table 1). The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.087 (3) Å] is 75.44 (4)°. In the crystal structure, the complex molecules, anions and solvent molecules are linked by intermolecular O—H···N, O—H···O and C—H···O hydrogen bonds (Fig. 2, Table 2). The complexes are stacked in columns along the *b* axis. When viewed down the *c* axis, the successive complexes stack in the opposite manner. In the columns, several intermolecular π - π interactions between adjacent pyrimidine rings are present, the shortest ring centroid-centroid distance being 3.688 (2) Å.

S2. Experimental

To a solution of $Mn(ClO_4)_2.6H_2O$ (0.3617 g, 0.999 mmol) in EtOH (20 ml) was added 2,2'-bipyrimidine (0.1586 g, 1.003 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with EtOH and dried at 50°C, to give a pale yellow powder (0.2713 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH₃NO₂ solution.

S3. Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH₃) and U_{iso} (H) = $1.2U_{eq}$ (C) or $1.5U_{eq}$ (methyl C)]. Oxygen-bound H atoms were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and U_{iso} (H) = $1.5 U_{eq}$ (O). The ClO₄⁻ anion displayed relatively large displacement factors and low electron density peaks so that the anion appears to be highly disordered. Atoms O3, O4 and O5 were modelled isotropically as disordered over two sites with a site occupancy factor of 0.51 (1) for the major component. The highest peak (1.05 e Å⁻³) and the deepest hole (-0.69 e Å⁻³) in the difference Fourier map are located 0.81 Å and 0.66 Å from the atoms O3A and O5B, respectively.

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms. Unlabelled atoms are related to the reference atoms by the (-x, y, 1/2 - z) symmetry transformation. For the sake of clarity, only the major disorder component is shown.

Figure 2

View of the unit-cell contents of the title compound. Hydrogen-bond interactions and the bonds of the disordered anions are drawn with dashed lines.

cis-Diaquabis(2,2'-bipyrimidine- $\kappa^2 N^1$, N^1)manganese(II) bis(perchlorate) nitromethane disolvate monohydrate

F(000) = 1524 $D_x = 1.663 \text{ Mg m}^{-3}$

 $\theta = 2.4-28.2^{\circ}$ $\mu = 0.71 \text{ mm}^{-1}$ T = 200 KStick, pale yellow $0.35 \times 0.27 \times 0.24 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 3688 reflections

Crystal data

$[Mn(C_8H_6N_4)_2(H_2O)_2](ClO_4)_2 \cdot 2CH_3NO_2 \cdot H_2O$
$M_r = 746.31$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
a = 21.913 (3) Å
b = 9.1956 (14) Å
c = 15.106 (2) Å
$\beta = 101.756 \ (3)^{\circ}$
V = 2980.1 (8) Å ³
Z = 4

Data collection

Bruker SMART 1000 CCD	10552 measured reflections
diffractometer	3617 independent reflections
Radiation source: fine-focus sealed tube	2302 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -29 \rightarrow 29$
(SADABS; Bruker, 2000)	$k = -12 \rightarrow 11$
$T_{\min} = 0.830, \ T_{\max} = 1.000$	$l = -19 \rightarrow 20$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1146P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.69 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
0.0000	1.01984 (8)	0.2500	0.0309 (2)	
-0.04920 (12)	1.1867 (3)	0.31005 (16)	0.0423 (6)	
-0.0587	1.1700	0.3602	0.063*	
-0.0409	1.2738	0.3007	0.063*	
	x 0.0000 -0.04920 (12) -0.0587 -0.0409	x y 0.0000 1.01984 (8) -0.04920 (12) 1.1867 (3) -0.0587 1.1700 -0.0409 1.2738	x y z 0.0000 1.01984 (8) 0.2500 -0.04920 (12) 1.1867 (3) 0.31005 (16) -0.0587 1.1700 0.3602 -0.0409 1.2738 0.3007	xyz U_{iso}^*/U_{eq} 0.00001.01984 (8)0.25000.0309 (2)-0.04920 (12)1.1867 (3)0.31005 (16)0.0423 (6)-0.05871.17000.36020.063*-0.04091.27380.30070.063*

