

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Poly[tetra-*n*-butylammonium [(μ_5 benzene-1,3,5-tricarboxylato)(μ_4 benzene-1,3,5-tricarboxylato)- μ_3 hydroxido-trizincate] 0.25-hydrate]

Xiao-Hong Zhu* and Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China Correspondence e-mail: hgzhuxh@yeah.net

Received 4 October 2011; accepted 25 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 21.4.

In the asymmetric unit of title coordination polymer, $\{(C_{16}H_{36}N)[Zn_3(C_9H_3O_6)_2(OH)]\cdot 0.25H_2O\}_n$, there are three independent Zn^{2+} cations, two benzene-1,3,5-tricarboxylate ligands and a μ_3 -bridging hydroxide group, together with a tetra-*n*-butylammonium counter-cation and a partially occupied water molecule of solvation (occupancy 0.25). Each Zn ion is coordinated by three carboxylate O atoms and one O atom from the bridging hydroxide ion, displaying a slightly distorted tetrahedral stereochemistry [overall Zn-O range = 1.875 (3)–1.987 (2) Å]. An intramolecular hydrogen bond involving the hydroxide H atom and a carboxylate O-atom acceptor is also present in the complex unit. The bridging benzene-1,3,5-tricarboxylate anions generate a three-dimensional framework structure.

Related literature

For a related structure, see: Su et al. (2009).

Experimental

Crystal data

 $(C_{16}H_{36}N)[Zn_3(C_9H_3O_6)_2(OH)]$ --0.25H₂O $M_r = 873.86$ Orthorhombic, *Pbca* a = 16.295 (5) Å b = 16.295 (5) Å c = 28.946 (5) Å

 $V = 7686 (4) Å^{3}$ Z = 8 Mo K\alpha radiation \mu = 1.92 mm⁻¹ T = 293 K 0.20 \times 0.20 \times 0.18 mm

46890 measured reflections

 $R_{\rm int} = 0.060$

9492 independent reflections

6072 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.700, T_{max} = 0.724$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	443 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 1.24 \text{ e } \text{\AA}^{-3}$
9492 reflections	$\Delta \rho_{\rm min} = -1.35 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O13−H7···O8	0.93	1.73	2.609 (3)	158

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2153).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Su, Z., Bai, Z.-S., Fan, J., Xu, J. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 5190–5196.

supporting information

Acta Cryst. (2011). E67, m1641 [doi:10.1107/S1600536811044485]

Poly[tetra-*n*-butylammonium [(μ_5 -benzene-1,3,5-tricarboxylato)(μ_4 benzene-1,3,5-tricarboxylato)- μ_3 -hydroxido-trizincate] 0.25-hydrate]

Xiao-Hong Zhu and Xiao-Chun Cheng

S1. Comment

benzene-1,3,5-tricarboxylic acid is often used as organic ligand in the synthesis of metal complexes because of its abundant and variable coordination modes (Su *et al.*, 2009). Herein, we report the crystal structure of the title coordination polymer, [[(C₁₆H₃₆N) Zn₃(C₉H₃O₃)₂(OH)].0.25(H₂O)]_n (Fig. 1). In the asymmetric unit there are three independent Zn cations, two benzene-1,3,5-tricarboxylate ligands and a μ_3 -bridging hydroxide group, together with a tetra-*n*-butylammonium counter-cation and a partial water molecule of solvation. The coordination sphere about each ZnO₄ centre comprises three carboxylate O atoms from separate benzene-1,3,5-tricarboxylate anions and one O atom from the bridging hydroxide anion, giving in each a slightly distorted tetrahedral stereochemistry [Zn—O ranges: 1.875 (3)–1.958 (2) Å (Zn1); 1.914 (2)–1.987 (2) Å (Zn2); 1.921 (2)–1.968 (2) Å (Zn3)]. An intramolecular hydrogen bond involving the hydroxo ligand H-donor and a carboxylate O-acceptor is also present in the complex unit (Table 1). The bridging benzene-1,3,5-tricarboxylate anions generate a three-dimensional framework structure (Fig. 2).

S2. Experimental

The reaction mixture of zinc nitrate hexahydrate (59.4 mg, 0.2 mmol), benzene-1,3,5-tricarboxylic acid (21.0 mg, 0.1 mmol), and 1 ml of aqueous tetra-*n*-butylammonium hydroxide solution (10%, w/w) in 12 ml of water was sealed in a 16 ml Teflon-lined stainless steel container and heated to 453 K for 3 days. After cooling to room temperature, colorless block crystals of the title complex were obtained.

S3. Refinement

The hydrogen atoms on all C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93-0.97 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The hydrogen atom on the hydroxide group (O13) was found at a reasonable position in the difference-Fourier map and was constrained with $U_{iso}(H) = 1.2U_{eq}(O)$]. The partial water molecule of solvation (O1W) was refined with occupancy 0.25, while the attached hydrogen atoms could not be located.

Figure 1

The coordination environment of the Zn ions in the title complex together with the tetra-*n*-butylammonium countercation and the partial water molecule of solvation, with the ellipsoids drawn at the 30% probability level. The hydrogen atoms are omitted. Symmetry code: (A) x + 1/2, -y + 1/2, -z + 1; (B) -x + 3/2, y - 1/2, z; (C) -x + 2, y + 1/2, -z + 3/2; (D) x + 1/2, y, -z + 3/2.

