

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(R)-(6-Bromo-2-methoxyquinolin-3vl)(phenyl)methyl]-N-[(S)-1-(4-methoxyphenyl)ethyl]-2-(piperazin-1-yl)acetamide

Lei Yuan,^a Rui Wang,^b Chang-Yi Li,^c Zhi-Qiang Wang^a and Tie-Min Sun^a*

^aKey Laboratory of Original New Drug Design & Discovery, Ministry of Education, College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China, ^bSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China, and ^cTai'an Hospital of Chinese Medicine, Pharmacy Department, Tai'an 271000, People's Republic of China

Correspondence e-mail: suntiemin@gmail.com

Received 26 September 2011; accepted 5 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.170; data-to-parameter ratio = 16.6.

In the title compound, C₃₂H₃₅BrN₄O₃, the piperazine ring exists in a chair conformation. The quinoline ring system is oriented at dihedral angles of 82.70 (17) and 19.54 (17)° to the phenyl and methoxyphenyl rings, respectively. Weak intermolecular C-H··· π interactions are present in the crystal structure.

Related literature

For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Andries et al. (2005); Gaurrand et al. (2006); Mao et al. (2007); Dalla Via et al. (2008). For related structures, see: Cai et al. (2009); Petit et al. (2007).

V = 3045.3 (5) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.21 \times 0.13 \text{ mm}$

18937 measured reflections

5999 independent reflections

4518 reflections with $I > 2\sigma(I)$

 $\mu = 1.39 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.035$

Z = 4

Experimental

Crystal data

C32H35BrN4O3 $M_r = 603.55$ Orthorhombic, $P2_12_12_1$ a = 9.9738 (9) Å b = 10.9397 (10) Å c = 27.910 (3) Å

Data collection

```
Bruker APEXII diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2004)
  T_{\min} = 0.712, T_{\max} = 0.835
```

Refinement

$P[F^2 > 2\sigma(F^2)] = 0.056$	$\Lambda \circ = 0.24 \circ \Lambda^{-3}$
K[T > 20(T)] = 0.050	$\Delta \rho_{\text{max}} = 0.54 \text{ e A}_{\circ}$
$wR(F^2) = 0.170$	$\Delta \rho_{\rm min} = -0.56 \text{ e A}^{-5}$
S = 1.02	Absolute structure: Flack (1983),
5999 reflections	2585 Friedel pairs
361 parameters	Flack parameter: 0.011 (12)
H-atom parameters constrained	•

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C12–C17 phenyl ring.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$C10-H10A\cdots Cg^{i}$	0.96	2.69	3.639 (6)	170			
Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.							

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the College of Experimental Center of Testing Science of Jilin University of China for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5339).

References

- Andries, K., Verhasselt, P., Guillemont, J., Göehlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223-227.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, Z.-Q., Xiong, G., Li, S.-R., Liu, J.-B. & Sun, T.-M. (2009). Acta Cryst. E65, o1901.
- Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur. J. Med. Chem. 43, 429-434.
- Flack, H. D. (1983). Acta Crvst. A39, 876-881.
- Gaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des. 68, 77-84.
- Mao, J.-L., Wang, Y.-H., Wan, B.-J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624-1630.
- Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252-256.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2921 [doi:10.1107/S1600536811040955]

N-[(*R*)-(6-Bromo-2-methoxyquinolin-3-yl)(phenyl)methyl]-*N*-[(*S*)-1-(4-methoxy-phenyl)ethyl]-2-(piperazin-1-yl)acetamide

Lei Yuan, Rui Wang, Chang-Yi Li, Zhi-Qiang Wang and Tie-Min Sun

S1. Comment

Most quinoline derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and medical chemistry, such as antifungals, antituberculostatics, anticancer drugs and so on (Andries *et al.*, 2005). At the same time, the title compound is also a promising drug against tuberculosis. We synthesized this compound in order to get some more efficient antituberculosis drugs. To characterize our product, its single crystal structure was determined.