N1	0.08152 (12)	1.0071 (3)	0.36833 (18)	0.0303 (6)	
N2	0.10990 (15)	0.9334 (3)	0.52207 (18)	0.0391 (7)	
N3	0.00248 (13)	0.7724 (3)	0.49924 (18)	0.0380 (7)	
N4	-0.02402 (13)	0.8545 (3)	0.34722 (17)	0.0319 (6)	
C1	0.13597 (16)	1.0798 (4)	0.3762 (2)	0.0375 (8)	
H1	0.1446	1.1316	0.3258	0.045*	
C2	0.17891 (18)	1.0796 (4)	0.4560 (3)	0.0445 (9)	
H2	0.2177	1.1284	0.4615	0.053*	
C3	0.16387 (19)	1.0065 (4)	0.5278 (3)	0.0475 (9)	
Н3	0.1928	1.0074	0.5840	0.057*	
C4	0.07234 (15)	0.9357 (3)	0.4413 (2)	0.0306 (7)	
C5	0.01357 (15)	0.8495 (4)	0.42920 (19)	0.0305 (7)	
C6	-0.04833 (19)	0.6911 (4)	0.4843 (3)	0.0478 (9)	
H6	-0.0573	0.6347	0.5328	0.057*	
C7	-0.08852 (19)	0.6844 (4)	0.4026 (3)	0.0507 (10)	
H7	-0.1242	0.6232	0.3931	0.061*	
C8	-0.07495 (17)	0.7708 (4)	0.3339 (3)	0.0414 (8)	
H8	-0.1023	0.7706	0.2764	0.050*	
Cl1	0.35218 (4)	0.06501 (11)	0.11241 (6)	0.0450 (3)	
O2	0.41653 (14)	0.0994 (4)	0.1248 (2)	0.0629 (9)	
O3A	0.3343 (3)	-0.0585 (8)	0.0577 (5)	0.055 (2)*	0.512 (12)
O4A	0.3261 (3)	0.0650 (8)	0.1904 (4)	0.059 (2)*	0.512 (12)
O5A	0.3161 (3)	0.1896 (8)	0.0597 (6)	0.073 (2)*	0.512 (12)
O3B	0.3318 (4)	-0.0053 (11)	0.0305 (7)	0.080 (3)*	0.488 (12)
O4B	0.3488 (5)	-0.0100 (12)	0.1960 (7)	0.099 (3)*	0.488 (12)
O5B	0.3249 (5)	0.2003 (12)	0.1121 (9)	0.107 (4)*	0.488 (12)
O6	0.29523 (16)	0.4196 (3)	0.2512 (2)	0.0631 (9)	
07	0.25300 (16)	0.2492 (4)	0.3104 (2)	0.0721 (10)	
N5	0.25476 (15)	0.3308 (3)	0.2479 (2)	0.0434 (7)	
C9	0.2066 (2)	0.3224 (7)	0.1673 (3)	0.0796 (16)	
H9A	0.1940	0.4209	0.1464	0.119*	
H9B	0.1706	0.2702	0.1808	0.119*	
H9C	0.2225	0.2705	0.1201	0.119*	
O8	0.0000	0.4351 (4)	0.2500	0.0667 (13)	
H8A	0.0238	0.4889	0.2866	0.100*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0335 (4)	0.0380 (4)	0.0215 (4)	0.000	0.0063 (3)	0.000
01	0.0559 (16)	0.0434 (14)	0.0278 (12)	0.0113 (12)	0.0088 (11)	-0.0014 (10)
N1	0.0273 (14)	0.0367 (15)	0.0272 (14)	0.0031 (11)	0.0065 (11)	-0.0004 (10)
N2	0.0457 (18)	0.0441 (17)	0.0240 (14)	0.0028 (13)	-0.0013 (13)	-0.0013 (12)
N3	0.0424 (17)	0.0447 (17)	0.0299 (15)	0.0020 (13)	0.0143 (13)	0.0051 (12)
N4	0.0356 (15)	0.0363 (15)	0.0253 (13)	0.0012 (11)	0.0099 (11)	-0.0006 (11)
C1	0.0350 (19)	0.042 (2)	0.0363 (18)	-0.0022 (14)	0.0091 (15)	-0.0024 (14)
C2	0.033 (2)	0.049 (2)	0.048 (2)	-0.0020 (15)	0.0001 (17)	-0.0024 (17)
C3	0.045 (2)	0.054 (2)	0.038 (2)	-0.0024 (17)	-0.0055 (17)	-0.0064 (17)