Figure 2

The packing diagram of title coordination polymer complex. The tetra-*n*-butylammonium counter-cation and the partial water molecule of solvation are omitted for clarity.

Poly[tetra-*n*-butylammonium [(μ_5 -benzene-1,3,5-tricarboxylato)(μ_4 - benzene-1,3,5-tricarboxylato)- μ_3 -hydroxido-trizincate] 0.25-hydrate]

Crystal data

 $\begin{array}{l} ({\rm C}_{16}{\rm H}_{36}{\rm N})[{\rm Zn}_3({\rm C}_9{\rm H}_3{\rm O}_6)_2({\rm OH})]\cdot 0.25{\rm H}_2{\rm O}\\ M_r = 873.86\\ {\rm Orthorhombic}, Pbca\\ {\rm Hall symbol: -P 2ac 2ab}\\ a = 16.295~(5)~{\rm \AA}\\ b = 16.295~(5)~{\rm \AA}\\ c = 28.946~(5)~{\rm \AA}\\ V = 7686~(4)~{\rm \AA}^3\\ Z = 8 \end{array}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.700, T_{\max} = 0.724$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.099$ S = 0.939492 reflections 443 parameters 0 restraints F(000) = 3600 $D_x = 1.510 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6690 reflections $\theta = 2.3-25.4^{\circ}$ $\mu = 1.92 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.20 \times 0.18 \text{ mm}$

46890 measured reflections 9492 independent reflections 6072 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 28.5^\circ, \theta_{min} = 1.9^\circ$ $h = -21 \rightarrow 16$ $k = -16 \rightarrow 21$ $l = -38 \rightarrow 37$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.040P)^2]$	$\Delta \rho_{\rm max} = 1.24 \text{ e } \text{\AA}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -1.35 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.002$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.76518 (19)	0.3324 (2)	0.57153 (11)	0.0241 (8)	
C2	0.72626 (19)	0.2998 (2)	0.53324 (11)	0.0250 (8)	
H1	0.7475	0.2534	0.5188	0.030*	
C3	0.65577 (19)	0.3364 (2)	0.51636 (11)	0.0224 (7)	
C4	0.62623 (19)	0.4065 (2)	0.53724 (11)	0.0235 (7)	
H2	0.5783	0.4305	0.5262	0.028*	
C5	0.6665 (2)	0.4418 (2)	0.57412 (11)	0.0240 (8)	
C6	0.7354 (2)	0.4038 (2)	0.59158 (11)	0.0265 (8)	
Н3	0.7621	0.4262	0.6170	0.032*	
C11	0.8392 (2)	0.2900 (2)	0.59169 (12)	0.0252 (8)	
C31	0.6116 (2)	0.3057 (2)	0.47464 (11)	0.0230 (7)	
C51	0.6355 (2)	0.5218 (2)	0.59296 (13)	0.0332 (9)	
C101	0.9004 (2)	0.0957 (2)	0.76805 (11)	0.0231 (7)	
C102	0.92903 (19)	0.0206 (2)	0.78223 (11)	0.0247 (8)	
H4	0.9737	-0.0029	0.7672	0.030*	
C103	0.89223 (19)	-0.0204 (2)	0.81857 (11)	0.0225 (7)	
C104	0.82612 (19)	0.0157 (2)	0.84119 (11)	0.0256 (8)	
Н5	0.8012	-0.0113	0.8658	0.031*	
C105	0.79740 (19)	0.0912 (2)	0.82739 (11)	0.0244 (8)	
C106	0.83441 (19)	0.1305 (2)	0.79074 (11)	0.0240 (8)	
H6	0.8146	0.1813	0.7811	0.029*	
C111	0.9409 (2)	0.1396 (2)	0.72901 (12)	0.0274 (8)	
C131	0.9225 (2)	-0.1027 (2)	0.83342 (11)	0.0246 (8)	
C151	0.7268 (2)	0.1304 (2)	0.85213 (12)	0.0279 (8)	
C211	0.8723 (2)	0.3453 (3)	0.82377 (14)	0.0455 (11)	
H9	0.8856	0.3017	0.8022	0.055*	
H8	0.8161	0.3366	0.8337	0.055*	
C212	0.8758 (3)	0.4257 (3)	0.79796 (15)	0.0527 (12)	
H10	0.8596	0.4701	0.8183	0.063*	
H11	0.9316	0.4360	0.7878	0.063*	
C213	0.81928 (19)	0.4232 (2)	0.75671 (12)	0.0639 (14)	
H13	0.7634	0.4147	0.7672	0.077*	

