organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-Ethyl 2-cyano-3-(2,4-dimethoxyphenyl)prop-2-enoate

Antar A. Abdelhamid,^a Shaaban K. Mohamed,^b Ali N. Khalilov,^a Atash V. Gurbanov^a and Seik Weng Ng^{c,d}*

^aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, ^bSchool of Biology, Chemistry and Material Science, Manchester Metropolitan University, Manchester, UK, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 26 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.134; data-to-parameter ratio = 19.4.

The C=C bond in the title compound, $C_{14}H_{15}NO_4$, is in an E configuration. With the exception of the methyl C atoms, the non-H atoms of the molecule all lie approximately on a plane (r.m.s. deviation = 0.096 Å). π - π stacking is observed between parallel benzene rings of adjacent molecules, the centroidcentroid distance being 3.7924 (8) Å.

Related literature

For benzylidenecyanoacetate, see: Bodrikov et al. (1992) and for 3,4-dimethoxybenzylidenecyanoacetate, see: Nesterov et al. (2001).

Experimental

Crystal data

C ₁₄ H ₁₅ NO ₄	V = 1327.47 (13) Å ³
$M_r = 261.27$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.5661 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 6.9715 (4) Å	$T = 295 { m K}$
c = 18.4141 (10) Å	$0.20 \times 0.20 \times 0.20$ r
$\beta = 101.858 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII diffractometer 14924 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ wR(F²) = 0.134 S = 1.033330 reflections

 $< 0.20 \times 0.20 \text{ mm}$

3330 independent reflections 2382 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.026$

172 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.21$ e Å⁻³

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Manchester Metropolitan University, Baku State University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5338).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bodrikov, I. V., Bel'skii, V. K., Krasnov, V. L. & Pigin, O. V. (1992). Zh. Org. Khim. 28, 2228-2238.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nesterov, V. N., Kuleshova, L. N. & Antipin, M. Yu. (2001). Kristallografiya, 46, 452-460.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2830 [doi:10.1107/S1600536811040013]

(E)-Ethyl 2-cyano-3-(2,4-dimethoxyphenyl)prop-2-enoate

Antar A. Abdelhamid, Shaaban K. Mohamed, Ali N. Khalilov, Atash V. Gurbanov and Seik Weng Ng

S1. Comment

The synthesis of benzylidenecyanoacetate was reported by Bodrikov *et al.* in 1992; the compound was synthesized by a conventional route. In the present study, microwave radiation was used to initiate the condensation; 2,4-dimethoxy-lbenzaldehyde was used in place of the unsubstituted homolog. The carbon-carbon double-bond in $C_{14}H_{15}NO_4$ is of an *E*-configuration (Scheme I, Fig. 1). With the exception of the methyl C, the non-hydrogen atoms all lie on a plane. The features are similar to those of 3,4-dimethoxybenzylidenecyanoacetate (Bodrikov *et al.*, 1992).

S2. Experimental

2,4-Dimethoxy benzaldehyde (10 mmol), ethyl cyanoacetate (10 mmol), and 2,4-pentanedione (100 mmol, aprox. 10 ml) dissolved in ethanol (50 ml) and the solution was irradiated by microwave irradiation for 5 minutes. The mixture was cooled and the product was recrystalized from ethanol in 90% yield; m.p. 405 K.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{14}H_{15}NO_4$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

(E)-Ethyl 2-cyano-3-(2,4-dimethoxyphenyl)prop-2-enoate

Crystal data

C₁₄H₁₅NO₄ $M_r = 261.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.5661 (6) Å b = 6.9715 (4) Å c = 18.4141 (10) Å $\beta = 101.858$ (1)° V = 1327.47 (13) Å³ Z = 4

Data collection

Bruker SMART APEXII diffractometer	2382 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 28.4^{\circ}, \theta_{\text{min}} = 2.0^{\circ}$
Graphite monochromator	$h = -14 \rightarrow 14$
φ and ω scans	$k = -9 \rightarrow 9$
14924 measured reflections	$l = -24 \rightarrow 24$
3330 independent reflections	
Refinement	

F(000) = 552

 $\theta = 2.3 - 27.7^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Prism, colorless

