

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1*H*-benzotriazole-4-sulfonato- $\kappa^2 N^3$,*O*)(2,2'-bipyridyl- $\kappa^2 N$,*N*')cadmium

Xiao-Hong Zhu* and Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China Correspondence e-mail: hgzhuxh@yeah.net

Received 24 October 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 17.0.

In the title complex, $[Cd(C_6H_4N_3O_3S)_2(C_{10}H_8N_2)]$, the Cd^{2+} cation is located on a twofold rotation axis and is coordinated by two N and two O atoms from two symmetry-related benzotriazole-4-sulfonate anions and two N atoms from a 2,2-bipyridyl ligand, displaying a distorted CdN_4O_2 octahedral geometry. The crystal structure is stabilized by N-H···O and C-H···O hydrogen-bonding interactions.

Related literature

For a related structure, see: Xia et al. (2010).

Experimental

Crystal data [Cd(C₆H₄N₃O₃S)₂(C₁₀H₈N₂)]

 $M_r = 664.95$

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20 \text{ mm}$

 $\mu = 1.14 \text{ mm}^-$

T = 293 K

Z = 4

Monoclinic, C2/c a = 8.148 (4) Å b = 17.207 (7) Å c = 17.720 (8) Å $\beta = 103.29$ (1)° V = 2417.8 (19) Å³

Data collection

Bruker SMART APEXII CCD	8519 measured reflections
diffractometer	3009 independent reflections
Absorption correction: multi-scan	2866 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.073$
$T_{\min} = 0.805, \ T_{\max} = 0.805$	

Refinement $P[F^2 > 2\pi(F^2)]$

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 & 177 \text{ parameters} \\ wR(F^2) &= 0.075 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{max} &= 0.82 \text{ e } \text{\AA}^{-3} \\ 3009 \text{ reflections} & \Delta\rho_{min} &= -0.64 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3N\cdots O2^{i}$	0.93	1.86	2.776 (3)	167
C3−H3···O3 ⁱⁱ	0.93	2.55	3.255 (3)	133
$C7 - H7 \cdot \cdot \cdot O2^{iii}$	0.93	2.56	3.204 (3)	127

Symmetry codes: (i) x + 1, y, z; (ii) $-x - \frac{1}{2}$, $-y - \frac{1}{2}$, -z; (iii) -x, y, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2474).

References

Brandenburg, K. (2000). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2008). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741–3744.

supporting information

Acta Cryst. (2011). E67, m1699 [https://doi.org/10.1107/S160053681104596X] Bis(1*H*-benzotriazole-4-sulfonato- $\kappa^2 N^3$,*O*)(2,2'-bipyridyl- $\kappa^2 N$,*N'*)cadmium

Xiao-Hong Zhu and Xiao-Chun Cheng

S1. Comment

Benzotriazole-4-sulfonic acid is often used as a ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of title complex. The asymmetric unit consists of half of a cadmium ion, half of a 2,2-bipyridyl molecule, and a benzotriazole-4-sulfonate anion. The Cd ion is located on a two fold axis and coordinated by two N atoms from two different benzotriazole-4-sulfonate anions, two N atoms from 2,2-bipyridyl molecule, and two sulfonate O atoms from two different benzotriazole-4-sulfonate anions, displaying a distorted CdN₄O₂ octahedral geometry (Fig. 1). Both benzotriazole-4-sulfonate and 2,2-bipyridyl display bidentate chelating coordinating mode. In the crystal structure, there exist O—H…N and C—H…O hydrogen bonds (Table 1). Sulfonate O atoms as hydrogen bonding acceptor play a very important role in the formation of these hydrogen bonding interactions.

S2. Experimental

A mixture of cadmium perchlorate hexahydrate (83.9 mg, 0.2 mmol), benzotriazole-4-sulfonic acid (39.8 mg, 0.2 mmol), 2,2-bipyridyl (31.2 mg, 0.2 mmol) and potassium hydroxide (11.2 mg, 0.2 mmol) in 12 ml H₂O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling to room temperature, colorless block crystals of the title complex were obtained.

S3. Refinement

The hydrogen atoms bonded to C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The hydrogen atom bonded to N3 was found from a difference Fourier map and fixed at that positio with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The coordination environment of Cd ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms have been omitted for clarity. symmetry code: a: -x, y, -z+1/2.

