metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1*H*-benzotriazole-7-sulfonato- κ O)bis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium dihydrate

Xiao-Hong Zhu* and Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China Correspondence e-mail: hgzhuxh@yeah.net

Received 24 October 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.038; *wR* factor = 0.092; data-to-parameter ratio = 14.6.

In the title complex, $[Cd(C_6H_4N_3O_3S)_2(C_{12}H_8N_2)_2] \cdot 2H_2O$, the Cd^{2+} cation is located on an inversion center and is coordinated by four N atoms from two symmetry-related 1,10-phenanthroline ligands and two sulfonate O atoms from two benzotriazole-7-sulfonate anions, displaying a distorted CdN_4O_2 octahedral geometry. In the crystal, $O-H \cdots N$, $O-H \cdots O$, $N-H \cdots O$, $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds occur. The lattice water molecules and sulfonate O atoms as donor or acceptor atoms play important roles in the formation of these interactions.

Related literature

For related structures, see: Xia et al. (2010).

Experimental

Crystal data

 $[Cd(C_6H_4N_3O_3S)_2(C_{12}H_8N_2)_2] - 2H_2O$ $M_r = 905.20$ Triclinic, $P\overline{1}$ a = 7.5675 (16) Å b = 10.238 (2) Å c = 11.974 (2) Å a = 79.852 (2)°

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.856, T_{max} = 0.910$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.092$ S = 1.063431 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W-H1 WA ···N5 ⁱ	0.98	2.10	3.015 (4)	155
$O1W - H1W \cdot \cdot \cdot O3^{ii}$	0.98	2.00	2.934 (5)	158
$N3-H3N\cdotsO1^{iii}$	0.90	2.21	3.009 (4)	148
C6-H6···O2	0.93	2.60	2.947 (4)	103
C8−H8···N4 ^{iv}	0.93	2.42	3.306 (6)	159
$C14-H14\cdots O1W$	0.93	2.51	3.414 (5)	164

 $\beta = 77.948 \ (3)^{\circ}$

 $\gamma = 84.092 (3)^{\circ}$

Z = 1

V = 891.0 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.12 \times 0.12 \text{ mm}$

4887 measured reflections 3431 independent reflections

3174 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.80 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.017$

235 parameters

 $\Delta \rho_{\text{max}} = 0.51 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.79$ e Å⁻³

Symmetry codes: (i) x, y + 1, z - 1; (ii) x, y, z - 1; (iii) -x + 1, -y, -z + 2; (iv) x - 1, y + 1, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2475).

References

- Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741–3744.

supporting information

Acta Cryst. (2011). E67, m1698 [https://doi.org/10.1107/S1600536811045971]

Bis(1*H*-benzotriazole-7-sulfonato- κO)bis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium dihydrate

Xiao-Hong Zhu and Xiao-Chun Cheng

S1. Comment

Benzotriazole-7-sulfonic acid are often used as ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of title complex. The asymmetric unit consists of half of one cadmium ion, one 1,10-phenanthroline molecule, one benzotriazole-7-sulfonate anion, and one lattice water molecule. The Cd ion is located on an inversion center and coordinated by four N atoms from two different 1,10-phenanthroline molecules and two sulfonate O atoms from two different benzotriazole-7-sulfonate anions, displaying a distorted CdN₄O₂ octahedral geometry (Fig. 1). Benzotriazole-7-sulfonate shows a monodentate coordinating mode, while 1,10-phenanthroline displays a bidentate chelating coordinating mode. In the crystal structure, there exist O—H…N, O—H…O, N—H…O, C —H…N, and C—H…O hydrogen bonds (Table 1). Lattice water molecules and sulfonate O atoms as donor or acceptor play very important roles in the formation of these hydrogen bonding interactions.

S2. Experimental

A mixture of cadmium perchlorate hexahydrate (83.9 mg, 0.2 mmol), benzotriazole-7-sulfonic acid (39.8 mg, 0.2 mmol), 1,10-phenanthroline (36.0 mg, 0.2 mmol) and potassium hydroxide (11.2 mg, 0.2 mmol) in 12 ml H_2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling to room temperature, colorless block crystals of the title complex were obtained.