The structure of the title compound is shown in Fig. 1 and geometrical parameters are given in the archived CIF. In the title molecule, the bond lengths and angles are generally within normal ranges. The dihedral angles of aromatic rings are nearly in accordance with related structure TMC-207 (Petit *et al.*, 2007), which has been completed Phase II clinical, and will be marketed in 2012 as a kind of antituberculostatics drug. The dihedral angle between quinoline and phenyl ring [C12—C17] is 82.7°; The dihedral angle between quinoline and phenyl ring [C26—C31] is 19.5°; The dihedral angle between phenyl ring [C26—C31] and phenyl ring [C12—C17] is 78.6°; While the dihedral angle between phenyl and substituted quinolinyl group in TMC-207 is 97.4°, naphthalenyl and substituted quinolinyl group is nearly coplanar. On the other hand, the piperazidine ring exists in a chair conformationand. The bond angles also indicate sp³ hybridization nature of those atoms. No conventional hydrogen bonds were found at 293 (2)K for the title compound.

S2. Experimental

A solution of (1R,2S)-N-((6-bromo-2-methoxyquinolin-3-yl)(phenyl)methyl)-2- chloro-N-(1-(4-methoxyphenyl)ethyl)acetamide (1.0 mmol), piperazidine (1.1 mmol) and potassium carbonate (4.0 mmol) in acetonitrile was stirred for 4 h at 50°C. The reaction mixture was diluted with water (100 ml). The resulting precipitate was collected by filteration and purified on silica gel column (50% ethyl acetateu in petroleum ether) to give white powder (85.2% yield). A colorless crystalline solid was formed on slow evaporation of acetonitrile/methanol = 1:2 solution.

S3. Refinement

All H atoms were geometrically positioned (C–H 0.93–0.98 Å and N–H = 0.86 Å) and treated as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C,N)$ for the others.

Figure 1

The molecular structure of the title compound, viewed along the a axis, showing 30% probability displacement ellipsoids and the atom- numbering scheme.

Figure 2

The crystal packing of the title compound.

N-[(*R*)-(6-Bromo-2-methoxyquinolin-3- yl)(phenyl)methyl]-*N*-[(*S*)-1-(4-methoxyphenyl)ethyl]- 2-(piperazin-1-yl)acetamide

F(000) = 1256

 $\theta = 2.0 - 25.0^{\circ}$

 $\mu = 1.39 \text{ mm}^{-1}$ T = 293 K

Block, colourless $0.26 \times 0.21 \times 0.13$ mm

 $D_{\rm x} = 1.316 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2354 reflections

Crystal data

 $C_{32}H_{35}BrN_4O_3$ $M_r = 603.55$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.9738 (9) Å b = 10.9397 (10) Å c = 27.910 (3) Å V = 3045.3 (5) Å³ Z = 4

Data collection

18937 measured reflections 5999 independent reflections
4518 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.035$
$\theta_{\rm max} = 26.0^\circ, \theta_{\rm min} = 1.5^\circ$
$h = -12 \rightarrow 11$
$k = -13 \rightarrow 13$
$l = -32 \rightarrow 34$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.170$	$w = 1/[\sigma^2(F_o^2) + (0.109P)^2]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
5999 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
361 parameters	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2585 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.011 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br	1.16448 (6)	-0.50994 (6)	0.67941 (2)	0.0885 (3)