Bis(1*H*-benzotriazole-4-sulfonato- $\kappa^2 N^3$,*O*)(2,2'- bipyridyl- $\kappa^2 N$,*N*')cadmium

Crystal data

$[Cd(C_6H_4N_3O_3S)_2(C_{10}H_8N_2)]$	F(000) = 1328
$M_r = 664.95$	$D_{\rm x} = 1.827 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6866 reflections
a = 8.148 (4) Å	$\theta = 2.4 - 28.4^{\circ}$
b = 17.207 (7) Å	$\mu = 1.14 \text{ mm}^{-1}$
c = 17.720 (8) Å	T = 293 K
$\beta = 103.29(1)^{\circ}$	Block, colorless
V = 2417.8 (19) Å ³	$0.20 \times 0.20 \times 0.20$ mm
Z = 4	
Data collection	
Bruker SMART APEXII CCD	8519 measured reflections
diffractometer	3009 independent reflections
Radiation source: fine-focus sealed tube	2866 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.073$
phi and ω scans	$\theta_{\rm max} = 28.4^{\circ}, \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -22 \rightarrow 22$
$T_{\min} = 0.805, \ T_{\max} = 0.805$	$l = -23 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.075$	neighbouring sites
S = 1.05	H-atom parameters constrained
3009 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 1.8012P]$
177 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.82 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.0973 (2)	-0.10519 (11)	0.06169 (11)	0.0286 (3)
C2	-0.1066 (3)	-0.15816 (14)	0.00234 (12)	0.0388 (4)
H2	-0.2059	-0.1860	-0.0150	0.047*
C3	0.0298 (3)	-0.17160 (14)	-0.03310 (13)	0.0449 (5)
Н3	0.0179	-0.2085	-0.0724	0.054*
C4	0.1784 (3)	-0.13203 (14)	-0.01131 (12)	0.0400 (5)
H4	0.2683	-0.1409	-0.0344	0.048*
C5	0.1872 (2)	-0.07701 (12)	0.04815 (11)	0.0297 (4)
C6	0.0555 (2)	-0.06363 (10)	0.08486 (10)	0.0252 (3)
C7	0.3344 (3)	0.12261 (16)	0.31089 (13)	0.0445 (5)
H7	0.3858	0.0742	0.3206	0.053*
C8	0.4326 (4)	0.18893 (19)	0.32763 (15)	0.0573 (7)
H8	0.5472	0.1855	0.3504	0.069*
С9	0.3560 (4)	0.26011 (18)	0.30959 (19)	0.0681 (9)
Н9	0.4197	0.3055	0.3180	0.082*
C10	0.1860 (4)	0.26376 (15)	0.27930 (18)	0.0601 (7)
H10	0.1331	0.3116	0.2676	0.072*
C11	0.0927 (3)	0.19536 (12)	0.26615 (11)	0.0376 (4)
Cd1	0.0000	0.017130 (9)	0.2500	0.02575 (8)
N1	0.1089 (2)	-0.00941 (9)	0.14217 (10)	0.0281 (3)
N2	0.2645 (2)	0.01101 (11)	0.14125 (11)	0.0340 (4)
N3	0.3117 (2)	-0.02916 (11)	0.08527 (10)	0.0329 (3)
H3N	0.4172	-0.0247	0.0738	0.039*
N4	0.1685 (2)	0.12587 (10)	0.28136 (10)	0.0338 (3)
01	-0.18547 (17)	-0.07919 (9)	0.19035 (8)	0.0335 (3)

supporting information

O2	-0.3547 (2)	-0.02209 (10)	0.07349 (10)	0.0410 (4)
03	-0.3666 (2)	-0.16108 (11)	0.09518 (10)	0.0492 (4)
S1	-0.26613 (5)	-0.09167 (3)	0.10818 (3)	0.02965 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0243 (8)	0.0342 (9)	0.0272 (8)	-0.0016 (7)	0.0055 (6)	0.0006 (7)
C2	0.0396 (11)	0.0449 (11)	0.0311 (9)	-0.0085 (9)	0.0066 (8)	-0.0059 (8)
C3	0.0592 (14)	0.0445 (12)	0.0351 (10)	-0.0033 (10)	0.0190 (10)	-0.0119 (9)
C4	0.0450 (11)	0.0463 (11)	0.0340 (10)	0.0051 (9)	0.0200 (9)	-0.0028 (9)
C5	0.0265 (8)	0.0363 (9)	0.0277 (8)	0.0035 (7)	0.0090 (7)	0.0043 (7)
C6	0.0231 (8)	0.0290 (8)	0.0239 (7)	0.0021 (6)	0.0062 (6)	0.0020 (6)
C7	0.0413 (11)	0.0528 (13)	0.0381 (10)	-0.0126 (10)	0.0065 (9)	0.0050 (9)
C8	0.0529 (15)	0.0773 (19)	0.0404 (12)	-0.0292 (14)	0.0078 (11)	-0.0097 (12)
С9	0.082 (2)	0.0547 (17)	0.0692 (18)	-0.0351 (15)	0.0195 (16)	-0.0240 (14)
C10	0.082 (2)	0.0328 (11)	0.0678 (17)	-0.0149 (12)	0.0225 (15)	-0.0123 (11)
C11	0.0582 (13)	0.0297 (9)	0.0283 (9)	-0.0072 (9)	0.0169 (8)	-0.0039 (7)
Cd1	0.02654 (11)	0.02444 (11)	0.02832 (11)	0.000	0.01050 (7)	0.000
N1	0.0234 (7)	0.0339 (8)	0.0281 (7)	-0.0031 (6)	0.0082 (6)	-0.0019 (6)
N2	0.0260 (8)	0.0460 (10)	0.0319 (8)	-0.0047 (6)	0.0104 (6)	-0.0015 (7)
N3	0.0233 (7)	0.0456 (9)	0.0318 (8)	-0.0004 (6)	0.0108 (6)	0.0007 (7)
N4	0.0384 (8)	0.0337 (8)	0.0301 (7)	-0.0077 (7)	0.0094 (6)	0.0010 (6)
01	0.0291 (7)	0.0433 (8)	0.0283 (6)	-0.0103 (6)	0.0074 (5)	-0.0003 (5)
O2	0.0244 (7)	0.0578 (11)	0.0427 (8)	0.0073 (6)	0.0117 (6)	0.0099 (7)
O3	0.0450 (9)	0.0546 (10)	0.0499 (9)	-0.0275 (8)	0.0149 (7)	-0.0115 (8)
S 1	0.0219 (2)	0.0385 (2)	0.0286 (2)	-0.00741 (16)	0.00572 (16)	-0.00111 (17)

