

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[tetraaquadi- μ_4 -oxalato-potassiumytterbium(III)]

Feng-Ming Zhang, Guang-Feng Hou, Peng-Fei Yan and Guang-Ming Li*

Key Laboratory of Functional Inorganic Materials Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: gmli_2000@163.com

Received 17 October 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.017; wR factor = 0.039; data-to-parameter ratio = 15.8.

In the title compound, $[KYb(C_2O_4)_2(H_2O)_4]_n$, the Yb^{III} ion lies on a site of $\overline{4}$ symmetry in a dodecahedral environment defined by eight O atoms from four oxalate ligands. The K atom lies on a different $\overline{4}$ axis and is coordinated by four O atoms from four oxalate ligands and four water O atoms. The oxalate ligand has an inversion center at the mid-point of the C-C bond. The metal ions are linked by the oxalate ligands into a three-dimensional framework. O-H···O hydrogen bonding is present in the crystal structure.

Related literature

For related structures, see: Camara *et al.* (2003); Zhang *et al.* (2009).

Experimental

Crystal data [KYb(C₂O₄)₂(H₂O)₄] $M_r = 460.24$ Tetragonal, $I4_1/a$ a = 11.3502 (16) Å

metal-organic compounds

 $R_{\rm int} = 0.051$

3 restraints

 $\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

 $0.08 \times 0.07 \times 0.07 \; \mathrm{mm}$

5407 measured reflections

648 independent reflections

585 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 8.57 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.562, T_{\rm max} = 0.606$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.039$ S = 0.94648 reflections 41 parameters

Table 1 Selected bond lengths (Å).

M 1 01	2.8402 (19)	Yb1-O1	2.3629 (19)
K1-O3	2.871 (3)	$Yb1-O2^{i}$	2.304 (2)

Symmetry code: (i) -x, -y + 1, -z.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
O3-H1···O3 ⁱⁱ	0.85	2.08	2.899 (3)	163
$O3-H2\cdots O2^{iii}$	0.85	2.06	2.837 (3)	152

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2482).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Camara, M., Daiguebonne, C., Boubekeur, K., Roisnel, T., Gérault, Y., Baux,

- C., Dret, F. L. & Guillou, O. (2003). Compt. Rend. Chim. 6, 405–415. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1993). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC Inc., The Woodlands, Texas, USA.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, X.-J., Xing, Y.-H., Wang, C.-G., Han, J., Li, J., Ge, M.-F., Zeng, X.-Q. & Niu, S.-Y. (2009). *Inorg. Chim. Acta*, **362**, 1058–1064.

supporting information

Acta Cryst. (2011). E67, m1719 [https://doi.org/10.1107/S1600536811046022]

Poly[tetraaquadi- μ_4 -oxalato-potassiumytterbium(III)]

Feng-Ming Zhang, Guang-Feng Hou, Peng-Fei Yan and Guang-Ming Li

S1. Comment

Lanthanide complexes with spectroscopic and magnetic properties are currently of considerable interest. Oxalate ligand can serve as bridging ligand in high dimensional frameworks (Camara *et al.*, 2003; Zhang *et al.*, 2009). In this paper, we present the synthesis and crystal structure of the title compound.

The title compound was obtained as a byproduct by the decomposition of 1,3,5-triazine-2,4,6-tricarboxylate ligand. In the title compound, $[YbK(C_2O_4)_2(H_2O)_4]_n$, the eight-coordinated Yb^{III} ion lies on a $\overline{4}$ site symmetry in a distorted dodecahedral geometry defined by eight O atoms from four oxalate ligands. The eight-coordinated K ion is also locate on another site of $\overline{4}$ symmetry in a distorted dodecahedral geometry defined by four O atoms from oxalate ligands and four O atoms from water molecules (Fig. 1, Table 1).

In the crystal, each oxalate ligand links two Yb and two K atoms, forming a three-dimensional framework (Fig. 2). O— H…O hydrogen bonds are present (Table 2).