O2	0.5985 (3)	-0.1119 (3)	0.63967 (10)	0.0483 (7)
N2	0.6854 (3)	0.0788 (3)	0.64410 (10)	0.0371 (7)
03	0.5042 (4)	0.5855 (3)	0.55607 (14)	0.0717 (10)
01	1.0020 (3)	0.1519 (3)	0.56260 (13)	0.0601 (8)
N3	0.4433 (3)	0.0798 (3)	0.71731 (11)	0.0407 (7)
N1	1.1268 (3)	-0.0147 (3)	0.58380 (12)	0.0447 (8)
C12	0.6723 (4)	0.0284 (3)	0.55538 (13)	0.0379 (8)
C8	0.8885 (4)	-0.0074 (3)	0.60224 (12)	0.0366 (8)
C4	1.1325 (4)	-0.1290(3)	0.60612 (12)	0.0382 (8)
C17	0.7336 (4)	-0.0184(4)	0.51555 (13)	0.0463 (9)
H17	0.8258	-0.0311	0.5157	0.056*
C11	0.7584(4)	0.0681 (3)	0.59812(12)	0.0360 (8)
H11	0.7878	0.1514	0.5905	0.043*
C7	0.8947(4)	-0.1195(4)	0.62209(13)	0.0419(9)
С7 Н7	0.8170	-0.1554	0.6340	0.050*
C5	1.0190(4)	-0.1841(4)	0.6310 0.62510(13)	0.020
C25	0.7040(4)	0.1041(4) 0.1975(4)	0.62310(13) 0.67042(14)	0.0408(9) 0.0438(9)
С25 H25	0.7040 (4)	0.1975 (4)	0.6983	0.0438 (9)
1125 C6	1 0207 (4)	-0.3000(4)	0.6935 0.64702(14)	0.035
С0 Ц6	0.0530	-0.3301	0.6500	0.0480 (10)
C26	0.5535	0.3391 0.3032 (4)	0.0390 0.64005(13)	0.038°
C20	1.2674(4)	-0.2001(4)	0.04003(13)	0.0414(0)
U2	1.2074 (4)	-0.2375	0.03204 (13)	0.0490 (10)
C10	0.5526 (4)	-0.0052(5)	0.0300 0.71260(14)	0.053°
U10A	0.5330 (4)	-0.0853	0.71209 (14)	0.0530 (11)
П19А U10D	0.5255	-0.0855	0.7229	0.004*
П19D С2	0.0240	0.0200	0.7343	0.004°
C3	1.2364 (4)	-0.1884 (4)	0.01005 (14)	0.0404 (10)
П3 С16	1.5548	-0.1322	0.3972 0.47472 (15)	0.030°
	0.0390 (4)	-0.04/3(4)	0.4/4/2 (13)	0.0307 (11)
HI0 CO	0.7017	-0.0794	0.4479	0.008^{+}
C9	1.0115 (4)	0.0395 (3)	0.58310(14)	0.0414(9)
C13	0.5344 (4)	0.04/1 (4)	0.55422 (15)	0.0482 (10)
H13	0.4913	0.0802	0.5808	0.058*
C27	0.7433 (4)	0.3932 (4)	0.62201 (16)	0.0522 (11)
H27	0.8347	0.3882	0.6283	0.063*
C29	0.5599 (4)	0.4968 (4)	0.58342 (16)	0.0514 (10)
C31	0.5236 (4)	0.3155 (4)	0.62922 (17)	0.0496 (10)
H31	0.4634	0.2582	0.6412	0.060*
C28	0.6960 (4)	0.4898 (4)	0.59510 (17)	0.0554 (11)
H28	0.7547	0.5504	0.5847	0.066*
C18	0.6126 (4)	-0.0162 (4)	0.66139 (14)	0.0418 (9)
C15	0.5229 (5)	-0.0284(4)	0.47393 (16)	0.0564 (11)
H15	0.4734	-0.0462	0.4466	0.068*
C30	0.4758 (5)	0.4090 (4)	0.60162 (18)	0.0581 (12)
H30	0.3845	0.4132	0.5950	0.070*
C24	0.8467 (5)	0.2064 (5)	0.68981 (17)	0.0624 (12)
H24A	0.8662	0.1354	0.7088	0.094*
H24B	0.8550	0.2783	0.7093	0.094*