supporting information

C4	0.0337 (17)	0.0338 (17)	0.0261 (16)	0.0058 (13)	0.0101 (13)	-0.0031 (12)
C5	0.0358 (18)	0.0358 (17)	0.0219 (15)	0.0020 (13)	0.0106 (13)	-0.0016 (12)
C6	0.052 (2)	0.054 (2)	0.042 (2)	-0.0003 (18)	0.0208 (19)	0.0139 (17)
C7	0.049 (2)	0.050(2)	0.056 (2)	-0.0115 (18)	0.017 (2)	0.0038 (19)
C8	0.038 (2)	0.047 (2)	0.0386 (19)	-0.0077 (15)	0.0080 (16)	-0.0030 (15)
Cl1	0.0442 (6)	0.0512 (6)	0.0427 (5)	-0.0063 (4)	0.0164 (4)	-0.0097 (4)
O2	0.0440 (17)	0.075 (2)	0.068 (2)	-0.0179 (14)	0.0072 (15)	0.0119 (16)
O6	0.067 (2)	0.064 (2)	0.064 (2)	-0.0197 (16)	0.0253 (17)	-0.0072 (15)
O7	0.078 (2)	0.065 (2)	0.078 (2)	0.0016 (17)	0.0283 (19)	0.0181 (18)
N5	0.0447 (19)	0.0431 (18)	0.0466 (19)	0.0030 (14)	0.0189 (15)	-0.0066 (14)
C9	0.052 (3)	0.120 (5)	0.061 (3)	0.019 (3)	-0.004 (2)	-0.035 (3)
08	0.062 (3)	0.045 (2)	0.085 (3)	0.000	-0.004 (2)	0.000

Geometric parameters (Å, °)

Mn1—O1	2.176 (2)	C4—C5	1.491 (5)
Mn1—O1 ⁱ	2.176 (2)	C6—C7	1.364 (6)
Mn1—N1 ⁱ	2.258 (3)	С6—Н6	0.9500
Mn1—N1	2.258 (3)	C7—C8	1.386 (5)
Mn1—N4 ⁱ	2.249 (3)	С7—Н7	0.9500
Mn1—N4	2.249 (3)	C8—H8	0.9500
O1—H1A	0.8400	Cl1—O5B	1.380 (11)
O1—H1B	0.8400	Cl1—O3B	1.387 (9)
N1-C4	1.332 (4)	Cl1—O4A	1.410 (6)
N1—C1	1.351 (4)	Cl1—O3A	1.413 (6)
N2-C4	1.326 (4)	Cl1—O2	1.420 (3)
N2—C3	1.348 (5)	Cl1—O4B	1.454 (10)
N3—C6	1.322 (5)	Cl1—O5A	1.521 (8)
N3—C5	1.337 (4)	O6—N5	1.199 (4)
N4—C8	1.337 (4)	O7—N5	1.213 (4)
N4—C5	1.341 (4)	N5—C9	1.441 (5)
C1—C2	1.369 (5)	С9—Н9А	0.9800
C1—H1	0.9500	С9—Н9В	0.9800
C2—C3	1.372 (6)	С9—Н9С	0.9800
C2—H2	0.9500	O8—H8A	0.8400
С3—Н3	0.9500		
O1—Mn1—O1 ⁱ	90.36 (14)	N3—C5—C4	118.5 (3)
O1-Mn1-N4 ⁱ	161.83 (10)	N4C5C4	116.6 (3)
O1 ⁱ —Mn1—N4 ⁱ	90.14 (9)	N3—C6—C7	123.1 (3)
O1—Mn1—N4	90.14 (9)	N3—C6—H6	118.4
O1 ⁱ —Mn1—N4	161.83 (10)	С7—С6—Н6	118.5
N4 ⁱ —Mn1—N4	94.98 (13)	C6—C7—C8	117.0 (4)
O1-Mn1-N1 ⁱ	89.27 (9)	С6—С7—Н7	121.5
O1 ⁱ —Mn1—N1 ⁱ	94.93 (9)	C8—C7—H7	121.5
$N4^{i}$ — $Mn1$ — $N1^{i}$	72.59 (10)	N4—C8—C7	121.2 (4)
$N4$ — $Mn1$ — $N1^i$	103.25 (10)	N4—C8—H8	119.4
O1—Mn1—N1	94.93 (9)	С7—С8—Н8	119.4