S3. Refinement

The hydrogen atoms bonded to C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The hydrogen atoms bonded to N3 and O1W were found from a difference Fourier map and fixed at those position with $U_{iso}(H) = 1.2U_{eq}(N \text{ or } O)$.

Figure 1

The coordination environment of Cd ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms have been omitted for clarity. Symmetry code: a = -x, -y, -z+2.

Bis(1*H*-benzotriazole-7-sulfonato- κ O)bis(1,10-phenanthroline- $\kappa^2 N$,N')cadmium dihydrate

Crystal data

$[Cd(C_{6}H_{4}N_{3}O_{3}S)_{2}(C_{12}H_{8}N_{2})_{2}] \cdot 2H_{2}O$ $M_{r} = 905.20$ Triclinic, P1 Hall symbol: -P 1 a = 7.5675 (16) Å b = 10.238 (2) Å c = 11.974 (2) Å a = 79.852 (2)° $\beta = 77.948$ (3)° $\gamma = 84.092$ (3)° V = 891.0 (3) Å ³	Z = 1 F(000) = 458 $D_x = 1.687 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2099 reflections $\theta = 2.5 - 25.3^{\circ}$ $\mu = 0.80 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.20 \times 0.12 \times 0.12 \text{ mm}$
Data collection Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.856, T_{\max} = 0.910$	4887 measured reflections 3431 independent reflections 3174 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 9$ $l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.06	H-atom parameters constrained
3431 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2 + 0.3547P]$
235 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.51 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{ m min} = -0.79 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2876 (4)	-0.0551 (3)	1.2678 (3)	0.0391 (7)
C2	0.3840 (4)	-0.1707 (3)	1.2340 (3)	0.0411 (7)
C3	0.3952 (5)	-0.2877 (3)	1.3118 (3)	0.0486 (8)
C4	0.3135 (6)	-0.2931 (4)	1.4286 (3)	0.0617 (10)
H4	0.3237	-0.3703	1.4816	0.074*
C5	0.2185 (6)	-0.1815 (4)	1.4619 (3)	0.0616 (10)
Н5	0.1615	-0.1830	1.5388	0.074*
C6	0.2047 (5)	-0.0634 (4)	1.3821 (3)	0.0503 (8)
H6	0.1377	0.0107	1.4077	0.060*
C7	-0.1788 (6)	0.2998 (4)	1.0384 (4)	0.0667 (11)
H7	-0.2190	0.2593	1.1141	0.080*
C8	-0.2256 (7)	0.4350 (4)	1.0076 (6)	0.0888 (16)
H8	-0.2956	0.4828	1.0625	0.107*
С9	-0.1697 (8)	0.4960 (4)	0.8992 (6)	0.094
Н9	-0.2012	0.5858	0.8782	0.113*
C10	-0.0633 (7)	0.4231 (4)	0.8176 (5)	0.0826 (11)
C11	0.0040 (7)	0.4799 (4)	0.7000 (5)	0.0826 (11)
H11	-0.0223	0.5698	0.6752	0.099*
C12	0.1031 (7)	0.4063 (5)	0.6261 (4)	0.086
H12	0.1431	0.4461	0.5501	0.103*
C13	0.1509 (6)	0.2687 (5)	0.6583 (3)	0.0669 (12)
C14	0.2591 (6)	0.1892 (5)	0.5828 (3)	0.075
H14	0.3036	0.2258	0.5065	0.090*
C15	0.2986 (6)	0.0608 (6)	0.6201 (3)	0.0778 (15)
H15	0.3700	0.0080	0.5699	0.093*