Geometric parameters (Å, °)

C1—C2	1.381 (3)	С9—Н9	0.9300
C1—C6	1.412 (2)	C10—C11	1.391 (3)
C1—S1	1.774 (2)	C10—H10	0.9300
C2—C3	1.415 (3)	C11—N4	1.344 (3)
С2—Н2	0.9300	C11—C11 ⁱ	1.487 (5)
C3—C4	1.365 (3)	Cd1—N4	2.3114 (18)
С3—Н3	0.9300	Cd1—N4 ⁱ	2.3114 (18)
C4—C5	1.406 (3)	Cd1—O1	2.3267 (15)
C4—H4	0.9300	Cd1—O1 ⁱ	2.3267 (15)
C5—N3	1.354 (3)	Cd1—N1	2.3293 (19)
C5—C6	1.397 (3)	Cd1—N1 ⁱ	2.3293 (19)
C6—N1	1.374 (2)	N1—N2	1.319 (2)
C7—N4	1.334 (3)	N2—N3	1.336 (3)
С7—С8	1.386 (3)	N3—H3N	0.9310
С7—Н7	0.9300	O1—S1	1.4690 (15)
С8—С9	1.378 (5)	O2—S1	1.4587 (17)
С8—Н8	0.9300	O3—S1	1.4363 (16)
C9—C10	1.367 (5)		