H12	0.8342	0.3772	0.7371	0.077*
C214	0.82376 (19)	0.5032 (2)	0.72833 (12)	0.0888 (19)
H14	0.8231	0.5494	0.7489	0.133*
H16	0.7775	0.5062	0.7079	0.133*
H15	0.8735	0.5038	0.7106	0.133*
C221	1.0164 (2)	0.3513 (3)	0.85266 (15)	0.0587 (14)
H18	1.0504	0.3435	0.8798	0.070*
H17	1 0220	0.4082	0.8432	0.070*
C222	1.0494 (3)	0 2962 (4)	0.81374 (18)	0.0782(17)
H19	1.0380	0.2393	0.8212	0.094*
H20	1.0209	0.3092	0.7853	0.094*
C223	1.0209 1 1379 (2)	0.3062 (3)	0.80653 (17)	0.094
U225 H22	1.1577 (2)	0.2062 (3)	0.8356	0.108 (2)
H21	1.1002	0.2908	0.8550	0.129
C224	1.1709	0.3022 0.2487 (3)	0.7970	0.129 0.127 (3)
0224	1.1/14(2) 1.1597	0.2407 (3)	0.77083 (17)	0.137 (3)
H23	1.138/	0.1952	0.7795	0.203
H24	1.2299	0.2552	0.7089	0.205*
H23	1.14/2	0.2009	0.7414	0.205*
C231	0.9169 (3)	0.2499 (3)	0.88305 (16)	0.0545 (12)
H27	0.9338	0.2125	0.8588	0.065*
H26	0.8589	0.2408	0.8886	0.065*
C232	0.9637 (3)	0.2281 (3)	0.92683 (17)	0.0724 (16)
H28	1.0222	0.2279	0.9208	0.087*
H29	0.9525	0.2683	0.9507	0.087*
C233	0.9361 (3)	0.1441 (3)	0.94246 (19)	0.132
H30	0.9478	0.1044	0.9184	0.158*
H31	0.8772	0.1446	0.9475	0.158*
C234	0.9790 (3)	0.1180 (3)	0.98675 (19)	0.172 (4)
H32	1.0347	0.1371	0.9864	0.258*
H33	0.9785	0.0592	0.9891	0.258*
H34	0.9508	0.1411	1.0128	0.258*
C241	0.9052 (2)	0.3982 (3)	0.90251 (14)	0.0472 (11)
H35	0.9461	0.3962	0.9268	0.057*
H36	0.9072	0.4526	0.8889	0.057*
C242	0.8221 (2)	0.3864 (3)	0.92395 (14)	0.0449 (11)
H38	0.8185	0.3318	0.9372	0.054*
H37	0.7800	0.3913	0.9004	0.054*
C243	0.8077 (2)	0.4499 (2)	0.96125 (11)	0.0593 (13)
H39	0.8159	0.5041	0.9482	0.071*
H40	0.8481	0.4423	0.9855	0.071*
C244	0.7220 (2)	0.4457 (2)	0.98250 (11)	0.0803 (17)
H42	0.6815	0.4491	0.9585	0.120*
H43	0.7148	0.4906	1.0036	0.120*
H41	0.7158	0.3948	0.9988	0.120*
N1	0.92799 (19)	0.3363 (2)	0.86590 (11)	0.0427 (9)
01	0.87184 (14)	0.23552 (16)	0.56768 (8)	0.0362 (6)
O2	0.86264 (14)	0.31397 (16)	0.63058 (8)	0.0355 (6)
O3	0.64976 (14)	0.25944 (15)	0.44788 (8)	0.0305 (6)

04	0.53918 (13)	0.32934 (16)	0.46956 (8)	0.0337 (6)	
05	0.57056 (17)	0.54736 (18)	0.57447 (10)	0.0531 (6)	
O6	0.67374 (17)	0.55794 (17)	0.62306 (10)	0.0531 (6)	
07	0.91524 (14)	0.21258 (14)	0.72211 (8)	0.0295 (6)	
08	0.99505 (16)	0.10514 (16)	0.70684 (9)	0.0431 (7)	
09	0.98565 (14)	-0.12995 (15)	0.81338 (8)	0.0315 (6)	
O10	0.88317 (14)	-0.13893 (14)	0.86430 (8)	0.0316 (6)	
011	0.71941 (14)	0.20737 (15)	0.84644 (8)	0.0329 (6)	
012	0.68018 (16)	0.09061 (16)	0.87645 (9)	0.0468 (8)	
013	1.02002 (12)	0.19730 (13)	0.63449 (7)	0.0184 (5)	
H7	1.0246	0.1607	0.6588	0.022*	
Zn1	0.95951 (2)	0.15787 (2)	0.580582 (13)	0.02168 (10)	
Zn2	0.95001 (2)	0.27515 (2)	0.669671 (12)	0.01930 (10)	
Zn3	1.12713 (2)	0.24495 (2)	0.618089 (13)	0.02092 (10)	
O1W	0.1549 (8)	0.1219 (9)	0.8850 (4)	0.083	0.25

