metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(piperazine-1,4-diium) hexachloridobismuthate(III) chloride monohydrate

Yu-Hua Gao,* Xiao-Jia Liu, Lei Sun and Wen-Jun Le

School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China Correspondence e-mail: gaoyuhua8888@sina.com

Received 25 October 2011; accepted 30 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; R factor = 0.027; wR factor = 0.061; data-to-parameter ratio = 20.9.

The crystal structure of the title compound, $(C_4H_{12}N_2)_2$ -[BiCl₆]Cl·H₂O, consists of piperazinediium cations, [BiCl₆]³⁻ anions, Cl⁻ anions and uncoordinated water molecules. The Bi^{III} cation is coordinated by six Cl⁻ anions in a slightly distorted octahedral geometry. The diprotonated piperazine ring adopts a chair conformation. In the crystal, extensive intermolecular N-H···Cl, N-H···O and O-H···Cl hydrogen bonds occur.

Related literature

For related structures, see: Wu et al. (2005); Fu et al. (2005)

Experimental

Crystal data $(C_4H_{12}N_2)_2[BiCl_6]Cl\cdotH_2O$ $M_r = 651.46$ Monoclinic, $P2_1/c$ a = 11.085 (3) Å b = 16.642 (4) Å c = 11.862 (3) Å $\beta = 98.997$ (3)°

 $V = 2161.3 (10) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 9.03 \text{ mm}^{-1}$ T = 296 K 0.20 \times 0.20 \times 0.20 mm

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.266, T_{max} = 0.266$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$
$wR(F^2) = 0.061$
S = 1.03
4108 reflections
197 parameters
3 restraints

12000 measured reflections 4108 independent reflections 3341 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.66\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.54\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H9A\cdots Cl2^i$	0.84 (4)	2.67 (6)	3.390 (7)	144 (6)
$O1 - H9B \cdot \cdot \cdot Cl5^{ii}$	0.85 (6)	2.39 (6)	3.201 (6)	162 (5)
$N1 - H1A \cdots Cl4^{iii}$	0.90	2.40	3.181 (5)	145
$N1 - H1D \cdots Cl4$	0.90	2.57	3.284 (5)	137
$N1 - H1D \cdots Cl5$	0.90	2.75	3.455 (5)	136
$N2 - H2A \cdots O1$	0.90	1.82	2.705 (7)	167
$N2-H2D\cdots Cl7^{iv}$	0.90	2.26	3.149 (5)	169
$N3 - H3C \cdot \cdot \cdot Cl6$	0.90	2.36	3.208 (5)	158
$N3-H3D\cdots Cl7^{v}$	0.90	2.21	3.069 (5)	159
$N4-H4C\cdots Cl1^{vi}$	0.90	2.37	3.228 (5)	158
N4-H4 D ···Cl4 ^{vii}	0.90	2.43	3.155 (5)	138

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2},$ (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2},$ (iii) -x + 1, -y, -z + 2; (iv) x, y, z + 1; (v) x + 1, y, z + 1; (vi) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2},$ (vii) $x, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by Jiangsu University of Science and Technology, China

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5366).

References

Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1719– m1720.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wu, P.-F., Tan, X.-F., Meng, X.-G., Li, D.-S., Zhu, Y.-L. & Wei, Y.-G. (2005). Acta Cryst. E61, m1506–m1508.

supporting information

Acta Cryst. (2011). E67, m1688 [https://doi.org/10.1107/S1600536811045594]

Bis(piperazine-1,4-diium) hexachloridobismuthate(III) chloride monohydrate

Yu-Hua Gao, Xiao-Jia Liu, Lei Sun and Wen-Jun Le

S1. Comment

Recently, the crystal structure of compounds closely related to the title molecule, *e.g.*, bis(piperazinium) bis(μ_2 -chloro)-octachloro-di-bismuth(iii) trihydrate (Wu *et al.*, 2005) and bis(*N*-Methylpiperazinium) bis((μ_2 -chloro)-tetrachlorobismuthate(iii))- dihydrate (Fu *et al.*, 2005) have been synthesized. We reported here thenew member of this family compounds.