C2—C1—C6	116.48 (18)	N4—Cd1—N4 ⁱ	71.91 (10)
C2—C1—S1	121.87 (15)	N4—Cd1—O1	166.80 (5)
C6—C1—S1	121.63 (14)	N4 ⁱ —Cd1—O1	100.35 (7)
C1—C2—C3	122.3 (2)	N4—Cd1—O1 ⁱ	100.35 (7)
C1—C2—H2	118.8	$N4^{i}$ —Cd1—O1 ⁱ	166.80 (5)
С3—С2—Н2	118.8	O1—Cd1—O1 ⁱ	89.15 (8)
C4—C3—C2	121.9 (2)	N4—Cd1—N1	92.23 (6)
С4—С3—Н3	119.0	N4 ⁱ —Cd1—N1	106.18 (6)
С2—С3—Н3	119.0	O1—Cd1—N1	79.50 (6)
C3—C4—C5	115.9 (2)	O1 ⁱ —Cd1—N1	84.43 (6)
C3—C4—H4	122.0	N4—Cd1—N1 ⁱ	106.18 (6)
С5—С4—Н4	122.0	$N4^{i}$ —Cd1—N1 ⁱ	92.23 (6)
N3—C5—C6	104.12 (17)	O1—Cd1—N1 ⁱ	84.43 (6)
N3—C5—C4	132.63 (19)	O1 ⁱ —Cd1—N1 ⁱ	79.50 (6)
C6—C5—C4	123.20 (18)	N1—Cd1—N1 ⁱ	157.38 (8)
N1—C6—C5	108.02 (16)	N2—N1—C6	108.28 (16)
N1—C6—C1	131.83 (17)	N2—N1—Cd1	120.41 (13)
C5—C6—C1	120.12 (17)	C6—N1—Cd1	128.60 (12)
N4—C7—C8	122.2 (3)	N1—N2—N3	108.25 (16)
N4—C7—H7	118.9	N2—N3—C5	111.32 (17)
С8—С7—Н7	118.9	N2—N3—H3N	123.9
C9—C8—C7	118.3 (3)	C5—N3—H3N	124.8
С9—С8—Н8	120.9	C7—N4—C11	119.6 (2)
С7—С8—Н8	120.9	C7—N4—Cd1	123.54 (16)
С10—С9—С8	119.7 (2)	C11—N4—Cd1	116.87 (15)
С10—С9—Н9	120.1	S1—O1—Cd1	130.56 (8)
С8—С9—Н9	120.1	O3—S1—O2	113.99 (11)
C9—C10—C11	119.5 (3)	O3—S1—O1	112.90 (10)
С9—С10—Н10	120.3	O2—S1—O1	111.29 (10)
C11—C10—H10	120.3	O3—S1—C1	106.89 (10)
N4—C11—C10	120.7 (2)	O2—S1—C1	105.86 (9)
N4—C11—C11 ⁱ	117.13 (12)	01—S1—C1	105.16 (9)
C10-C11-C11 ⁱ	122.13 (17)		
C6—C1—C2—C3	1.0 (3)	Cd1—N1—N2—N3	162.45 (12)
S1—C1—C2—C3	-177.47 (18)	N1—N2—N3—C5	0.0 (2)
C1—C2—C3—C4	-0.9 (4)	C6—C5—N3—N2	0.4 (2)
C2—C3—C4—C5	-0.3 (3)	C4—C5—N3—N2	-177.0 (2)
C3—C4—C5—N3	178.3 (2)	C8—C7—N4—C11	0.8 (3)
C3—C4—C5—C6	1.4 (3)	C8—C7—N4—Cd1	178.65 (18)
N3-C5-C6-N1	-0.6 (2)	C10-C11-N4-C7	1.4 (3)
C4—C5—C6—N1	177.08 (18)	C11 ⁱ —C11—N4—C7	-179.5 (2)
N3—C5—C6—C1	-179.00 (16)	C10-C11-N4-Cd1	-176.55 (19)
C4—C5—C6—C1	-1.3 (3)	C11 ⁱ —C11—N4—Cd1	2.5 (3)
C2-C1-C6-N1	-177.84 (19)	N4 ⁱ —Cd1—N4—C7	-178.8 (2)
S1—C1—C6—N1	0.6 (3)	O1—Cd1—N4—C7	-123.2 (3)
C2-C1-C6-C5	0.1 (3)	O1 ⁱ —Cd1—N4—C7	12.25 (18)

N4* Cd1 $-$ N1 $-$ N225.51 (15)N1* $-$ Cd1 $-$ O1 $-$ S141.55 (12)N4* Cd1 $-$ N1 $-$ N2101.12 (15)N1* $-$ Cd1 $-$ O1 $-$ S1153.99 (12)O1 $-$ Cd1 $-$ N1 $-$ N2 $-161.04 (16)$ Cd1 $-$ O1 $-$ S1 $-$ O3176.99 (11)O1* $-$ Cd1 $-$ N1 $-$ N2 $-70.88 (15)$ Cd1 $-$ O1 $-$ S1 $-$ O2 $-53.35 (14)$ N1* $-$ Cd1 $-$ N1 $-$ N2 $-715.61 (15)$ Cd1 $-$ O1 $-$ S1 $-$ O2 $-53.35 (14)$ N4* $-$ Cd1 $-$ N1 $-$ C6 $-171.67 (16)$ C2 $-$ C1 $-$ S1 $-$ O321.9 (2)N4* $-$ Cd1 $-$ N1 $-$ C6 $-99.86 (16)$ C6 $-$ C1 $-$ S1 $-$ O3 $-156.48 (16)$ O1 $-$ Cd1 $-$ N1 $-$ C6 $-2.02 (15)$ C2 $-$ C1 $-$ S1 $-$ O2 $-99.96 (19)$ O1* $-$ Cd1 $-$ N1 $-$ C688.15 (16)C6 $-$ C1 $-$ S1 $-$ O281.66 (17)N1* $-$ Cd1 $-$ N1 $-$ C643.42 (15)C2 $-$ C1 $-$ S1 $-$ O1142.14 (17)	
C6-N1-N2-N3 -0.4 (2) C6-C1-S1-O1 -36.25 (18)	

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
N3—H3 <i>N</i> ···O2 ⁱⁱ	0.93	1.86	2.776 (3)	167	
С3—Н3…ОЗ ^{ііі}	0.93	2.55	3.255 (3)	133	
C7— $H7$ ···O2 ⁱ	0.93	2.56	3.204 (3)	127	

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) *x*+1, *y*, *z*; (iii) -*x*-1/2, -*y*-1/2, -*z*.