

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2-[bis(3,5-dimethyl-1*H*-pyrazol-1-yl- κN^2)methyl]pyridine- κN }copper(II) dinitrate

Jia-Cheng Liu,* Guo-Zhe Guo, Chao-Hu Xiao, Xue-Yan Song and Meng Li

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: jcliu8@nwnu.edu.cn

Received 19 October 2011; accepted 31 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.036; wR factor = 0.104; data-to-parameter ratio = 13.9.

In the mononuclear title complex, $[Cu(C_{16}H_{19}N_5)_2](NO_3)_2$, the Cu^{II} ion is located on a twofold rotation axis and is sixcoordinated by six N atoms from two 2-[bis(3,5-dimethyl-1*H*pyrazol-1-yl)methyl]pyridine ligands, forming a distorted octahedral geometry. In the crystal, molecules are linked by weak C-H···O interactions.

Related literature

For background to complexes based on rigid ligands containing pyrazole, see: Zhang *et al.* (2009); Otten *et al.* (2009); Arroyo *et al.* (2000); Morin *et al.* (2011). For the bioinorganic chemistry of cooper complexes, see: Turski & Thiele (2009); Finney *et al.* (2009); Tardito & Marchiò (2009).

Experimental

Crystal data $[Cu(C_{16}H_{19}N_5)_2](NO_3)_2$ $M_r = 750.28$ Monoclinic, C2/c a = 24.819 (6) Å

<i>b</i> =	10.918 (3) Å
<i>c</i> =	17.592 (4) Å
$\beta =$	132.348 (2)°
V =	3523.0 (14) Å ³

metal-organic compounds

 $0.23 \times 0.22 \times 0.16 \text{ mm}$

12411 measured reflections 3266 independent reflections

2601 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.022$

Z = 4Mo $K\alpha$ radiation $\mu = 0.68 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.859, T_{\max} = 0.899$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 23

 $wR(F^2) = 0.104$ H

 S = 1.07 Δ_A

 3266 reflections
 Δ_A

235 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}_{-3}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O3^{i}$ $C8-H8\cdots O2^{ii}$ $C15-H15c\cdots O2^{iii}$	0.93 0.93 0.96	2.39 2.46 2.29	3.245 (4) 3.338 (4) 3.202 (6)	153 158 159
Symmetry codes: (i)	-x + 1, y - 1	$1, -z + \frac{3}{2};$ (ii)	$-x + \frac{1}{2}, y - \frac{1}{2}, -$	$-z + \frac{1}{2};$ (iii)

 $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSFC (No. 20871099) and the Natural Science Foundation of Gansu (No. 0710RJZA113).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2036).

References

- Arroyo, N., Torre, F. G., Jalón, F. A., Manzano, B. R., Moreno-Lara, B. & Rodríguez, A. M. (2000). J. Organomet. Chem. 603, 174–184.
- Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Finney, L., Vogt, S., Fukai, T. & Glesne, D. (2009). Clin. Exp. Pharmacol. Physiol. 36, 88–94.
- Morin, T. J., Wanniarachchi, S., Gwengo, C., Makura, V., Tatlock, H. M., Lindeman, S. V., Bennett, B., Long, G. J., Grandjean, F. & Gardinier, J. R. (2011). Dalton Trans. 40, 8024–8034.
- Otten, E., Batinas, A. A., Meetsma, A. & Hessen, B. (2009). J. Am. Chem. Soc. 131, 5298–5312.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tardito, S. & Marchiò, L. (2009). Curr. Med. Chem. 16, 1325-1348.
- Turski, M. L. & Thiele, D. J. (2009). J. Biol. Chem. 284, 717-721.
- Zhang, J., Li, A. F. & Andy Hor, T. S. (2009). Dalton Trans. pp. 9327-9333.

supporting information

Acta Cryst. (2011). E67, m1691 [https://doi.org/10.1107/S1600536811045636]

Bis{2-[bis(3,5-dimethyl-1*H*-pyrazol-1-yl- κN^2)methyl]pyridine- κN }copper(II) dinitrate

Jia-Cheng Liu, Guo-Zhe Guo, Chao-Hu Xiao, Xue-Yan Song and Meng Li

S1. Comment

The rigid ligand with pyrazole is one of the most desirable ligand to biologists and bioinorganic chemists for specific performance, such as catalysis and fluxional behaviour (Zhang *et al.*, 2009; Otten *et al.*, 2009; Arroyo *et al.*, 2000), and also in electrochemistry (Morin *et al.* (2011)). Especially, the research field dealing with copper complexes embrace wide range of topics, such as metastasis development (Turski *et al.*, 2009; Finney *et al.*, 2009), anticancer activity (Tardito *et al.*, 2009), and other aspects of bioinorganic chemistry. In the present work, we report the synthesis and the structure of the title complex $[Cu(bpz^*mpy)_2](NO_3)_2$.