H24C	0.9087	0.2110	0.6636	0.094*
C1	1.1521 (5)	-0.3534 (4)	0.65043 (13)	0.0505 (10)
C23	0.4107 (5)	0.0920 (6)	0.76822 (15)	0.0657 (14)
H23A	0.4881	0.1228	0.7854	0.079*
H23B	0.3881	0.0124	0.7813	0.079*
C20	0.3260 (4)	0.0351 (5)	0.69106 (16)	0.0595 (12)
H20A	0.3012	-0.0448	0.7032	0.071*
H20B	0.3489	0.0261	0.6575	0.071*
C14	0.4610 (5)	0.0170 (5)	0.51402 (16)	0.0605 (12)
H14	0.3685	0.0276	0.5141	0.073*
C22	0.2923 (5)	0.1794 (6)	0.77515 (19)	0.0723 (15)
H22A	0.2710	0.1854	0.8090	0.087*
H22B	0.3168	0.2602	0.7638	0.087*
N4	0.1719 (5)	0.1351 (6)	0.74826 (18)	0.0963 (17)
H4A	0.0942	0.1210	0.7604	0.116*
C21	0.2101 (5)	0.1193 (7)	0.69568 (18)	0.0829 (19)
H21A	0.1343	0.0867	0.6780	0.100*
H21B	0.2330	0.1981	0.6820	0.100*
C10	1.1213 (5)	0.1999 (5)	0.5407 (3)	0.0880 (19)
H10A	1.1025	0.2788	0.5272	0.132*
H10B	1.1504	0.1455	0.5158	0.132*
H10C	1.1906	0.2073	0.5644	0.132*
C32	0.5833 (7)	0.6817 (5)	0.5379 (2)	0.0825 (16)
H32A	0.5281	0.7354	0.5191	0.124*
H32B	0.6533	0.6488	0.5181	0.124*
H32C	0.6222	0.7265	0.5640	0.124*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0962 (5)	0.0790 (4)	0.0903 (4)	0.0348 (3)	0.0057 (3)	0.0237 (3)
O2	0.0438 (15)	0.0432 (16)	0.0578 (16)	0.0021 (13)	0.0115 (13)	0.0067 (14)
N2	0.0342 (17)	0.0399 (16)	0.0371 (15)	0.0056 (14)	0.0051 (13)	-0.0013 (13)
O3	0.065 (2)	0.053 (2)	0.097 (2)	0.0068 (16)	-0.0065 (19)	0.0160 (18)
01	0.0421 (16)	0.0471 (17)	0.091 (2)	0.0057 (14)	0.0201 (15)	0.0181 (16)
N3	0.0303 (16)	0.052 (2)	0.0395 (17)	0.0027 (14)	0.0058 (13)	-0.0062 (15)
N1	0.0298 (16)	0.0457 (18)	0.0586 (19)	0.0010 (14)	0.0049 (14)	-0.0059 (16)
C12	0.039 (2)	0.0334 (18)	0.0411 (18)	0.0038 (16)	0.0024 (16)	0.0054 (14)
C8	0.0315 (18)	0.0396 (19)	0.0386 (18)	0.0056 (16)	0.0041 (14)	0.0014 (16)
C4	0.036 (2)	0.040 (2)	0.0389 (19)	0.0040 (16)	-0.0022 (15)	-0.0102 (15)
C17	0.038 (2)	0.056 (2)	0.045 (2)	0.0102 (19)	0.0055 (16)	0.0024 (19)
C11	0.0310 (19)	0.041 (2)	0.0360 (19)	0.0076 (16)	0.0088 (15)	0.0030 (15)
C7	0.0311 (18)	0.050 (2)	0.045 (2)	0.0083 (17)	0.0079 (16)	0.0051 (17)
C5	0.042 (2)	0.044 (2)	0.0373 (19)	0.0103 (17)	0.0066 (16)	0.0013 (16)
C25	0.037 (2)	0.051 (2)	0.043 (2)	0.0068 (17)	0.0039 (16)	-0.0121 (17)
C6	0.050(2)	0.049 (2)	0.046 (2)	0.014 (2)	0.0122 (19)	0.0105 (18)
C26	0.035 (2)	0.044 (2)	0.0448 (19)	0.0037 (18)	0.0023 (17)	-0.0102 (16)
C2	0.041 (2)	0.050 (2)	0.056 (2)	0.0195 (19)	-0.009 (2)	-0.015 (2)