The asymmetric unit of the title compound, $2C_4H_{12}N_2^{2+}$.BiCl₆³⁻.Cl⁻.H₂O(Fig.1), consists of two piperazine cation, one [BiCl₆]³⁻one Cl⁻anions and one water molecule. The Bi(III) ion exhibits a slightly distorted octahedral coordination environment. The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl, N—H···O and O—H···Cl hydrogen bonds into a three-dimensional network viewed along the *a*-axis (Fig.2).

S2. Experimental

piperazine (10 mmol, 0.86 g) BiCl₃ (6.8 mmol, 2.15 g)and 35% aqueous HCl (3 ml) were mixed and dissolved in 30 ml water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed after fifteen days.

S3. Refinement

Water H atoms were located in a difference Fourier map and refined with O—H distance restraint of 0.85 ± 0.01 Å, $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were placed in calculated positions with C—H = 0.97 and N—H = 0.90 Å, and refined using a riding model with $U_{iso}(H)=1.2U_{eq}(C,N)$.

Figure 1

The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level

Figure 2

The packing viewed along the *a*-axis. Hydrogen bonds are drawn as dashed lines

Bis(piperazine-1,4-diium) hexachloridobismuthate(III) chloride monohydrate

Crystal data

 $\begin{array}{l} ({\rm C}_4{\rm H}_1{\rm 2}{\rm N}_2)_2[{\rm Bi}{\rm Cl}_6]{\rm Cl}\cdot{\rm H}_2{\rm O}\\ M_r = 651.46\\ {\rm Monoclinic}, P2_1/c\\ {\rm Hall \ symbol: -P \ 2ybc}\\ a = 11.085\ (3)\ {\rm \AA}\\ b = 16.642\ (4)\ {\rm \AA}\\ c = 11.862\ (3)\ {\rm \AA}\\ \beta = 98.997\ (3)^\circ\\ V = 2161.3\ (10)\ {\rm \AA}^3\\ Z = 4 \end{array}$

F(000) = 1248 $D_x = 2.002 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3341 reflections $\theta = 1.9-26^{\circ}$ $\mu = 9.03 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.20 \times 0.20 \times 0.20 \text{ mm}$ Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{\min} = 0.266, T_{\max} = 0.266$	12000 measured reflections 4108 independent reflections 3341 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -17 \rightarrow 20$ $l = -13 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.061$ S = 1.03 4108 reflections 197 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0226P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.66$ e Å ⁻³ $\Delta\rho_{min} = -0.54$ e Å ⁻³ Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.00472 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Bi1	0.740018 (15)	0.092026 (11)	0.807034 (15)	0.02849 (9)	
C12	0.79302 (15)	0.11877 (12)	0.60299 (13)	0.0670 (5)	
C6	0.9370 (5)	0.3286 (3)	0.6818 (4)	0.0390 (13)	
H6A	0.8528	0.3112	0.6758	0.047*	
H6B	0.9707	0.3059	0.6181	0.047*	
C13	0.97693 (11)	0.09950 (7)	0.90506 (12)	0.0394 (3)	
Cl4	0.68343 (11)	0.05928 (8)	1.02452 (11)	0.0376 (3)	
Cl6	0.70154 (12)	0.24996 (8)	0.83713 (12)	0.0442 (3)	
C15	0.49653 (12)	0.07440 (9)	0.74387 (13)	0.0491 (4)	
C4	0.4452 (5)	0.1743 (3)	1.0987 (5)	0.0476 (15)	
H4A	0.5070	0.1454	1.1500	0.057*	
H4B	0.3783	0.1868	1.1397	0.057*	
C3	0.4981 (5)	0.2503 (3)	1.0608 (5)	0.0459 (14)	
H3A	0.5253	0.2841	1.1265	0.055*	