O1 ⁱ —Mn1—N1	89.27 (9)	O5B—C11—O3B	110.9 (6)
N4 ⁱ —Mn1—N1	103.25 (10)	O5B—C11—O4A	75.8 (5)
N4—Mn1—N1	72.59 (10)	O3B—C11—O4A	129.3 (5)
N1 ⁱ —Mn1—N1	174.05 (14)	O5B—C11—O3A	130.9 (6)
Mn1—O1—H1A	118.8	O4A—C11—O3A	112.2 (4)
Mn1—O1—H1B	117.4	O5B—C11—O2	102.5 (5)
H1A—O1—H1B	115.3	O3B-C11-O2	110.6 (4)
C4—N1—C1	116.7 (3)	O4A— $C11$ — $O2$	116.8 (3)
C4—N1—Mn1	116.8(2)	O_{3A} C_{11} O_{2}	113.9(3)
C1 - N1 - Mn1	125.9(2)	0.5B-C11-0.4B	109.4 (6)
C4 - N2 - C3	125.9(2) 115.0(3)	O_{3B} C_{11} O_{4B}	119.1 (0)
C6-N3-C5	116.6(3)	O_{3A} C_{11} O_{4B}	940(5)
C8 - N4 - C5	110.0(3) 117.1(3)	Ω^2 Cl1 Ω^4 B	102.5(5)
C8—N4—Mn1	126.2(2)	$O_2 O_1 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	81.1 (5)
C_{5} N4 Mn1	120.2(2) 116.4(2)	044 Cl1 -054	1005(4)
$C_3 = N_4 = N_{1111}$	110.4(2) 120.9(3)	$O_{A} C_{11} O_{5A}$	100.3(4) 104.3(4)
N1 = C1 = C2	120.9 (3)	$O_2 C_1 O_5 A$	104.3(4) 107.3(3)
$N_{1} = C_{1} = M_{1}$	119.0	$O_2 = C_1 = O_5 A$	107.3(3) 124.2(5)
$C_2 = C_1 = H_1$	119.0	O4B - CII - O3A	134.3(3)
C1 = C2 = C3	117.0 (4)	00 - N5 - 07	122.0 (4)
C1 = C2 = H2	121.2	06 - N5 - C9	118.6 (4)
C3—C2—H2	121.2	$0/-N_{0}$	119.4 (4)
N2-C3-C2	122.9 (3)	N5—C9—H9A	109.5
N2—C3—H3	118.6	N5—C9—H9B	109.5
С2—С3—Н3	118.6	H9A—C9—H9B	109.5
N2—C4—N1	126.8 (3)	N5—C9—H9C	109.5
N2—C4—C5	117.6 (3)	H9A—C9—H9C	109.5
N1—C4—C5	115.7 (3)	H9B—C9—H9C	109.5
N3—C5—N4	124.9 (3)		
O1 M ₂ 1 N1 $C4$	76.5 (2)	C_1 C_2 C_2 N_2	15(6)
OI = MIII = NI = C4	70.3(2)	C1 - C2 - C3 - N2	1.5(0)
$M_{\rm min} = M_{\rm min} = M_{\rm min} = M_{\rm min}$	100.8(2)	$C_3 = N_2 = C_4 = N_1$	-3.2(5)
N4 - Min1 - N1 - C4	-103.2(2)	$C_3 = N_2 = C_4 = C_3$	1/0.5(3)
N4—Mn1—N1—C4	-12.1(2)	CI = NI = C4 = N2	3.0 (5)
OI-MnI-NI-CI	-94.8 (3)	MnI - NI - C4 - N2	-169.1(3)
OI-MnI-NI-CI	-4.5 (3)	C1 - N1 - C4 - C5	-1/6.6(3)
N4 ⁱ —Mn1—N1—C1	85.5 (3)	Mn1—N1—C4—C5	11.2 (3)
N4—Mn1—N1—C1	176.6 (3)	C6—N3—C5—N4	2.8 (5)
O1—Mn1—N4—C8	89.8 (3)	C6—N3—C5—C4	-176.3 (3)
O1 ⁱ —Mn1—N4—C8	-178.6 (3)	C8—N4—C5—N3	-3.1 (5)
N4 ⁱ —Mn1—N4—C8	-72.7 (3)	Mn1—N4—C5—N3	171.0 (2)
N1 ⁱ —Mn1—N4—C8	0.6 (3)	C8—N4—C5—C4	176.0 (3)
N1—Mn1—N4—C8	-175.0 (3)	Mn1—N4—C5—C4	-9.8 (3)
O1—Mn1—N4—C5	-83.7 (2)	N2-C4-C5-N3	-1.5 (4)
O1 ⁱ —Mn1—N4—C5	7.9 (5)	N1—C4—C5—N3	178.2 (3)
$N4^{i}$ — $Mn1$ — $N4$ — $C5$	113.8 (2)	N2-C4-C5-N4	179.4 (3)
$N1^{i}$ — $Mn1$ — $N4$ — $C5$	-173.0 (2)	N1-C4-C5-N4	-0.9 (4)
N1—Mn1—N4—C5	11.4 (2)	C5—N3—C6—C7	-0.3 (6)
C4—N1—C1—C2	-0.4 (5)	N3—C6—C7—C8	-1.6 (6)