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0221 (17)	0.025 (2)	0.0250 (18)	0.0056 (15)	-0.0026 (14)	0.0001 (15)
C2	0.0276 (19)	0.024 (2)	0.0238 (18)	0.0059 (15)	-0.0031 (15)	-0.0047 (15)
C3	0.0214 (17)	0.0221 (19)	0.0237 (18)	0.0008 (14)	-0.0029 (14)	-0.0010 (15)
C4	0.0193 (17)	0.025 (2)	0.0261 (18)	0.0038 (15)	-0.0005 (14)	0.0023 (15)
C5	0.0257 (18)	0.024 (2)	0.0222 (18)	0.0044 (15)	-0.0021 (14)	-0.0034 (15)
C6	0.0288 (19)	0.029 (2)	0.0223 (18)	0.0036 (16)	-0.0047 (15)	-0.0051 (16)
C11	0.0239 (18)	0.025 (2)	0.0265 (19)	0.0037 (15)	-0.0032 (15)	0.0027 (16)
C31	0.0271 (19)	0.0205 (19)	0.0212 (18)	-0.0002 (15)	-0.0043 (14)	0.0029 (15)
C51	0.039 (2)	0.025 (2)	0.036 (2)	0.0037 (17)	-0.0047 (17)	-0.0082 (17)
C101	0.0270 (18)	0.0190 (19)	0.0233 (18)	0.0021 (14)	0.0033 (14)	0.0050 (15)
C102	0.0234 (18)	0.024 (2)	0.0265 (19)	0.0051 (15)	0.0067 (14)	0.0038 (15)
C103	0.0229 (18)	0.0184 (19)	0.0262 (19)	0.0025 (14)	0.0007 (14)	0.0027 (15)
C104	0.0266 (19)	0.022 (2)	0.028 (2)	0.0014 (15)	0.0049 (15)	0.0054 (15)
C105	0.0234 (18)	0.022 (2)	0.0283 (19)	0.0026 (14)	0.0033 (14)	0.0021 (16)
C106	0.0269 (18)	0.0178 (19)	0.0272 (19)	0.0031 (14)	0.0007 (15)	0.0044 (15)
C111	0.030 (2)	0.023 (2)	0.029 (2)	0.0045 (15)	0.0035 (16)	0.0059 (16)
C131	0.0287 (19)	0.0195 (19)	0.0256 (19)	-0.0021 (15)	-0.0025 (15)	0.0001 (15)
C151	0.0264 (19)	0.024 (2)	0.033 (2)	0.0042 (16)	0.0007 (16)	0.0012 (17)
C211	0.041 (2)	0.049 (3)	0.047 (3)	-0.009(2)	-0.005 (2)	-0.014 (2)
C212	0.047 (3)	0.052 (3)	0.059 (3)	-0.008 (2)	0.004 (2)	-0.005 (2)
C213	0.058 (3)	0.073 (4)	0.061 (3)	0.006 (3)	-0.001 (3)	-0.013 (3)
C214	0.091 (4)	0.103 (5)	0.072 (4)	0.023 (4)	0.002 (3)	0.019 (4)
C221	0.037 (3)	0.076 (4)	0.064 (3)	-0.011 (2)	-0.005 (2)	-0.023 (3)
C222	0.049 (3)	0.099 (5)	0.087 (4)	-0.002 (3)	0.003 (3)	-0.042 (4)
C223	0.062 (4)	0.137 (7)	0.124 (5)	-0.019 (4)	0.031 (4)	-0.057 (5)
C224	0.101 (5)	0.134 (7)	0.175 (7)	-0.015 (5)	0.060 (5)	-0.084 (6)
C231	0.060 (3)	0.039 (3)	0.064 (3)	-0.002(2)	-0.015 (2)	-0.010 (2)
C232	0.079 (4)	0.052 (3)	0.087 (4)	0.003 (3)	-0.035 (3)	-0.011 (3)
C233	0.202	0.067	0.127	0.015	-0.102	-0.027

C234	0.229 (9)	0.096 (7)	0.191 (9)	0.001 (6)	-0.073 (7)	0.030 (6)
C241	0.055 (3)	0.042 (3)	0.044 (3)	-0.008 (2)	-0.008 (2)	-0.014 (2)
C242	0.047 (3)	0.040 (3)	0.048 (3)	0.001 (2)	-0.004 (2)	-0.004 (2)
C243	0.078 (3)	0.054 (3)	0.045 (3)	-0.005 (3)	-0.002 (2)	-0.009 (2)
C244	0.088 (4)	0.081 (5)	0.072 (4)	0.007 (3)	0.017 (3)	-0.017 (3)
N1	0.0382 (19)	0.041 (2)	0.049 (2)	-0.0068 (16)	-0.0052 (16)	-0.0132 (18)
01	0.0314 (14)	0.0412 (17)	0.0361 (14)	0.0195 (12)	-0.0088 (11)	-0.0106 (13)
O2	0.0377 (15)	0.0389 (17)	0.0298 (14)	0.0149 (12)	-0.0170 (11)	-0.0074 (12)
03	0.0377 (14)	0.0286 (15)	0.0252 (13)	0.0103 (11)	-0.0107 (11)	-0.0093 (11)
O4	0.0231 (13)	0.0478 (18)	0.0303 (14)	0.0050 (12)	-0.0091 (11)	-0.0062 (12)
05	0.0554 (13)	0.0365 (13)	0.0674 (14)	0.0197 (10)	-0.0221 (11)	-0.0241 (11)
06	0.0554 (13)	0.0365 (13)	0.0674 (14)	0.0197 (10)	-0.0221 (11)	-0.0241 (11)
O7	0.0387 (14)	0.0203 (14)	0.0295 (14)	0.0043 (11)	0.0108 (11)	0.0088 (11)
08	0.0517 (17)	0.0348 (17)	0.0428 (16)	0.0208 (13)	0.0261 (13)	0.0201 (13)
09	0.0312 (14)	0.0268 (15)	0.0367 (15)	0.0121 (11)	0.0079 (11)	0.0098 (12)
O10	0.0410 (15)	0.0190 (14)	0.0348 (14)	0.0014 (11)	0.0127 (12)	0.0104 (11)
011	0.0316 (14)	0.0227 (15)	0.0445 (16)	0.0056 (11)	0.0121 (11)	0.0060 (12)
012	0.0440 (16)	0.0316 (17)	0.065 (2)	0.0041 (13)	0.0315 (14)	0.0127 (15)
013	0.0187 (11)	0.0167 (12)	0.0199 (11)	0.0021 (9)	-0.0016 (9)	0.0023 (10)
Znl	0.01888 (19)	0.0196 (2)	0.0266 (2)	-0.00071 (16)	0.00158 (16)	-0.00610 (17)
Zn2	0.02036 (19)	0.0173 (2)	0.0202 (2)	0.00008 (16)	-0.00066 (15)	0.00052 (16)
Zn3	0.01865 (19)	0.0210 (2)	0.0231 (2)	0.00059 (16)	-0.00087 (16)	-0.00463 (17)
O1W	0.083	0.087	0.079	0.064	-0.013	-0.012