C19	0.045 (2)	0.068 (3)	0.045 (2)	0.020 (2)	0.0138 (17)	0.019 (2)
C3	0.030 (2)	0.053 (2)	0.056 (2)	0.0023 (18)	-0.0011 (17)	-0.016 (2)
C16	0.056 (3)	0.066 (3)	0.048 (2)	0.006 (2)	0.003 (2)	-0.011 (2)
C9	0.038 (2)	0.039 (2)	0.047 (2)	0.0015 (17)	0.0038 (17)	0.0021 (16)
C13	0.037 (2)	0.061 (3)	0.046 (2)	0.0158 (19)	0.0006 (18)	0.0003 (18)
C27	0.031 (2)	0.055 (3)	0.070 (3)	-0.0005 (19)	0.002 (2)	-0.003 (2)
C29	0.049 (2)	0.043 (2)	0.062 (2)	0.007 (2)	0.0042 (19)	0.001 (2)
C31	0.028 (2)	0.043 (2)	0.078 (3)	0.0025 (17)	0.0074 (19)	0.007 (2)
C28	0.043 (2)	0.045 (2)	0.079 (3)	-0.006 (2)	0.014 (2)	-0.001 (2)
C18	0.0315 (18)	0.049 (2)	0.0449 (19)	0.0122 (17)	0.0053 (16)	0.0067 (18)
C15	0.056 (3)	0.064 (3)	0.049 (2)	0.004 (2)	-0.011 (2)	-0.004 (2)
C30	0.037 (2)	0.050 (3)	0.087 (3)	-0.0009 (19)	-0.005 (2)	0.003 (2)
C24	0.051 (3)	0.074 (3)	0.062 (3)	0.008 (2)	-0.014 (2)	-0.012 (2)
C1	0.062 (3)	0.053 (2)	0.037 (2)	0.021 (2)	-0.0003 (19)	-0.0004 (17)
C23	0.045 (3)	0.109 (4)	0.043 (2)	0.000 (3)	0.002 (2)	-0.011 (3)
C20	0.043 (2)	0.079 (3)	0.056 (2)	0.001 (2)	0.0051 (19)	-0.024 (2)
C14	0.037 (2)	0.073 (3)	0.071 (3)	0.005 (2)	-0.005 (2)	0.006 (3)
C22	0.047 (3)	0.102 (4)	0.068 (3)	-0.002 (3)	0.011 (2)	-0.041 (3)
N4	0.059 (3)	0.143 (5)	0.087 (3)	0.010 (3)	0.013 (2)	-0.045 (3)
C21	0.043 (3)	0.141 (6)	0.065 (3)	0.025 (3)	-0.004 (2)	-0.032 (3)
C10	0.058 (3)	0.066 (3)	0.140 (5)	0.000 (3)	0.041 (3)	0.032 (3)
C32	0.112 (5)	0.051 (3)	0.085 (3)	-0.003 (3)	0.009 (4)	0.013 (3)

Geometric parameters (Å, °)

Br—C1	1.898 (4)	C19—H19B	0.9700
O2—C18	1.217 (5)	С3—Н3	0.9300
N2-C18	1.357 (5)	C16—C15	1.373 (6)
N2-C11	1.480 (4)	C16—H16	0.9300
N2-C25	1.504 (5)	C13—C14	1.379 (6)
O3—C29	1.353 (5)	C13—H13	0.9300
O3—C32	1.410 (6)	C27—C28	1.379 (6)
O1—C9	1.360 (5)	С27—Н27	0.9300
O1—C10	1.437 (6)	C29—C30	1.373 (6)
N3—C19	1.446 (5)	C29—C28	1.398 (6)
N3—C23	1.464 (5)	C31—C30	1.366 (6)
N3—C20	1.464 (5)	C31—H31	0.9300
N1-C9	1.294 (5)	C28—H28	0.9300
N1-C4	1.399 (5)	C15—C14	1.371 (7)
C12—C17	1.368 (5)	C15—H15	0.9300
C12—C13	1.391 (5)	С30—Н30	0.9300
C12—C11	1.533 (5)	C24—H24A	0.9600
C8—C7	1.346 (5)	C24—H24B	0.9600
С8—С9	1.433 (5)	C24—H24C	0.9600
C8—C11	1.543 (5)	C23—C22	1.531 (7)
C4—C5	1.388 (5)	C23—H23A	0.9700
C4—C3	1.418 (5)	C23—H23B	0.9700
C17—C16	1.398 (6)	C20—C21	1.483 (7)