An X-ray diffraction study performed on title complex $[Cu(bpz*mpy)_2](NO_3)_2$ (Fig. 1) reveals that it crystallizes in the monoclinic system with space group *C*2/*c*. The central copper ion is six-coordinated by six nitrogen atoms from two ligands. N(1), N(1A), N(5) and N(5A) atoms form the equatorial plane with distance of Cu—N being in the range of 2.030 (2)–2.045 (2) Å, N(2) and N(2 A) atoms are in apical position with distance of Cu—N being 2.339 (2) Å [symmetry codes: (A) = 1 - *x*, *y*, 3/2 - *z*]. Consequently, the central copper ion coordination geometry can be described as a distorted octahedral coordination environment.

In the crystal, molecules are linked by weak intermolecular C—H…O interactions (Fig. 2).

S2. Experimental

 $Cu(NO_3)_2.3H_2O$ (0.1 mmol, 24.2 mg), bpz*mpy (0.2 mmol, 56.3 mg) were dissolved in MeOH. The resulting green solution was stirred for 1 h at the ambient temperature. Blue and block crystal was obtained by evaporation after one week, and washed with methol. Yield: 47 wt%.

S3. Refinement

The H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 - 0.98 Å, with $U_{iso}(H) = 1.2Ueq(C)$, $U_{iso}(H) = 1.5Ueq(Cmethyl)$

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Symmetry code: (A)= 1 - x, y, 3/2 - z.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. Weak interaction among the molecules are shown as dashed lines.

Bis{2-[bis(3,5-dimethyl-1*H*-pyrazol-1-yl-κN²)methyl]pyridine- κN}copper(II) dinitrate

F(000) = 1564

 $\theta = 2.2 - 25.8^{\circ}$

 $\mu = 0.68 \text{ mm}^{-1}$

T = 296 K

Block, blue

 $D_{\rm x} = 1.415 {\rm Mg} {\rm m}^{-3}$

 $0.23 \times 0.22 \times 0.16 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4634 reflections

Crystal data

[Cu(C₁₆H₁₉N₅)₂](NO₃)₂ $M_r = 750.28$ Monoclinic, C2/c Hall symbol: -C 2yc a = 24.819 (6) Å b = 10.918 (3) Å c = 17.592 (4) Å $\beta = 132.348$ (2)° V = 3523.0 (14) Å³ Z = 4

Data collection

Bruker APEXII CCD	12411 measured reflections
diffractometer	3266 independent reflections
Radiation source: fine-focus sealed tube	2601 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -30 \rightarrow 29$
(SADABS; Bruker, 2008)	$k = -13 \rightarrow 13$
$T_{\min} = 0.859, \ T_{\max} = 0.899$	$l = -20 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.07	H-atom parameters constrained
3266 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 5.0393P]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.5000	-0.01320 (4)	0.7500	0.03860 (15)
C1	0.48707 (15)	-0.2377 (2)	0.8338 (2)	0.0508 (7)
H1	0.5351	-0.2502	0.8646	0.061*
C2	0.45590 (17)	-0.3194 (3)	0.8536 (2)	0.0595 (8)