supporting information

C16	0.2322 (5)	0.0062 (4)	0.7349 (3)	0.0553 (9)
H16	0.2599	-0.0835	0.7596	0.066*
C17	0.0889 (5)	0.2084 (3)	0.7731 (3)	0.0442 (8)
C18	-0.0206 (5)	0.2869 (3)	0.8538 (3)	0.0446 (8)
Cd1	0.0000	0.0000	1.0000	0.03563 (12)
N1	-0.0792 (4)	0.2266 (2)	0.9638 (2)	0.0440 (6)
N2	0.1306 (4)	0.0781 (3)	0.8100 (2)	0.0412 (6)
N3	0.4811 (4)	-0.2013 (3)	1.1326 (3)	0.0528 (7)
H3N	0.5145	-0.1463	1.0661	0.063*
N4	0.5466 (5)	-0.3294 (3)	1.1468 (3)	0.0649 (9)
N5	0.4973 (5)	-0.3827 (3)	1.2536 (3)	0.0609 (8)
01	0.2630 (3)	0.0480 (2)	1.06094 (19)	0.0507 (6)
02	0.1125 (4)	0.1690 (2)	1.2157 (2)	0.0639 (7)
03	0.4397 (4)	0.1563 (3)	1.1556 (3)	0.0694 (8)
O1W	0.5025 (6)	0.3191 (3)	0.3203 (3)	0.1043 (13)
H1W	0.4536	0.2802	0.2647	0.125*
H1WA	0.5382	0.4094	0.2870	0.125*
S1	0.27401 (12)	0.09358 (8)	1.16896 (7)	0.0434 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0376 (18)	0.0377 (16)	0.0447 (17)	-0.0022 (13)	-0.0102 (14)	-0.0116 (13)
C2	0.0438 (19)	0.0382 (17)	0.0441 (17)	-0.0036 (14)	-0.0117 (14)	-0.0097 (14)
C3	0.049 (2)	0.0364 (17)	0.063 (2)	-0.0067 (15)	-0.0189 (17)	-0.0031 (15)
C4	0.070 (3)	0.056 (2)	0.057 (2)	-0.017 (2)	-0.016 (2)	0.0095 (18)
C5	0.064 (3)	0.073 (3)	0.045 (2)	-0.014 (2)	-0.0032 (18)	-0.0050 (18)
C6	0.051 (2)	0.054 (2)	0.0463 (19)	-0.0015 (17)	-0.0062 (16)	-0.0147 (16)
C7	0.065 (3)	0.048 (2)	0.084 (3)	0.0110 (19)	0.000 (2)	-0.027 (2)
C8	0.075 (3)	0.045 (2)	0.154 (5)	0.021 (2)	-0.028 (3)	-0.045 (3)
C9	0.103	0.027	0.169	0.013	-0.073	-0.019
C10	0.104 (3)	0.0401 (15)	0.112 (3)	-0.0210 (16)	-0.064 (2)	0.0255 (15)
C11	0.104 (3)	0.0401 (15)	0.112 (3)	-0.0210 (16)	-0.064 (2)	0.0255 (15)
C12	0.108	0.079	0.073	-0.052	-0.049	0.044
C13	0.076 (3)	0.086 (3)	0.0399 (19)	-0.044 (2)	-0.0207 (19)	0.0185 (19)
C14	0.081	0.116	0.033	-0.067	-0.006	0.005
C15	0.055 (3)	0.140 (5)	0.044 (2)	-0.036 (3)	0.0090 (18)	-0.033 (2)
C16	0.043 (2)	0.078 (3)	0.0448 (19)	-0.0017 (18)	0.0003 (15)	-0.0201 (18)
C17	0.048 (2)	0.0476 (19)	0.0391 (17)	-0.0175 (15)	-0.0180 (15)	0.0062 (14)
C18	0.049 (2)	0.0306 (16)	0.058 (2)	-0.0073 (14)	-0.0262 (16)	0.0029 (14)
Cd1	0.0452 (2)	0.02687 (17)	0.03025 (17)	0.00340 (13)	-0.00184 (13)	-0.00229 (11)
N1	0.0470 (17)	0.0291 (13)	0.0531 (16)	0.0042 (12)	-0.0065 (13)	-0.0072 (12)
N2	0.0385 (15)	0.0498 (16)	0.0335 (13)	-0.0028 (12)	-0.0031 (11)	-0.0065 (11)
N3	0.062 (2)	0.0408 (16)	0.0515 (17)	0.0086 (14)	-0.0040 (14)	-0.0127 (13)
N4	0.075 (2)	0.0414 (17)	0.081 (2)	0.0146 (16)	-0.0183 (19)	-0.0232 (17)
N5	0.069 (2)	0.0371 (16)	0.081 (2)	0.0011 (15)	-0.0253 (18)	-0.0088 (16)
01	0.0553 (15)	0.0516 (14)	0.0439 (13)	0.0002 (11)	-0.0099 (11)	-0.0066 (10)
O2	0.0668 (18)	0.0477 (14)	0.0699 (17)	0.0178 (13)	-0.0034 (14)	-0.0144 (12)