Geometric parameters (Å, °)

C1—C2	1.383 (4)	С222—Н19	0.9700
C1—C6	1.388 (4)	С222—Н20	0.9700
C1—C11	1.507 (4)	C223—C224	1.4970
C2—C3	1.383 (4)	С223—Н22	0.9700
C2—H1	0.9300	C223—H21	0.9700
C3—C4	1.380 (4)	С224—Н25	0.9600
C3—C31	1.492 (4)	C224—H24	0.9600
C4—C5	1.378 (4)	С224—Н23	0.9600
C4—H2	0.9300	C231—N1	1.502 (5)
С5—С6	1.378 (4)	C231—C232	1.521 (6)
C5—C51	1.501 (5)	С231—Н27	0.9700
С6—Н3	0.9300	С231—Н26	0.9700
C11—O1	1.247 (4)	C232—C233	1.511 (7)
C11—O2	1.251 (4)	С232—Н28	0.9700
C31—O3	1.247 (4)	С232—Н29	0.9700
C31—O4	1.251 (4)	C233—C234	1.5206
C51—O6	1.222 (4)	С233—Н30	0.9700
C51—O5	1.257 (4)	С233—Н31	0.9700
C101—C102	1.373 (4)	С234—Н32	0.9600
C101—C106	1.382 (4)	С234—Н33	0.9600
C101—C111	1.491 (4)	С234—Н34	0.9600
C102—C103	1.383 (4)	C241—C242	1.502 (5)

С102—Н4	0.9300	C241N1	1510(5)
C102 $C104$	1.301(4)	C_{241} H35	0.0700
C103 - C104	1.391(4) 1.402(5)	C241—H35	0.9700
C103 - C105	1.492(3) 1.375(4)	$C_{241} = 1130$	1.514(5)
C104 - C105	0.0300	$C_{242} = C_{243}$	1.314(3)
C104—H3	0.9300	C242—H38	0.9700
C105 - C106	1.578 (4)	$C_{242} = - \frac{137}{2}$	0.9700
	1.498 (4)	$C_{243} = C_{244}$	1.3272
С106—Н6	0.9300	С243—Н39	0.9700
C111-08	1.227 (4)	C243—H40	0.9700
	1.277 (4)	C244—H42	0.9600
	1.248 (4)	C244—H43	0.9600
C131—O9	1.262 (4)	C244—H41	0.9600
C151—O12	1.221 (4)	O1—Zn1	1.945 (2)
C151—O11	1.271 (4)	O2—Zn2	1.926 (2)
C211—C212	1.510 (6)	O3—Zn3 ⁱ	1.946 (2)
C211—N1	1.527 (5)	O4—Zn1 ⁱ	1.958 (2)
С211—Н9	0.9700	O5—Zn1 ⁱⁱ	1.875 (3)
С211—Н8	0.9700	O7—Zn2	1.914 (2)
C212—C213	1.509 (5)	O9—Zn2 ⁱⁱⁱ	1.932 (2)
C212—H10	0.9700	O10—Zn3 ⁱⁱⁱ	1.967 (2)
C212—H11	0.9700	O11—Zn3 ^{iv}	1.921 (2)
C213—C214	1.5431	O13—Zn1	1.954 (2)
С213—Н13	0.9700	O13—Zn3	1.968 (2)
C213—H12	0.9700	O13—Zn2	1.987 (2)
C214—H14	0.9600	O13—H7	0.9259
C214—H16	0.9600	Zn1—O5 ^v	1.875 (3)
C214—H15	0.9600	Zn1—O4 ^{vi}	1.958 (2)
C221—N1	1.511 (5)	Zn2—O9 ^{vii}	1.932 (2)
C221—C222	1.538 (6)	Zn3—O11 ^{viii}	1.921 (2)
C221—H18	0.9700	Zn3—O3 ^{vi}	1.946 (2)
С221—Н17	0.9700	Zn3—O10 ^{vii}	1.967 (2)
C222—C223	1.466 (5)		
$C^{2}-C^{1}-C^{6}$	1197(3)	H22—C223—H21	107.8
$C_2 - C_1 - C_{11}$	120 1 (3)	C_{223} C_{224} H25	109.5
C6-C1-C11	120.1(3)	$C_{223} = C_{224} = H_{24}$	109.5
$C_1 - C_2 - C_3$	120.1(3) 120.0(3)	H_{25} C_{224} H_{24}	109.5
C1 C2 H1	120.0 (3)	$C_{223} C_{224} H_{23}$	109.5
$C_1 = C_2 = H_1$	120.0	2223 - 2224 - 1123	109.5
$C_3 = C_2 = C_2$	120.0	$H_{23} = C_{224} = H_{23}$	109.5
C4 - C3 - C2	119.4(3)	$n_{24} - c_{224} - n_{23}$	109.3
$C_4 = C_3 = C_3 I$	117.0(3)	NI-C231-C232	113.7 (4)
$C_2 = C_3 = C_3 $	122.9 (3)	$NI = C_{231} = H_{27}$	108.5
	121.2 (3)	U232-U231-H2/	108.5
C3-C4-H2	119.4	N1 - C231 - H26	108.3
C3—C4—H2	119.4	C232—C231—H26	108.3
C6—C5—C4	119.0 (3)	H27—C231—H26	107.4
C6—C5—C51	122.1 (3)	C233—C232—C231	108.2 (4)
C4—C5—C51	118.9 (3)	С233—С232—Н28	110.1