H3B	0.5682	0.2380	1.0241	0.055*
N1	0.4004 (4)	0.1236 (3)	0.9985 (4)	0.0483 (12)
H1A	0.3673	0.0784	1.0221	0.058*
H1D	0.4638	0.1094	0.9638	0.058*
N2	0.4051 (4)	0.2935 (3)	0.9799 (4)	0.0485 (12)
H2A	0.4377	0.3391	0.9570	0.058*
H2D	0.3417	0.3069	1.0151	0.058*
C1	0.3073 (5)	0.1661 (3)	0.9150 (5)	0.0474 (15)
H1B	0.2357	0.1777	0.9497	0.057*
H1C	0.2827	0.1322	0.8489	0.057*
C2	0.3612 (5)	0.2428 (3)	0.8790 (5)	0.0474 (15)
H2B	0.4288	0.2306	0.8388	0.057*
H2C	0.3000	0.2719	0.8273	0.057*
C11	0.76430 (12)	-0.06850 (9)	0.77947 (15)	0.0542 (4)
N4	0.9416 (4)	0.4179 (2)	0.6760 (4)	0.0348 (10)
H4C	1.0193	0.4338	0.6764	0.042*
H4D	0.8970	0.4347	0.6103	0.042*
N3	0.9625 (4)	0.3368 (3)	0.8914 (4)	0.0459 (12)
H3C	0.8856	0.3203	0.8937	0.055*
H3D	1.0096	0.3206	0.9561	0.055*
C8	0.9648 (5)	0.4261 (3)	0.8847 (5)	0.0487 (15)
H8A	1.0487	0.4443	0.8911	0.058*
H8B	0.9301	0.4487	0.9479	0.058*
C7	0.8937 (5)	0.4550 (3)	0.7740 (5)	0.0474 (14)
H7A	0.8082	0.4411	0.7706	0.057*
H7B	0.8998	0.5130	0.7695	0.057*
C5	1.0076 (5)	0.2991 (3)	0.7909 (5)	0.0439 (14)
H5A	1.0934	0.3118	0.7933	0.053*
H5B	0.9998	0.2411	0.7950	0.053*
Cl7	0.16914 (12)	0.31589 (10)	0.09392 (12)	0.0537 (4)
01	0.5352 (5)	0.4184 (3)	0.9159 (6)	0.099 (2)
H9A	0.610 (3)	0.425 (4)	0.941 (6)	0.119*
H9B	0.519 (6)	0.452 (4)	0.862 (5)	0.119*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bil	0.02867 (12)	0.02880 (13)	0.02927 (13)	0.00082 (8)	0.00847 (8)	0.00086 (9)
Cl2	0.0689 (11)	0.0968 (13)	0.0406 (9)	0.0061 (9)	0.0256 (8)	0.0120 (9)
C6	0.058 (4)	0.030 (3)	0.031 (3)	-0.008(3)	0.013 (3)	-0.001 (2)
Cl3	0.0340 (6)	0.0433 (8)	0.0412 (8)	0.0000 (6)	0.0062 (6)	0.0025 (6)
Cl4	0.0387 (7)	0.0423 (8)	0.0326 (7)	-0.0034 (6)	0.0080 (6)	0.0011 (6)
Cl6	0.0412 (7)	0.0353 (8)	0.0590 (10)	-0.0036 (6)	0.0167 (7)	-0.0065 (7)
C15	0.0344 (7)	0.0585 (10)	0.0538 (9)	0.0017 (6)	0.0044 (6)	-0.0146 (7)
C4	0.045 (3)	0.060 (4)	0.040 (4)	0.001 (3)	0.014 (3)	0.002 (3)
C3	0.041 (3)	0.054 (4)	0.043 (4)	-0.009(3)	0.008 (3)	-0.011 (3)
N1	0.042 (3)	0.032 (3)	0.075 (4)	-0.007(2)	0.021 (3)	-0.005 (3)
N2	0.057 (3)	0.035 (3)	0.059 (3)	-0.003 (2)	0.027 (3)	-0.002 (2)