supporting information

03	0.0634 (18)	0.0540 (16)	0.093 (2)	-0.0199 (13)	-0.0242 (15)	0.0015 (14)
O1W	0.182 (4)	0.066 (2)	0.066 (2)	-0.025 (2)	-0.032 (2)	0.0030 (16)
S 1	0.0464 (5)	0.0329 (4)	0.0505 (5)	0.0015 (3)	-0.0090 (4)	-0.0088 (3)

Geometric parameters (Å, °)

C1—C6	1.373 (5)	C13—C14	1.402 (7)
C1—C2	1.402 (4)	C13—C17	1.408 (5)
C1—S1	1.764 (3)	C14—C15	1.336 (7)
C2—N3	1.351 (4)	C14—H14	0.9300
C2—C3	1.388 (4)	C15—C16	1.397 (5)
C3—N5	1.375 (5)	C15—H15	0.9300
C3—C4	1.400 (5)	C16—N2	1.330 (4)
C4—C5	1.361 (6)	C16—H16	0.9300
C4—H4	0.9300	C17—N2	1.356 (4)
C5—C6	1.412 (5)	C17—C18	1.438 (5)
С5—Н5	0.9300	C18—N1	1.356 (4)
С6—Н6	0.9300	Cd1—N2 ⁱ	2.319 (2)
C7—N1	1.329 (4)	Cd1—N2	2.319 (2)
С7—С8	1.398 (6)	Cd1—N1	2.323 (2)
С7—Н7	0.9300	Cd1—N1 ⁱ	2.323 (2)
C8—C9	1.339 (8)	Cd1—O1	2.381 (2)
С8—Н8	0.9300	Cd1—O1 ⁱ	2.381 (2)
C9—C10	1.401 (8)	N3—N4	1.349 (4)
С9—Н9	0.9300	N3—H3N	0.8963
C10-C18	1.410 (5)	N4—N5	1.291 (5)
C10-C11	1.434 (7)	O1—S1	1.471 (2)
C11—C12	1.325 (7)	O2—S1	1.441 (3)
C11—H11	0.9300	O3—S1	1.434 (3)
C12—C13	1.423 (7)	O1W—H1W	0.9832
C12—H12	0.9300	O1W—H1WA	0.9813
C6—C1—C2	116.5 (3)	C16—C15—H15	120.1
C6-C1-S1	121.7 (3)	N2—C16—C15	122.2 (4)
C2-C1-S1	121.8 (2)	N2—C16—H16	118.9
N3—C2—C3	104.3 (3)	C15—C16—H16	118.9
N3—C2—C1	133.9 (3)	N2—C17—C13	121.7 (4)
C3—C2—C1	121.8 (3)	N2—C17—C18	119.0 (3)
N5-C3-C2	108.4 (3)	C13—C17—C18	119.3 (3)
N5-C3-C4	130.9 (3)	N1-C18-C10	121.9 (4)
C2—C3—C4	120.7 (3)	N1—C18—C17	118.2 (3)
C5—C4—C3	117.7 (3)	C10-C18-C17	119.9 (4)
C5—C4—H4	121.1	N2 ⁱ —Cd1—N2	180.0
C3—C4—H4	121.1	N2 ⁱ —Cd1—N1	107.73 (9)
C4—C5—C6	121.4 (4)	N2—Cd1—N1	72.27 (9)
С4—С5—Н5	119.3	N2 ⁱ —Cd1—N1 ⁱ	72.27 (9)
С6—С5—Н5	119.3	N2—Cd1—N1 ⁱ	107.73 (9)
C1—C6—C5	121.8 (3)	N1—Cd1—N1 ⁱ	180.000 (1)