C5—C6—C1	120.5 (3)	С231—С232—Н28	110.1
С5—С6—Н3	119.7	С233—С232—Н29	110.1
С1—С6—Н3	119.7	С231—С232—Н29	110.1
O1—C11—O2	126.4 (3)	H28—C232—H29	108.4
01—C11—C1	116.9 (3)	C232—C233—C234	111.7 (3)
O2—C11—C1	116.7 (3)	С232—С233—Н30	109.3
O3—C31—O4	125.7 (3)	С234—С233—Н30	109.3
O3—C31—C3	117.7 (3)	C232—C233—H31	109.3
04-C31-C3	116.6 (3)	C234—C233—H31	109.3
O6—C51—O5	125.0 (4)	H30—C233—H31	107.9
O6—C51—C5	120.4 (3)	C233—C234—H32	109.5
05-C51-C5	114.6 (3)	C233—C234—H33	109.5
C102 - C101 - C106	119.2 (3)	H32-C234-H33	109.5
C102 $-C101$ $-C111$	120.2(3)	C233—C234—H34	109.5
C106-C101-C111	120.6(3)	H32-C234-H34	109.5
C101 - C102 - C103	120.7(3)	H33_C234_H34	109.5
C101 - C102 - H4	119.6	$C_{242} - C_{241} - N_1$	105.2 (3)
C103 - C102 - H4	119.6	$C_{242} = C_{241} = H_{35}$	108.5
C102 - C102 - C104	119.3 (3)	N1_C241_H35	108.5
C102 - C103 - C131	120.7(3)	$C_{242} - C_{241} - H_{36}$	108.5
C102 - C103 - C131	120.7(3) 120.0(3)	$N1 - C^{2}41 - H^{3}6$	108.5
C105 - C104 - C103	120.3(3)	H35_C241_H36	107.5
C105 - C104 - H5	110.8	$C_{241} - C_{242} - C_{243}$	107.3 110.3(3)
$C_{103} = C_{104} = H_5$	110.8	$C_{241} = C_{242} = C_{243}$	10.5 (5)
C103 - C104 - 115	119.0	$C_{241} - C_{242} - H_{38}$	109.0
C104 - C105 - C151	119.4(3) 120.2(3)	$C_{243} - C_{242} - H_{37}$	109.0
C104 - C105 - C151	120.2(3) 120.4(3)	$C_{241} - C_{242} - H_{37}$	109.0
$C_{100} = C_{105} = C_{101}$	120.4(3) 121.1(2)	128 - 242 - 1137	109.0
$C_{105} = C_{106} = C_{101}$	121.1 (5)	138 - C242 - 157	100.1 113.5(2)
$C_{103} = C_{106} = H_6$	119.5	$C_{242} = C_{243} = C_{244}$	113.3 (2)
$C_{101} = C_{100} = 110$	117.3	$C_{242} - C_{243} - H_{39}$	108.9
08 - 0111 - 07	123.4(3) 110.7(3)	$C_{244} = C_{243} = H_{40}$	100.9
03 - 0111 - 0101	119.7(3) 114.8(3)	$C_{242} - C_{243} - H_{40}$	100.9
0/	114.0(3) 125.5(2)	$C_{244} - C_{245} - H_{40}$	100.9
010 - 0131 - 09	125.5 (5)	H39 - C243 - H40	107.7
010 - 0131 - 0103	117.3(3) 1160(2)	$C_{243} = C_{244} = H_{42}$	109.5
09-0131-0103	110.9 (3)	$C_{243} - C_{244} - \Pi_{43}$	109.5
012-0151-011	122.6 (3)	H42-C244-H43	109.5
012 - 0151 - 0105	121.8 (3)	C_{243} — C_{244} —H41	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.5 (3)	H42 - C244 - H41	109.5
C212—C211—N1	117.1 (3)	H43—C244—H41	109.5
C212—C211—H9	108.0	C231—N1—C241	111.4 (3)
NI-C211-H9	108.0	C231—N1—C221	110.5 (3)
C212—C211—H8	108.0	C241—N1—C221	107.7 (3)
NI-C211-H8	108.0	C231—N1—C211	106.4 (3)
H9—C211—H8	107.3	C241—N1—C211	110.5 (3)
C213—C212—C211	110.2 (3)	C221—N1—C211	110.4 (3)
С213—С212—Н10	109.6	C11—O1—Zn1	132.1 (2)
C211—C212—H10	109.6	C11—O2—Zn2	130.7 (2)