H2	0.4828	-0.3849	0.8980	0.071*
C3	0.38457 (16)	-0.3035 (3)	0.8069 (2)	0.0598 (8)
H3	0.3621	-0.3586	0.8183	0.072*
C4	0.34694 (15)	-0.2046 (2)	0.7430 (2)	0.0492 (6)
H4	0.2985	-0.1920	0.7102	0.059*
C5	0.38190 (13)	-0.1246 (2)	0.72802 (18)	0.0368 (5)
C6	0.34211 (13)	-0.0120 (2)	0.66153 (19)	0.0389 (5)
H6	0.2941	-0.0109	0.6403	0.047*
C7	0.26736 (15)	-0.0142 (3)	0.4692 (2)	0.0554 (7)
C8	0.28709 (17)	-0.0194 (3)	0.4136 (2)	0.0611 (8)
H8	0.2559	-0.0196	0.3423	0.073*
C9	0.36269 (16)	-0.0244 (2)	0.4835 (2)	0.0498 (7)
C10	0.4118 (2)	-0.0301 (4)	0.4627 (3)	0.0755 (10)
H10A	0.4604	-0.0078	0.5237	0.113*
H10B	0.3947	0.0257	0.4082	0.113*
H10C	0.4119	-0.1119	0.4427	0.113*
C11	0.19391 (19)	-0.0068 (5)	0.4360 (3)	0.1009 (15)
H11A	0.1859	-0.0785	0.4588	0.151*
H11B	0.1570	-0.0018	0.3623	0.151*
H11C	0.1916	0.0647	0.4655	0.151*
C12	0.35339 (18)	0.1970 (3)	0.7337 (2)	0.0553 (7)
C13	0.4112 (2)	0.2737 (3)	0.7987 (3)	0.0666 (9)
H13	0.4104	0.3487	0.8230	0.080*
C14	0.47163 (17)	0.2200 (2)	0.8223 (2)	0.0540 (7)
C15	0.2759 (2)	0.2089 (3)	0.6840 (4)	0.0882 (12)
H15A	0.2455	0.2171	0.6110	0.132*
H15B	0.2705	0.2800	0.7105	0.132*
H15C	0.2617	0.1373	0.6985	0.132*
C16	0.54737 (19)	0.2688 (3)	0.8906 (3)	0.0773 (10)
H16A	0.5811	0.2021	0.9172	0.116*
H16B	0.5580	0.3130	0.9465	0.116*
H16C	0.5518	0.3228	0.8520	0.116*
N1	0.45132 (11)	-0.14066 (18)	0.77218 (15)	0.0392 (5)
N2	0.38955 (12)	-0.0231 (2)	0.57884 (16)	0.0463 (5)
N3	0.33024 (11)	-0.01645 (19)	0.56902 (16)	0.0416 (5)
N4	0.37949 (12)	0.09956 (18)	0.71912 (16)	0.0420 (5)
N5	0.45224 (12)	0.11305 (19)	0.77316 (17)	0.0448 (5)
N6	0.35109 (14)	0.5779 (2)	0.41294 (19)	0.0512 (6)
01	0.35080 (16)	0.6715 (3)	0.4505 (2)	0.1132 (11)
O2	0.29475 (13)	0.5446 (3)	0.3289 (2)	0.0896 (8)
O3	0.40686 (15)	0.5216 (2)	0.4542 (2)	0.1047 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0389 (3)	0.0372 (2)	0.0438 (3)	0.000	0.0295 (2)	0.000
C1	0.0402 (15)	0.0482 (15)	0.0480 (16)	0.0088 (12)	0.0232 (14)	0.0131 (12)
C2	0.0570 (19)	0.0490 (16)	0.0591 (19)	0.0058 (13)	0.0337 (16)	0.0185 (14)