S2. Experimental

The title compound was obtained as a byproduct caused by the decomposition of 1,3,5-triazine-2,4,6-tricarboxylate ligand. Yb(NO₃)_{3.6}H₂O (14.01 mg, 0.03 mmol) and potassium salt of 1,3,5-triazine-2,4,6-tricarboxylate (9.8 mg, 0.03 mmol) were dissolved in 15 ml water. After stirring at room temperature for 0.5 h, the solution was allowed to stand for about one week. Colorless block crystals were obtained in 36% yield.

S3. Refinement

Water H atoms were initially located in a difference Fourier map and were treated as riding atoms, with O—H = 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -*x*, 1-*y*, -*z*; (ii) 1/4-y, 3/4+x, -1/4+z; (iii) -3/4+y, 3/4-x, -1/4-z; (iv) 3/4-y, 3/4+x, -1/4-z; (v) -1/4+y, 3/4-x, -1/4+z; (vi) *x*, 1/2+y, *z*; (vii) -*x*, 3/2-y, *z*; (viii) 3/4-y, 3/4+x, 3/4-z; (ix) -3/4+y, 3/4-x, 3/4-z.]

Figure 2

A packing view along [001], showing the three-dimensional framework.

Poly[tetraaquadi- μ_4 -oxalato-potassiumytterbium(III)]

Crystal data

[KYb(C₂O₄)₂(H₂O)₄] $M_r = 460.24$ Tetragonal, $I4_1/a$ Hall symbol: -I 4ad a = 11.3502 (16) Å c = 8.9142 (18) Å V = 1148.4 (3) Å³ Z = 4F(000) = 868

Data collection

Rigaku R-AXIS RAPID	5407 measured reflections
diffractometer	648 independent reflections
Radiation source: fine-focus sealed tube	585 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
ω scan	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 14$
$T_{\min} = 0.562, \ T_{\max} = 0.606$	$l = -10 \rightarrow 11$

Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 4696 reflections $\theta = 3.6-27.4^{\circ}$ $\mu = 8.57 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.08 \times 0.07 \times 0.07 \text{ mm}$

 $D_{\rm x} = 2.662 {\rm Mg} {\rm m}^{-3}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.017$	Hydrogen site location: inferred from
$wR(F^2) = 0.039$	neighbouring sites
S = 0.94	H-atom parameters constrained
648 reflections	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$
41 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.0038 (3)	0.5244 (3)	0.0802 (3)	0.0159 (6)	
K1	0.0000	0.7500	0.3750	0.0296 (4)	
01	0.0084 (2)	0.63272 (19)	0.0937 (2)	0.0209 (5)	
O2	0.0045 (2)	0.44765 (18)	0.1836 (2)	0.0224 (5)	
03	0.2057 (3)	0.8934 (3)	0.3322 (3)	0.0509 (8)	
H1	0.2363	0.9125	0.2486	0.076*	
H2	0.2520	0.8473	0.3787	0.076*	
Yb1	0.0000	0.7500	-0.1250	0.01065 (10)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0188 (16)	0.0154 (15)	0.0136 (12)	0.0004 (12)	-0.0010 (11)	0.0004 (11)
K1	0.0345 (6)	0.0345 (6)	0.0198 (7)	0.000	0.000	0.000
01	0.0346 (14)	0.0125 (11)	0.0156 (9)	-0.0003 (10)	-0.0013 (8)	-0.0017 (8)
O2	0.0399 (14)	0.0122 (11)	0.0150 (9)	-0.0010 (10)	-0.0009 (9)	-0.0006 (8)
O3	0.0374 (17)	0.075 (2)	0.0402 (13)	0.0106 (16)	-0.0038 (12)	0.0195 (15)
Yb1	0.01004 (12)	0.01004 (12)	0.01186 (15)	0.000	0.000	0.000

Geometric parameters (Å, °)