С17—Н17	0.9300	C20—H20A	0.9700
C11—H11	0.9800	C20—H20B	0.9700
C7-C5	1 429 (5)	C14—H14	0.9300
C7H7	0.9300	C^{22} N4	1.497(7)
$C_{2} = C_{1}$	1,412 (6)	$C_{22} = H_{22} \Lambda$	0.0700
$C_{2} = C_{2}$	1.412(0)	C22—1122A	0.9700
$C_{23} = C_{20}$	1.505 (0)	C22—H22B	0.9700
C25—C24	1.520 (0)		1.320(7)
C25—H25	0.9800	N4—H4A	0.8600
C6—C1	1.357 (6)	C21—H21A	0.9700
С6—Н6	0.9300	C21—H21B	0.9700
C26—C31	1.387 (6)	C10—H10A	0.9600
C26—C27	1.392 (6)	C10—H10B	0.9600
C2—C3	1.368 (6)	C10—H10C	0.9600
C2—C1	1.387 (6)	С32—Н32А	0.9600
С2—Н2	0.9300	С32—Н32В	0.9600
C19—C18	1.553 (5)	C32—H32C	0.9600
С19—Н19А	0.9700		
C18—N2—C11	120.8 (3)	03 - C29 - C30	1173(4)
C18 N2 C25	120.0(3)	03 - C29 - C28	124.7(4)
$C_{11} = N_2 = C_{23}$	125.0(3) 115.5(3)	C_{30} C_{29} C_{28}	124.7(4) 1180(4)
$C_{11} = N_2 = C_{23}$	113.5(3)	C_{30} C_{23} C_{26}	110.0(+) 122.2(4)
$C_{29} = 0_{3} = C_{32}$	120.0(4)	$C_{30} = C_{31} = C_{20}$	122.3 (4)
C9—01—C10	116.8 (3)	C30—C31—H31	118.8
C19—N3—C23	108.3 (3)	C26—C31—H31	118.8
C19—N3—C20	110.4 (3)	C27—C28—C29	120.1 (4)
C23—N3—C20	109.8 (3)	С27—С28—Н28	120.0
C9—N1—C4	116.9 (3)	C29—C28—H28	120.0
C17—C12—C13	118.6 (4)	O2—C18—N2	122.9 (3)
C17—C12—C11	119.2 (3)	O2—C18—C19	118.9 (4)
C13—C12—C11	122.0 (3)	N2-C18-C19	118.1 (4)
C7—C8—C9	116.1 (3)	C14—C15—C16	119.1 (4)
C7—C8—C11	123.8 (3)	C14—C15—H15	120.5
C9—C8—C11	120.0 (3)	C16—C15—H15	120.5
C5-C4-N1	121.7 (3)	C31—C30—C29	121.3 (4)
C5-C4-C3	119.7 (4)	C31—C30—H30	119.4
N1-C4-C3	119.7(1) 118.7(3)	C29—C30—H30	119.1
C_{12} C_{17} C_{16}	120.6(4)	C_{25} C_{24} H_{24A}	109.5
$C_{12} = C_{17} = C_{10}$	110.7	$C_{25} = C_{24} = H_{24}R$	109.5
$C_{12} - C_{17} - H_{17}$	119.7	$U_{23} = U_{24} = U_{24} = U_{24}$	109.5
$N_{2} = C_{11} = C_{12}$	119.7	$\Pi 24A - C 24 - \Pi 24B$	109.5
$N_2 = C_{11} = C_{12}$	114.9 (3)	C25—C24—H24C	109.5
N2-CII-C8	113.0 (3)	H24A—C24—H24C	109.5
C12—C11—C8	112.2 (3)	H24B—C24—H24C	109.5
N2—C11—H11	105.2	С6—С1—С2	122.4 (4)
C12—C11—H11	105.2	C6—C1—Br	118.5 (3)
C8—C11—H11	105.2	C2—C1—Br	119.0 (3)
C8—C7—C5	120.9 (4)	N3—C23—C22	110.5 (4)
С8—С7—Н7	119.5	N3—C23—H23A	109.5
С5—С7—Н7	119.5	C22—C23—H23A	109.5