Acta Cryst. (2011). E67, m1691

supporting information

C3	0.0576 (19)	0.0546 (17)	0.0637 (19)	-0.0056 (14)	0.0394 (17)	0.0134 (14)
C4	0.0440 (15)	0.0497 (15)	0.0526 (16)	-0.0009 (12)	0.0320 (14)	0.0070 (13)
C5	0.0368 (13)	0.0370 (12)	0.0341 (13)	0.0017 (10)	0.0229 (12)	0.0016 (10)
C6	0.0371 (13)	0.0431 (13)	0.0409 (13)	0.0054 (11)	0.0280 (12)	0.0068 (11)
C7	0.0431 (16)	0.0669 (18)	0.0400 (15)	0.0112 (14)	0.0215 (14)	0.0093 (13)
C8	0.0593 (19)	0.075 (2)	0.0334 (14)	0.0083 (16)	0.0248 (15)	0.0067 (14)
C9	0.0621 (18)	0.0511 (15)	0.0426 (15)	0.0026 (13)	0.0378 (15)	0.0022 (12)
C10	0.085 (2)	0.103 (3)	0.061 (2)	0.004 (2)	0.059 (2)	0.0016 (19)
C11	0.0434 (19)	0.176 (5)	0.057 (2)	0.017 (2)	0.0226 (18)	0.004 (2)
C12	0.078 (2)	0.0428 (15)	0.078 (2)	0.0118 (14)	0.0658 (19)	0.0078 (14)
C13	0.108 (3)	0.0402 (15)	0.096 (3)	-0.0011 (17)	0.086 (2)	-0.0072 (16)
C14	0.076 (2)	0.0427 (15)	0.0636 (19)	-0.0079 (14)	0.0553 (18)	-0.0085 (13)
C15	0.093 (3)	0.062 (2)	0.147 (4)	0.0158 (19)	0.096 (3)	0.001 (2)
C16	0.088 (3)	0.062 (2)	0.090 (3)	-0.0267 (18)	0.063 (2)	-0.0329 (18)
N1	0.0345 (11)	0.0405 (11)	0.0383 (12)	0.0020 (9)	0.0227 (10)	0.0039 (9)
N2	0.0425 (12)	0.0615 (14)	0.0384 (12)	0.0045 (10)	0.0286 (11)	0.0039 (10)
N3	0.0368 (11)	0.0503 (12)	0.0366 (11)	0.0080 (9)	0.0243 (10)	0.0077 (9)
N4	0.0501 (13)	0.0391 (11)	0.0494 (13)	0.0049 (9)	0.0386 (12)	0.0045 (9)
N5	0.0505 (13)	0.0415 (12)	0.0508 (13)	-0.0030 (10)	0.0374 (12)	-0.0043 (10)
N6	0.0515 (15)	0.0467 (13)	0.0554 (15)	-0.0091 (11)	0.0361 (14)	-0.0065 (11)
01	0.103 (2)	0.098 (2)	0.116 (2)	-0.0088 (17)	0.065 (2)	-0.0504 (18)
O2	0.0583 (15)	0.0995 (19)	0.0702 (16)	-0.0095 (14)	0.0268 (14)	-0.0291 (14)
03	0.0630 (16)	0.0806 (18)	0.098 (2)	0.0121 (14)	0.0247 (16)	-0.0141 (15)

Geometric parameters (Å, °)

Cu1—N5 ⁱ	2.030 (2)	C9—C10	1.491 (4)
Cu1—N5	2.030 (2)	C10—H10A	0.9600
Cu1—N1	2.045 (2)	C10—H10B	0.9600
Cu1—N1 ⁱ	2.045 (2)	C10—H10C	0.9600
Cu1—N2 ⁱ	2.339 (2)	C11—H11A	0.9600
Cu1—N2	2.339 (2)	C11—H11B	0.9600
C1—N1	1.337 (3)	C11—H11C	0.9600
C1—C2	1.370 (4)	C12—N4	1.358 (3)
C1—H1	0.9300	C12—C13	1.363 (4)
C2—C3	1.371 (4)	C12—C15	1.488 (4)
С2—Н2	0.9300	C13—C14	1.388 (4)
C3—C4	1.374 (4)	C13—H13	0.9300
С3—Н3	0.9300	C14—N5	1.334 (3)
C4—C5	1.376 (3)	C14—C16	1.490 (4)
C4—H4	0.9300	C15—H15A	0.9600
C5—N1	1.341 (3)	C15—H15B	0.9600
C5—C6	1.516 (3)	C15—H15C	0.9600
C6—N3	1.446 (3)	C16—H16A	0.9600
C6—N4	1.451 (3)	C16—H16B	0.9600
С6—Н6	0.9800	C16—H16C	0.9600
C7—N3	1.352 (3)	N2—N3	1.363 (3)
С7—С8	1.359 (4)	N4—N5	1.369 (3)