C213—C212—H11	109.6	C31—O3—Zn3 ⁱ	122.5 (2)
C211—C212—H11	109.6	C31—O4—Zn1 ⁱ	138.2 (2)
H10-C212-H11	108.1	C51—O5—Zn1 ⁱⁱ	119.9 (2)
C212—C213—C214	111.7 (2)	C111—O7—Zn2	121.6 (2)
C212—C213—H13	109.3	C131—O9—Zn2 ⁱⁱⁱ	127.4 (2)
C214—C213—H13	109.3	C131—O10—Zn3 ⁱⁱⁱ	133.2 (2)
C212—C213—H12	109.3	C151—O11—Zn3 ^{iv}	108.6 (2)
C214—C213—H12	109.3	Zn1—O13—Zn3	112.61 (10)
H13—C213—H12	107.9	Zn1—O13—Zn2	109.24 (9)
C213—C214—H14	109.5	Zn3—O13—Zn2	112.38 (10)
C213—C214—H16	109.5	Zn1—O13—H7	115.8
H14—C214—H16	109.5	Zn3—O13—H7	111.5
C213—C214—H15	109.5	Zn2—O13—H7	93.9
H14—C214—H15	109.5	O5 ^v —Zn1—O1	114.51 (12)
H16—C214—H15	109.5	O5 ^v —Zn1—O13	121.54 (11)
N1—C221—C222	115.1 (3)	O1—Zn1—O13	108.06 (10)
N1—C221—H18	108.5	$O5^{v}$ —Zn1—O4 ^{vi}	101.86 (11)
C222—C221—H18	108.5	O1—Zn1—O4 ^{vi}	105.99 (11)
N1—C221—H17	108.5	O13—Zn1—O4 ^{vi}	102.85 (9)
C222—C221—H17	108.5	O7—Zn2—O2	114.97 (11)
H18—C221—H17	107.5	O7—Zn2—O9 ^{vii}	112.68 (10)
C223—C222—C221	112.6 (4)	O2—Zn2—O9 ^{vii}	106.72 (11)
С223—С222—Н19	109.1	O7—Zn2—O13	103.67 (9)
С221—С222—Н19	109.1	O2—Zn2—O13	109.45 (9)
С223—С222—Н20	109.1	O9 ^{vii} —Zn2—O13	109.25 (9)
C221—C222—H20	109.1	O11 ^{viii} —Zn3—O3 ^{vi}	111.37 (10)
H19—C222—H20	107.8	O11 ^{viii} —Zn3—O10 ^{vii}	103.59 (10)
C222—C223—C224	112.8 (3)	O3 ^{vi} —Zn3—O10 ^{vii}	107.81 (10)
С222—С223—Н22	109.0	O11 ^{viii} —Zn3—O13	116.07 (10)
С224—С223—Н22	109.0	O3 ^{vi} —Zn3—O13	112.96 (9)
C222—C223—H21	109.0	O10 ^{vii} —Zn3—O13	103.96 (9)
С224—С223—Н21	109.0		
C6-C1-C2-C3	-2.9 (5)	C232—C231—N1—C221	63.2 (5)
C11—C1—C2—C3	176.5 (3)	C232—C231—N1—C211	-176.9 (4)
C1—C2—C3—C4	1.8 (5)	C242—C241—N1—C231	-51.9 (5)
C1—C2—C3—C31	178.7 (3)	C242—C241—N1—C221	-173.2 (4)
C2—C3—C4—C5	1.2 (5)	C242—C241—N1—C211	66.2 (5)
C31—C3—C4—C5	-175.8 (3)	C222—C221—N1—C231	61.0 (5)
C3—C4—C5—C6	-3.0 (5)	C222—C221—N1—C241	-177.2 (4)
C3—C4—C5—C51	175.0 (3)	C222—C221—N1—C211	-56.5 (5)
C4—C5—C6—C1	1.8 (5)	C212—C211—N1—C231	-176.3 (4)
C51—C5—C6—C1	-176.1 (3)	C212—C211—N1—C241	62.6 (5)
C2-C1-C6-C5	1.1 (5)	C212—C211—N1—C221	-56.4 (5)
C11—C1—C6—C5	-178.3 (3)	O2-C11-O1-Zn1	8.2 (6)
C2-C1-C11-O1	13.4 (5)	C1-C11-O1-Zn1	-173.1 (2)
C6-C1-C11-O1	-167.2 (3)	O1—C11—O2—Zn2	-4.1 (6)
C2-C1-C11-O2	-167.9 (3)	C1—C11—O2—Zn2	177.2 (2)