C4 - C5 - C6	119 5 (4)	N3—C23—H23B	109 5
C4-C5-C7	118.1 (4)	C22—C23—H23B	109.5
C6-C5-C7	122.4 (4)	H23A—C23—H23B	108.1
$C_{26} = C_{25} = N_{2}$	110.6 (3)	N3-C20-C21	111.8 (4)
$C_{26} = C_{25} = C_{24}$	115.6 (4)	N3—C20—H20A	109.3
N2-C25-C24	110.1 (3)	C21—C20—H20A	109.3
C26—C25—H25	106.7	N3—C20—H20B	109.3
N2-C25-H25	106.7	C21—C20—H20B	109.3
C_{24} C_{25} H_{25}	106.7	H20A—C20—H20B	107.9
C1—C6—C5	119.1 (4)	C15—C14—C13	120.8 (4)
C1—C6—H6	120.5	C15—C14—H14	119.6
С5—С6—Н6	120.5	C13—C14—H14	119.6
C31—C26—C27	116.2 (4)	N4—C22—C23	110.7 (4)
C31—C26—C25	119.4 (4)	N4—C22—H22A	109.5
C27—C26—C25	124.5 (4)	C23—C22—H22A	109.5
C3—C2—C1	119.4 (4)	N4—C22—H22B	109.5
С3—С2—Н2	120.3	C23—C22—H22B	109.5
С1—С2—Н2	120.3	H22A—C22—H22B	108.1
N3—C19—C18	114.9 (3)	C22—N4—C21	108.6 (4)
N3—C19—H19A	108.5	C22—N4—H4A	125.7
C18—C19—H19A	108.5	C21—N4—H4A	125.7
N3—C19—H19B	108.5	C20—C21—N4	110.4 (5)
C18—C19—H19B	108.5	C20—C21—H21A	109.6
H19A—C19—H19B	107.5	N4—C21—H21A	109.6
C2—C3—C4	119.9 (4)	C20—C21—H21B	109.6
С2—С3—Н3	120.0	N4—C21—H21B	109.6
С4—С3—Н3	120.0	H21A—C21—H21B	108.1
C15—C16—C17	120.4 (4)	O1—C10—H10A	109.5
C15—C16—H16	119.8	O1-C10-H10B	109.5
C17—C16—H16	119.8	H10A—C10—H10B	109.5
N1-C9-01	118.8 (3)	O1—C10—H10C	109.5
N1—C9—C8	126.3 (4)	H10A—C10—H10C	109.5
O1—C9—C8	114.9 (3)	H10B—C10—H10C	109.5
C14—C13—C12	120.5 (4)	O3—C32—H32A	109.5
C14—C13—H13	119.7	O3—C32—H32B	109.5
С12—С13—Н13	119.7	H32A—C32—H32B	109.5
C28—C27—C26	122.1 (4)	O3—C32—H32C	109.5
С28—С27—Н27	118.9	H32A—C32—H32C	109.5
С26—С27—Н27	118.9	H32B—C32—H32C	109.5

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 phenyl ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10 A ··· Cg^i	0.96	2.69	3.639 (6)	170

Symmetry code: (i) x+1/2, -y+1/2, -z+1.