supporting information

C7—C11	1.495 (5)	N6—O3	1.211 (3)
C8—C9	1.388 (4)	N6—O2	1.219 (3)
С8—Н8	0.9300	N6—O1	1.220 (3)
C9—N2	1.324 (3)		
N5 ⁱ —Cu1—N5	94.48 (12)	C9—C10—H10C	109.5
N5 ⁱ —Cu1—N1	179.57 (9)	H10A—C10—H10C	109.5
N5—Cu1—N1	85.63 (8)	H10B-C10-H10C	109.5
N5 ⁱ —Cu1—N1 ⁱ	85.63 (8)	C7—C11—H11A	109.5
N5—Cu1—N1 ⁱ	179.57 (9)	C7—C11—H11B	109.5
N1—Cu1—N1 ⁱ	94.26 (12)	H11A—C11—H11B	109.5
N5 ⁱ —Cu1—N2 ⁱ	87.32 (8)	C7—C11—H11C	109.5
N5—Cu1—N2 ⁱ	96.28 (8)	H11A—C11—H11C	109.5
N1—Cu1—N2 ⁱ	93.08 (8)	H11B—C11—H11C	109.5
N1 ⁱ —Cu1—N2 ⁱ	83.31 (8)	N4—C12—C13	105.8 (3)
N5 ⁱ —Cu1—N2	96.28 (8)	N4—C12—C15	123.3 (3)
N5—Cu1—N2	87.32 (8)	C13—C12—C15	130.8 (3)
N1— $Cu1$ — $N2$	83.31 (8)	C12—C13—C14	107.9 (3)
$N1^{i}$ —Cu1—N2	93.08 (8)	C12—C13—H13	126.1
$N2^{i}$ —Cu1—N2	174.72 (11)	C14—C13—H13	126.1
N1-C1-C2	122.8 (3)	N5-C14-C13	109.3 (3)
N1-C1-H1	118.6	N5-C14-C16	123.0(3)
C2-C1-H1	118.6	C13-C14-C16	127.7(3)
C1 - C2 - C3	119.2 (3)	C12—C15—H15A	109 5
C1-C2-H2	120.4	C12— $C15$ — $H15B$	109.5
C3-C2-H2	120.4	H15A—C15—H15B	109.5
$C_2 - C_3 - C_4$	118 8 (3)	C12-C15-H15C	109.5
C2-C3-H3	120.6	H15A-C15-H15C	109.5
C4—C3—H3	120.0	H15B-C15-H15C	109.5
C_{3} C_{4} C_{5}	119.2 (3)	C14—C16—H16A	109.5
$C_3 - C_4 - H_4$	120.4	C14— $C16$ — $H16B$	109.5
C5-C4-H4	120.1	H16A-C16-H16B	109.5
N1 - C5 - C4	120.1 122.4(2)	C14—C16—H16C	109.5
N1-C5-C6	122.1(2) 117.9(2)	H16A-C16-H16C	109.5
C4-C5-C6	117.5(2) 119.7(2)	H16B-C16-H16C	109.5
N3-C6-N4	119.7(2)	C1 - N1 - C5	117.7(2)
N_{3} C_{6} C_{5}	111.97 (19)	C1 - N1 - Cu1	122.61(17)
N4-C6-C5	111.97(19) 111.4(2)	C5 - N1 - Cu1	122.01(17) 119.60(15)
N3-C6-H6	107.3	C9 N2 N3	105 1 (2)
N4-C6-H6	107.3	C9 = N2 = Cu1	103.1(2) 141 70 (19)
C5-C6-H6	107.3	N3 = N2 = Cu1	112 94 (15)
N_{3} C_{7} C_{8}	107.5 105.9(3)	C7 = N3 = N2	112.94(13) 111.6(2)
$N_3 - C_7 - C_{11}$	103.9(3) 123.1(3)	C7 - N3 - C6	1300(2)
C8-C7-C11	123.1(3) 131 1 (3)	$N_{2} = N_{3} = C_{6}$	130.0(2) 118 4 (2)
C7 - C8 - C9	107.0 (3)	$C12_N4_N5$	110.7(2)
C7_C8_H8	107.0 (3)	C12 - N4 - C6	111.0(2) 1280(2)
C9_C8_H8	126.5	N5_N4_C6	120.9(2) 110 05 (10)
$N_2 C_0 C_8$	120.3 110.4(2)	C14 N5 N4	106.0 (2)
112-07-00	110.4 (2)	U14-INJ-IN4	100.0(2)