C101	1.236 (4)	Yb1—O1	2.3629 (19)	
C1—O2	1.269 (4)	Yb1—O2 ⁱ	2.304 (2)	
C1—C1 ⁱ	1.536 (5)	O3—H1	0.8500	
K1—O1	2.8402 (19)	O3—H2	0.8499	
K1—O3	2.871 (3)			
01—C1—O2	127.7 (3)	O2 ⁱ —Yb1—O1 ^v	137.29 (7)	
01-C1-C1 ⁱ	116.9 (3)	O2 ⁱⁱ —Yb1—O1 ^{vi}	137.29 (7)	
O2-C1-C1 ⁱ	115.4 (3)	O2 ⁱⁱⁱ —Yb1—O1 ^{vi}	82.21 (8)	
O1—K1—O3	96.95 (7)	O2 ^{iv} —Yb1—O1 ^{vi}	68.87 (7)	
C1—O1—Yb1	118.53 (17)	$O2^{i}$ —Yb1— $O1^{vi}$	76.19 (8)	
C1—O1—K1	123.44 (17)	O1 ^v —Yb1—O1 ^{vi}	132.92 (6)	
Yb1—O1—K1	117.59 (8)	O2 ⁱⁱ —Yb1—O1	76.19 (8)	

supporting information

C1	120.27 (18)	O2 ⁱⁱⁱ —Yb1—O1	137.29 (7)
K1—O3—H1	126.4	O2 ^{iv} —Yb1—O1	82.21 (8)
K1—O3—H2	95.1	O2 ⁱ —Yb1—O1	68.87 (7)
H1—O3—H2	109.3	O1 ^v —Yb1—O1	68.77 (10)
O2 ⁱⁱ —Yb1—O2 ⁱⁱⁱ	92.95 (2)	O1 ^{vi} —Yb1—O1	132.92 (6)
O2 ⁱⁱ —Yb1—O2 ^{iv}	153.79 (9)	O2 ⁱⁱ —Yb1—O1 ^{vii}	68.87 (7)
$O2^{iii}$ —Yb1— $O2^{iv}$	92.95 (2)	O2 ⁱⁱⁱ —Yb1—O1 ^{vii}	76.19 (8)
O2 ⁱⁱ —Yb1—O2 ⁱ	92.95 (2)	O2 ^{iv} —Yb1—O1 ^{vii}	137.29 (7)
O2 ⁱⁱⁱ —Yb1—O2 ⁱ	153.79 (9)	O2 ⁱ —Yb1—O1 ^{vii}	82.21 (8)
$O2^{iv}$ —Yb1— $O2^{i}$	92.95 (2)	O1 ^v —Yb1—O1 ^{vii}	132.92 (6)
O2 ⁱⁱ —Yb1—O1 ^v	82.21 (8)	O1 ^{vi} —Yb1—O1 ^{vii}	68.77 (10)
O2 ⁱⁱⁱ —Yb1—O1 ^v	68.87 (7)	O1—Yb1—O1 ^{vii}	132.92 (6)
$O2^{iv}$ —Yb1—O1 ^v	76.19 (8)		

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) *y*-1/4, -*x*+3/4, *z*-1/4; (iii) *x*, *y*+1/2, -*z*; (iv) -*y*+1/4, *x*+3/4, *z*-1/4; (v) -*x*, -*y*+3/2, *z*; (vi) *y*-3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, *x*+3/4, -*z*-1/4; (v) -*x*, -*y*+3/2, *z*; (vi) *y*-3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, *x*+3/4, -*z*-1/4; (v) -*x*, -*y*+3/2, *z*; (vi) *y*-3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, *x*+3/4, -*z*-1/4; (v) -*x*, -*y*+3/2, *z*; (vi) *y*-3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, *x*+3/4, -*z*-1/4; (v) -*x*, -*y*+3/2, *z*; (vi) *y*-3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, *x*+3/4, -*z*-1/4; (vii) -*y*+3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, -*x*+3/4, -*z*-1/4; (vii) -*y*+3/4, -*y*+3/4, -*z*-1/4; (vii) -*y*+3/4, -*y*+3/4, -*z*-1/4; (vii) -*y*+3/4,

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H1…O3 ^{viii}	0.85	2.08	2.899 (3)	163
O3—H2···O2 ^{ix}	0.85	2.06	2.837 (3)	152

Symmetry codes: (viii) -y+5/4, x+3/4, z-1/4; (ix) -y+3/4, x+3/4, -z+3/4.