supporting information

C1	0.034 (3)	0.056 (4)	0.050 (4)	-0.005 (3)	0.003 (3)	-0.017 (3)
C2	0.045 (3)	0.055 (4)	0.044 (4)	0.006 (3)	0.013 (3)	0.007 (3)
Cl1	0.0409 (8)	0.0343 (8)	0.0903 (12)	0.0001 (6)	0.0192 (8)	-0.0105 (8)
N4	0.034 (2)	0.040 (3)	0.030 (3)	-0.0021 (19)	0.0023 (19)	0.008 (2)
N3	0.038 (3)	0.067 (3)	0.031 (3)	-0.014 (2)	0.000 (2)	0.019 (2)
C8	0.053 (4)	0.065 (4)	0.031 (3)	-0.018 (3)	0.015 (3)	-0.009 (3)
C7	0.053 (4)	0.044 (4)	0.047 (4)	0.001 (3)	0.016 (3)	-0.008 (3)
C5	0.044 (3)	0.040 (3)	0.049 (4)	0.000 (3)	0.012 (3)	0.012 (3)
Cl7	0.0389 (8)	0.0854 (12)	0.0366 (9)	0.0057 (7)	0.0050 (6)	-0.0004 (8)
01	0.079 (4)	0.073 (4)	0.139 (6)	-0.016 (3)	-0.002 (4)	0.062 (3)

Geometric parameters (Å, °)

Bi1—Cl2	2.6164 (16)	N2—H2D	0.9000
Bi1—Cl6	2.6954 (14)	C1—C2	1.499 (7)
Bi1—Cl5	2.7019 (14)	C1—H1B	0.9700
Bi1—Cl3	2.7036 (14)	C1—H1C	0.9700
Bi1—Cl1	2.7099 (15)	C2—H2B	0.9700
Bi1—Cl4	2.8021 (14)	C2—H2C	0.9700
C6—C5	1.488 (7)	N4—C7	1.486 (6)
C6—N4	1.488 (6)	N4—H4C	0.9000
С6—Н6А	0.9700	N4—H4D	0.9000
C6—H6B	0.9700	N3—C8	1.488 (7)
C4—N1	1.479 (6)	N3—C5	1.500 (7)
C4—C3	1.493 (7)	N3—H3C	0.9000
C4—H4A	0.9700	N3—H3D	0.9000
C4—H4B	0.9700	C8—C7	1.502 (7)
C3—N2	1.480 (7)	C8—H8A	0.9700
С3—НЗА	0.9700	C8—H8B	0.9700
С3—Н3В	0.9700	С7—Н7А	0.9700
N1—C1	1.492 (7)	С7—Н7В	0.9700
N1—H1A	0.9000	С5—Н5А	0.9700
N1—H1D	0.9000	C5—H5B	0.9700
N2—C2	1.483 (7)	O1—H9A	0.844 (19)
N2—H2A	0.9000	O1—H9B	0.854 (19)
Cl2—Bi1—Cl6	91.13 (5)	H2A—N2—H2D	108.1
Cl2—Bi1—Cl5	96.95 (5)	N1—C1—C2	109.1 (4)
Cl6—Bi1—Cl5	88.32 (4)	N1—C1—H1B	109.9
Cl2—Bi1—Cl3	92.66 (5)	C2—C1—H1B	109.9
Cl6—Bi1—Cl3	93.52 (4)	N1—C1—H1C	109.9
Cl5—Bi1—Cl3	170.17 (4)	C2—C1—H1C	109.9
Cl2—Bi1—Cl1	90.87 (6)	H1B—C1—H1C	108.3
Cl6—Bi1—Cl1	176.40 (4)	N2—C2—C1	110.5 (4)
Cl5—Bi1—Cl1	88.47 (4)	N2—C2—H2B	109.6
Cl3—Bi1—Cl1	89.38 (4)	C1—C2—H2B	109.6
Cl2—Bi1—Cl4	178.58 (5)	N2—C2—H2C	109.6
Cl6—Bi1—Cl4	90.28 (4)	C1—C2—H2C	109.6