C6-C1-C11-O2	11.5 (5)	O4—C31—O3—Zn3 ⁱ	29.4 (5)
C4—C3—C31—O3	158.8 (3)	C3-C31-O3-Zn3 ⁱ	-150.2 (2)
C2—C3—C31—O3	-18.1 (5)	O3—C31—O4—Zn1 ⁱ	-22.1 (6)
C4—C3—C31—O4	-20.8 (5)	C3-C31-O4-Zn1 ⁱ	157.5 (3)
C2—C3—C31—O4	162.3 (3)	O6—C51—O5—Zn1 ⁱⁱ	16.2 (6)
C6-C5-C51-O6	4.0 (6)	C5—C51—O5—Zn1 ⁱⁱ	-161.9 (2)
C4—C5—C51—O6	-173.9 (3)	O8—C111—O7—Zn2	8.0 (5)
C6-C5-C51-O5	-177.8 (3)	C101—C111—O7—Zn2	-172.9 (2)
C4—C5—C51—O5	4.3 (5)	O10-C131-O9-Zn2 ⁱⁱⁱ	-10.7 (5)
C106—C101—C102—C103	0.5 (5)	C103—C131—O9—Zn2 ⁱⁱⁱ	169.7 (2)
C111—C101—C102—C103	179.7 (3)	O9—C131—O10—Zn3 ⁱⁱⁱ	-22.6 (5)
C101—C102—C103—C104	-0.8 (5)	C103—C131—O10—Zn3 ⁱⁱⁱ	156.9 (2)
C101—C102—C103—C131	178.9 (3)	O12-C151-O11-Zn3 ^{iv}	0.4 (4)
C102—C103—C104—C105	0.4 (5)	C105—C151—O11—Zn3 ^{iv}	-178.8 (2)
C131—C103—C104—C105	-179.4 (3)	$C11 - O1 - Zn1 - O5^{v}$	120.9 (3)
C103—C104—C105—C106	0.4 (5)	C11—O1—Zn1—O13	-18.0 (4)
C103—C104—C105—C151	-179.4 (3)	C11—O1—Zn1—O4 ^{vi}	-127.6 (3)
C104—C105—C106—C101	-0.8 (5)	Zn3—O13—Zn1—O5 ^v	119.45 (13)
C151—C105—C106—C101	179.0 (3)	Zn2—O13—Zn1—O5 ^v	-114.94 (13)
C102—C101—C106—C105	0.3 (5)	Zn3—O13—Zn1—O1	-105.14 (12)
C111—C101—C106—C105	-178.9 (3)	Zn2—O13—Zn1—O1	20.47 (13)
C102—C101—C111—O8	6.6 (5)	Zn3—O13—Zn1—O4 ^{vi}	6.67 (13)
C106—C101—C111—O8	-174.2 (3)	Zn2—O13—Zn1—O4 ^{vi}	132.28 (11)
C102—C101—C111—O7	-172.5 (3)	C111—O7—Zn2—O2	122.9 (3)
C106—C101—C111—O7	6.7 (5)	C111—O7—Zn2—O9 ^{vii}	-114.6 (3)
C102—C103—C131—O10	-175.2 (3)	C111—O7—Zn2—O13	3.4 (3)
C104—C103—C131—O10	4.5 (5)	C11—O2—Zn2—O7	-105.3 (3)
C102—C103—C131—O9	4.4 (5)	C11—O2—Zn2—O9 ^{vii}	129.0 (3)
C104—C103—C131—O9	-175.9 (3)	C11—O2—Zn2—O13	10.9 (3)
C104—C105—C151—O12	-18.6 (5)	Zn1—O13—Zn2—O7	104.57 (11)
C106—C105—C151—O12	161.6 (3)	Zn3—O13—Zn2—O7	-129.69 (11)
C104—C105—C151—O11	160.6 (3)	Zn1—O13—Zn2—O2	-18.56 (14)
C106—C105—C151—O11	-19.1 (5)	Zn3—O13—Zn2—O2	107.18 (12)
N1-C211-C212-C213	178.2 (3)	Zn1—O13—Zn2—O9 ^{vii}	-135.08 (11)
C211—C212—C213—C214	-177.8 (2)	Zn3—O13—Zn2—O9 ^{vii}	-9.34 (13)
N1—C221—C222—C223	-172.6 (4)	Zn1—O13—Zn3—O11 ^{viii}	-131.35 (11)
C221—C222—C223—C224	176.2 (3)	Zn2—O13—Zn3—O11 ^{viii}	104.76 (12)
N1-C231-C232-C233	172.1 (4)	Zn1—O13—Zn3—O3 ^{vi}	-0.97 (14)
C231—C232—C233—C234	-179.0 (3)	Zn2—O13—Zn3—O3 ^{vi}	-124.86 (11)
N1-C241-C242-C243	177.8 (3)	Zn1-013-Zn3-010 ^{vii}	115.62 (11)
C241—C242—C243—C244	176.0 (2)	Zn2—O13—Zn3—O10 ^{vii}	-8.27 (12)
C232—C231—N1—C241	-56.5 (5)		

Symmetry codes: (i) *x*-1/2, -*y*+1/2, -*z*+1; (ii) -*x*+3/2, *y*+1/2, *z*; (iii) -*x*+2, *y*-1/2, -*z*+3/2; (iv) *x*-1/2, *y*, -*z*+3/2; (v) -*x*+3/2, *y*-1/2, *z*; (vi) *x*+1/2, -*y*+1/2, -*z*+1; (vii) -*x*+2, *y*+1/2, -*z*+3/2; (vii) *x*+1/2, -*y*+1/2, -*z*+3/2; (viii) *x*+1/2, -*y*+1/2, -*z*+3/2; (viii) -*x*+2, *y*+1/2, -*z*+3/2; (viii) -*x*+2, -*z*+3/2; (viii) -*x*+3/2; (viii) -*x*+

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
013—Н7…О8	0.93	1.73	2.609 (3)	158