N2—C9—C10	121.0 (3)	C14—N5—Cu1	136.0 (2)
C8—C9—C10	128.7 (3)	N4—N5—Cu1	117.58 (15)
C9—C10—H10A	109.5	O3—N6—O2	119.3 (3)
C9—C10—H10B	109.5	O3—N6—O1	121.5 (3)
H10A—C10—H10B	109.5	O2—N6—O1	119.1 (3)
N1—C1—C2—C3	1.4 (5)	N5—Cu1—N2—N3	-38.62 (17)
C1—C2—C3—C4	-1.0 (5)	N1—Cu1—N2—N3	47.29 (16)
C2—C3—C4—C5	-0.2 (4)	N1 ⁱ —Cu1—N2—N3	141.22 (17)
C3—C4—C5—N1	1.3 (4)	C8—C7—N3—N2	0.0 (3)
C3—C4—C5—C6	-177.2 (3)	C11—C7—N3—N2	-179.8 (3)
N1-C5-C6-N3	67.1 (3)	C8—C7—N3—C6	179.4 (2)
C4—C5—C6—N3	-114.3 (3)	C11—C7—N3—C6	-0.4 (5)
N1-C5-C6-N4	-58.3 (3)	C9—N2—N3—C7	0.2 (3)
C4—C5—C6—N4	120.3 (2)	Cu1—N2—N3—C7	175.91 (18)
N3—C7—C8—C9	-0.2 (3)	C9—N2—N3—C6	-179.3 (2)
C11—C7—C8—C9	179.6 (4)	Cu1—N2—N3—C6	-3.6 (3)
C7—C8—C9—N2	0.3 (3)	N4—C6—N3—C7	-114.3 (3)
C7—C8—C9—C10	-179.5 (3)	C5—C6—N3—C7	120.3 (3)
N4—C12—C13—C14	-0.1 (3)	N4—C6—N3—N2	65.1 (3)
C15—C12—C13—C14	-179.6 (3)	C5—C6—N3—N2	-60.3 (3)
C12—C13—C14—N5	0.3 (3)	C13—C12—N4—N5	-0.1 (3)
C12—C13—C14—C16	-179.8 (3)	C15-C12-N4-N5	179.4 (3)
C2-C1-N1-C5	-0.4 (4)	C13-C12-N4-C6	176.1 (2)
C2-C1-N1-Cu1	176.1 (2)	C15-C12-N4-C6	-4.4 (4)
C4—C5—N1—C1	-1.0 (4)	N3-C6-N4-C12	110.1 (3)
C6-C5-N1-C1	177.6 (2)	C5—C6—N4—C12	-124.1 (3)
C4—C5—N1—Cu1	-177.61 (19)	N3—C6—N4—N5	-74.0 (3)
C6—C5—N1—Cu1	1.0 (3)	C5—C6—N4—N5	51.8 (3)
N5—Cu1—N1—C1	-133.1 (2)	C13—C14—N5—N4	-0.4 (3)
N1 ⁱ —Cu1—N1—C1	46.47 (18)	C16—C14—N5—N4	179.8 (3)
N2 ⁱ —Cu1—N1—C1	-37.0 (2)	C13-C14-N5-Cu1	171.5 (2)
N2—Cu1—N1—C1	139.1 (2)	C16-C14-N5-Cu1	-8.3 (5)
N5—Cu1—N1—C5	43.32 (18)	C12—N4—N5—C14	0.3 (3)
N1 ⁱ —Cu1—N1—C5	-137.1 (2)	C6—N4—N5—C14	-176.3 (2)
N2 ⁱ —Cu1—N1—C5	139.39 (18)	C12—N4—N5—Cu1	-173.37 (17)
N2—Cu1—N1—C5	-44.48 (18)	C6—N4—N5—Cu1	10.0 (3)
C8—C9—N2—N3	-0.4 (3)	N5 ⁱ —Cu1—N5—C14	-40.8 (2)
C10—C9—N2—N3	179.5 (3)	N1—Cu1—N5—C14	139.7 (3)
C8—C9—N2—Cu1	-173.9 (2)	N2 ⁱ —Cu1—N5—C14	47.0 (3)
C10—C9—N2—Cu1	5.9 (5)	N2—Cu1—N5—C14	-136.9 (3)
N5 ⁱ —Cu1—N2—C9	40.4 (3)	N5 ⁱ —Cu1—N5—N4	130.4 (2)
N5—Cu1—N2—C9	134.6 (3)	N1—Cu1—N5—N4	-49.17 (17)
N1—Cu1—N2—C9	-139.5 (3)	N2 ⁱ —Cu1—N5—N4	-141.80 (17)
N1 ⁱ —Cu1—N2—C9	-45.6 (3)	N2—Cu1—N5—N4	34.32 (17)
N5 ⁱ —Cu1—N2—N3	-132.84 (17)		

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A	
С2—Н2…О3 ^{іі}	0.93	2.39	3.245 (4)	153	
C8—H8····O2 ⁱⁱⁱ	0.93	2.46	3.338 (4)	158	
C15—H15c····O2 ^{iv}	0.96	2.29	3.202 (6)	159	

Symmetry codes: (ii) -x+1, y-1, -z+3/2; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, -y+1/2, -z+1.