Cl5—Bi1—Cl4	82.90 (4)	H2B—C2—H2C	108.1
Cl3—Bi1—Cl4	87.44 (4)	C7—N4—C6	111.1 (4)
Cl1—Bi1—Cl4	87.72 (5)	C7—N4—H4C	109.4
C5C6N4	110.7 (4)	C6—N4—H4C	109.4
С5—С6—Н6А	109.5	C7—N4—H4D	109.4
N4—C6—H6A	109.5	C6—N4—H4D	109.4
С5—С6—Н6В	109.5	H4C—N4—H4D	108.0
N4—C6—H6B	109.5	C8—N3—C5	111.4 (4)
H6A—C6—H6B	108.1	C8—N3—H3C	109.3
N1—C4—C3	109.9 (4)	C5—N3—H3C	109.3
N1—C4—H4A	109.7	C8—N3—H3D	109.3
C3—C4—H4A	109.7	C5—N3—H3D	109.3
N1—C4—H4B	109.7	H3C—N3—H3D	108.0
C3—C4—H4B	109.7	N3—C8—C7	110.8 (4)
H4A—C4—H4B	108.2	N3—C8—H8A	109.5
N2—C3—C4	109.9 (4)	С7—С8—Н8А	109.5
N2—C3—H3A	109.7	N3—C8—H8B	109.5
С4—С3—НЗА	109.7	С7—С8—Н8В	109.5
N2—C3—H3B	109.7	H8A—C8—H8B	108.1
С4—С3—Н3В	109.7	N4—C7—C8	110.3 (4)
НЗА—СЗ—НЗВ	108.2	N4—C7—H7A	109.6
C4—N1—C1	112.0 (4)	С8—С7—Н7А	109.6
C4—N1—H1A	109.2	N4—C7—H7B	109.6
C1—N1—H1A	109.2	С8—С7—Н7В	109.6
C4—N1—H1D	109.2	H7A—C7—H7B	108.1
C1—N1—H1D	109.2	C6—C5—N3	110.9 (4)
H1A—N1—H1D	107.9	С6—С5—Н5А	109.4
C3—N2—C2	110.7 (4)	N3—C5—H5A	109.4
C3—N2—H2A	109.5	С6—С5—Н5В	109.4
C2—N2—H2A	109.5	N3—C5—H5B	109.4
C3—N2—H2D	109.5	H5A—C5—H5B	108.0
C2—N2—H2D	109.5	Н9А—О1—Н9В	105 (3)
N1—C4—C3—N2	57.7 (6)	C5—C6—N4—C7	-57.7 (5)
C3—C4—N1—C1	-57.7 (6)	C5—N3—C8—C7	55.3 (6)
C4—C3—N2—C2	-58.9 (6)	C6—N4—C7—C8	57.6 (6)
C4—N1—C1—C2	56.9 (6)	N3-C8-C7-N4	-56.3 (6)
C3—N2—C2—C1	58.8 (6)	N4—C6—C5—N3	55.9 (5)
N1—C1—C2—N2	-56.7 (6)	C8—N3—C5—C6	-55.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D…A	D—H…A
O1—H9A···Cl2 ⁱ	0.84 (4)	2.67 (6)	3.390 (7)	144 (6)
O1—H9 <i>B</i> ···Cl5 ⁱⁱ	0.85 (6)	2.39 (6)	3.201 (6)	162 (5)
N1—H1A····Cl4 ⁱⁱⁱ	0.90	2.40	3.181 (5)	145
N1—H1 <i>D</i> ···Cl4	0.90	2.57	3.284 (5)	137
N1—H1D…Cl5	0.90	2.75	3.455 (5)	136

supporting information

N2—H2A…O1	0.90	1.82	2.705 (7)	167
N2—H2 D ···Cl7 ^{iv}	0.90	2.26	3.149 (5)	169
N3—H3 <i>C</i> ···Cl6	0.90	2.36	3.208 (5)	158
N3—H3D····Cl7 ^v	0.90	2.21	3.069 (5)	159
N4—H4C···Cl1 ^{vi}	0.90	2.37	3.228 (5)	158
N4—H4D····Cl4 ^{vii}	0.90	2.43	3.155 (5)	138

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+1, -y, -z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) -x+2, y+1/2, -z+3/2; (vii) x, -y+1/2, z-1/2.