supporting information

Mn1—N1—C1—C2	170.9 (3)	C5—N4—C8—C7	0.9 (5)
N1—C1—C2—C3	-1.7 (6)	Mn1—N4—C8—C7	-172.6 (3)
C4—N2—C3—C2	0.7 (5)	C6—C7—C8—N4	1.3 (6)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O1—H1A····N2 ⁱⁱ	0.84	2.48	3.286 (4)	162
O1—H1A···N3 ⁱⁱ	0.84	2.29	2.879 (4)	128
O1—H1 <i>B</i> ···O8 ⁱⁱⁱ	0.84	1.97	2.757 (4)	156
O8—H8A····O2 ^{iv}	0.84	1.95	2.792 (4)	175
С3—Н3…О6 ^v	0.95	2.54	3.346 (5)	143
C6—H6···O3A ^{vi}	0.95	2.58	3.239 (7)	127
C8—H8····O6 ^{vii}	0.95	2.59	3.175 (5)	120
С9—Н9С…О5А	0.98	2.52	3.388 (9)	148

Symmetry codes: (ii) -x, -y+2, -z+1; (iii) x, y+1, z; (iv) -x+1/2, y+1/2, -z+1/2; (v) -x+1/2, -y+3/2, -z+1; (vi) x-1/2, -y+1/2, z+1/2; (vii) x-1/2, y+1/2, z.