С1—С6—Н6	119.1	N2 ⁱ —Cd1—O1	90.25 (8)
С5—С6—Н6	119.1	N2—Cd1—O1	89.75 (9)
N1—C7—C8	122.7 (4)	N1—Cd1—O1	89.33 (9)
N1—C7—H7	118.7	N1 ⁱ —Cd1—O1	90.67 (9)
С8—С7—Н7	118.7	N2 ⁱ —Cd1—O1 ⁱ	89.75 (9)
C9—C8—C7	120.0 (4)	$N2-Cd1-O1^{i}$	90.25 (8)
С9—С8—Н8	120.0	$N1-Cd1-O1^{i}$	90.67 (9)
С7—С8—Н8	120.0	$N1^{i}$ —Cd1—O1 ⁱ	89.33 (9)
C8-C9-C10	119.4 (4)	$01 - Cd1 - 01^{i}$	180.0
С8—С9—Н9	120.3	C7 - N1 - C18	118 1 (3)
C10-C9-H9	120.3	C7-N1-Cd1	126.6(3)
C9-C10-C18	1180(4)	C18—N1—Cd1	1153(2)
C9-C10-C11	123.4(4)	C16 - N2 - C17	118.6(2)
C_{18} C_{10} C_{11}	118 7 (5)	C16 = N2 = Cd1	126.2(2)
C_{12} C_{11} C_{10} C_{10}	120.9(4)	C17 - N2 - Cd1	120.2(2) 1150(2)
$C_{12} = C_{11} = C_{10}$	120.5 (4)	N_{1} N_{2} C_{1}	110.0(2)
	119.5	N4 N2 H2N	110.1 (3)
	119.5	$\frac{114}{100} \frac{113}{100} 11$	121.2
C11 - C12 - C13	122.7 (4)	C_2 —N ₃ —H ₃ N	120.2
C12 C12 H12	110.7	$\frac{1}{1}$	109.4(3)
C13—C12—H12	118.7	N4 - N5 - C3	107.9(3)
C14 - C13 - C17	117.6 (4)	SI-OI-Cal	128.09 (14)
C14-C13-C12	123.9 (4)	HIW—OIW—HIWA	110.4
C17—C13—C12	118.5 (4)	03—81—02	115.18 (18)
C15—C14—C13	120.1 (3)	O3—S1—O1	110.29 (17)
C15—C14—H14	119.9	O2—S1—O1	113.12 (16)
C13—C14—H14	119.9	O3—S1—C1	107.12 (15)
C14—C15—C16	119.8 (4)	O2—S1—C1	106.42 (16)
C14—C15—H15	120.1	01—S1—C1	103.81 (14)
C6—C1—C2—N3	-179.8 (4)	N2—Cd1—N1—C7	-179.0 (3)
S1—C1—C2—N3	-0.1 (5)	N1 ⁱ —Cd1—N1—C7	-167 (100)
C6—C1—C2—C3	0.1 (5)	O1—Cd1—N1—C7	-89.0 (3)
S1—C1—C2—C3	179.8 (3)	O1 ⁱ —Cd1—N1—C7	91.0 (3)
N3—C2—C3—N5	-0.3 (4)	N2 ⁱ —Cd1—N1—C18	-176.9 (2)
C1—C2—C3—N5	179.8 (3)	N2—Cd1—N1—C18	3.1 (2)
N3—C2—C3—C4	178.2 (3)	N1 ⁱ —Cd1—N1—C18	16 (100)
C1—C2—C3—C4	-1.7 (5)	O1—Cd1—N1—C18	93.1 (2)
N5—C3—C4—C5	-179.8(4)	O1 ⁱ —Cd1—N1—C18	-86.9(2)
C2—C3—C4—C5	2.1 (6)	C15—C16—N2—C17	0.7 (5)
C3—C4—C5—C6	-0.9 (6)	C15—C16—N2—Cd1	177.0 (3)
C2-C1-C6-C5	1.1 (5)	C13—C17—N2—C16	-0.2(5)
S1—C1—C6—C5	-178.6 (3)	C18—C17—N2—C16	-179.9 (3)
C4—C5—C6—C1	-0.7 (6)	C13—C17—N2—Cd1	-176.9(3)
N1—C7—C8—C9	0.0 (7)	C18—C17—N2—Cd1	3.4 (4)
C7—C8—C9—C10	-0.4(8)	$N2^{i}$ —Cd1—N2—C16	48 (100)
C8-C9-C10-C18	0.5 (7)	N1-Cd1-N2-C16	-179.8(3)
C8-C9-C10-C11	-179.4(5)	$N1^{i}$ —Cd1—N2—C16	0.2 (3)
C9-C10-C11-C12	-179.5(5)	O1-Cd1-N2-C16	90.8 (3)

C18—C10—C11—C12	0.6 (7)	O1 ⁱ —Cd1—N2—C16	-89.2 (3)
C10-C11-C12-C13	-0.9 (7)	N2 ⁱ -Cd1-N2-C17	-135 (100)
C11—C12—C13—C14	-178.4 (4)	N1—Cd1—N2—C17	-3.4 (2)
C11—C12—C13—C17	0.5 (6)	N1 ⁱ —Cd1—N2—C17	176.6 (2)
C17—C13—C14—C15	0.7 (6)	O1—Cd1—N2—C17	-92.8 (2)
C12—C13—C14—C15	179.6 (4)	$O1^{i}$ —Cd1—N2—C17	87.2 (2)
C13—C14—C15—C16	-0.3 (6)	C3—C2—N3—N4	0.6 (4)
C14—C15—C16—N2	-0.5 (6)	C1—C2—N3—N4	-179.6 (4)
C14—C13—C17—N2	-0.5 (5)	C2—N3—N4—N5	-0.6 (4)
C12—C13—C17—N2	-179.4 (3)	N3—N4—N5—C3	0.4 (4)
C14—C13—C17—C18	179.2 (3)	C2-C3-N5-N4	0.0 (4)
C12—C13—C17—C18	0.3 (5)	C4—C3—N5—N4	-178.4 (4)
C9-C10-C18-N1	-0.1 (6)	N2 ⁱ —Cd1—O1—S1	-34.20 (17)
C11—C10—C18—N1	179.8 (3)	N2—Cd1—O1—S1	145.80 (17)
C9—C10—C18—C17	-179.7 (4)	N1—Cd1—O1—S1	73.52 (17)
C11—C10—C18—C17	0.2 (6)	N1 ⁱ —Cd1—O1—S1	-106.48 (17)
N2-C17-C18-N1	-0.5 (5)	O1 ⁱ —Cd1—O1—S1	-113 (100)
C13—C17—C18—N1	179.8 (3)	Cd1-01-S1-03	-158.95 (16)
N2-C17-C18-C10	179.1 (3)	Cd1-01-S1-02	-28.3 (2)
C13—C17—C18—C10	-0.6 (5)	Cd1-01-S1-C1	86.59 (18)
C8—C7—N1—C18	0.4 (6)	C6—C1—S1—O3	99.8 (3)
C8—C7—N1—Cd1	-177.5 (3)	C2-C1-S1-O3	-79.9 (3)
C10-C18-N1-C7	-0.3 (5)	C6—C1—S1—O2	-23.9 (3)
C17—C18—N1—C7	179.3 (3)	C2-C1-S1-O2	156.4 (3)
C10-C18-N1-Cd1	177.8 (3)	C6-C1-S1-O1	-143.5 (3)
C17—C18—N1—Cd1	-2.6 (4)	C2-C1-S1-O1	36.8 (3)
N2 ⁱ —Cd1—N1—C7	1.0 (3)		

Symmetry code: (i) -x, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01 <i>W</i> —H1 <i>WA</i> ···N5 ⁱⁱ	0.98	2.10	3.015 (4)	155
O1 <i>W</i> —H1 <i>W</i> ···O3 ⁱⁱⁱ	0.98	2.00	2.934 (5)	158
N3—H3 <i>N</i> ···O1 ^{iv}	0.90	2.21	3.009 (4)	148
С6—Н6…О2	0.93	2.60	2.947 (4)	103
C8—H8····N4 ^v	0.93	2.42	3.306 (6)	159
C14—H14…O1 <i>W</i>	0.93	2.51	3.414 (5)	164

Symmetry codes: (ii) *x*, *y*+1, *z*-1; (iii) *x*, *y*, *z*-1; (iv) -*x*+1, -*y*, -*z*+2; (v) *x*-1, *y*+1, *z*.