 $0.20 \times 0.20 \times 0.20 \text{ mm}$

T = 295 K

 $D_{\rm x} = 1.307 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3565 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.134$	neighbouring sites
S = 1.03	H-atom parameters constrained
3330 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0663P)^2 + 0.2366P]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.21 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and	l isotropic or e	quivalent isotrop	ic displacement	parameters ($(Å^2)$)
-----------------------------------	------------------	-------------------	-----------------	--------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.31913 (10)	0.27747 (18)	0.55366 (6)	0.0536 (3)	
O2	0.29391 (10)	0.12247 (17)	0.30174 (6)	0.0537 (3)	
03	0.87131 (11)	0.3785 (2)	0.71774 (6)	0.0628 (4)	
O4	0.66774 (11)	0.4110 (2)	0.73311 (6)	0.0627 (3)	
N1	0.89121 (15)	0.2321 (3)	0.55058 (9)	0.0804 (6)	
C1	0.51259 (12)	0.25722 (18)	0.50966 (7)	0.0351 (3)	
C2	0.37586 (13)	0.2438 (2)	0.49505 (8)	0.0377 (3)	
C3	0.30758 (13)	0.1990 (2)	0.42512 (8)	0.0411 (3)	
H3	0.2179	0.1899	0.4163	0.049*	
C4	0.37162 (14)	0.1674 (2)	0.36783 (8)	0.0401 (3)	
C5	0.50565 (14)	0.1815 (2)	0.37981 (8)	0.0434 (3)	
H5	0.5489	0.1616	0.3413	0.052*	
C6	0.57268 (13)	0.2257 (2)	0.45012 (8)	0.0417 (3)	
H6	0.6623	0.2350	0.4582	0.050*	

C7	0.18101 (15)	0.2627 (3)	0.54175 (10)	0.0631 (5)	
H7A	0.1535	0.2895	0.5873	0.095*	
H7B	0.1548	0.1353	0.5254	0.095*	
H7C	0.1422	0.3535	0.5046	0.095*	
C8	0.35279 (19)	0.0981 (3)	0.23941 (9)	0.0636 (5)	
H8A	0.2877	0.0668	0.1965	0.095*	
H8B	0.4151	-0.0038	0.2492	0.095*	
H8C	0.3953	0.2150	0.2305	0.095*	
C9	0.57905 (13)	0.30444 (19)	0.58405 (7)	0.0371 (3)	
H9	0.5242	0.3340	0.6160	0.045*	
C10	0.70570 (13)	0.3137 (2)	0.61586 (8)	0.0383 (3)	
C11	0.74281 (14)	0.3727 (2)	0.69485 (8)	0.0446 (3)	
C12	0.80883 (14)	0.2688 (2)	0.57949 (8)	0.0497 (4)	
C13	0.92092 (19)	0.4426 (4)	0.79351 (10)	0.0773 (6)	
H13A	0.8687	0.5488	0.8047	0.093*	
H13B	1.0088	0.4886	0.7977	0.093*	
C14	0.9198 (2)	0.2881 (4)	0.84808 (12)	0.0922 (8)	
H14A	0.9534	0.3361	0.8971	0.138*	
H14B	0.9725	0.1835	0.8378	0.138*	
H14C	0.8327	0.2442	0.8449	0.138*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0315 (5)	0.0867 (8)	0.0439 (6)	-0.0039 (5)	0.0112 (4)	-0.0102 (5)
O2	0.0473 (6)	0.0751 (8)	0.0352 (5)	-0.0065 (5)	0.0001 (4)	0.0012 (5)
O3	0.0433 (6)	0.0943 (10)	0.0461 (6)	-0.0115 (6)	-0.0018 (5)	-0.0126 (6)
04	0.0539 (7)	0.0885 (9)	0.0455 (6)	0.0063 (6)	0.0098 (5)	-0.0101 (6)
N1	0.0359 (7)	0.1402 (17)	0.0662 (10)	-0.0018 (9)	0.0134 (7)	-0.0185 (10)
C1	0.0305 (6)	0.0374 (7)	0.0368 (7)	-0.0007 (5)	0.0054 (5)	0.0033 (5)
C2	0.0339 (7)	0.0416 (7)	0.0385 (7)	0.0003 (5)	0.0095 (5)	0.0027 (6)
C3	0.0296 (6)	0.0488 (8)	0.0432 (7)	-0.0020 (6)	0.0036 (6)	0.0044 (6)
C4	0.0413 (7)	0.0416 (7)	0.0348 (7)	-0.0021 (6)	0.0020 (5)	0.0049 (6)
C5	0.0408 (7)	0.0549 (9)	0.0361 (7)	0.0000 (6)	0.0117 (6)	0.0035 (6)
C6	0.0301 (7)	0.0525 (8)	0.0425 (7)	-0.0001 (6)	0.0076 (6)	0.0035 (6)
C7	0.0323 (8)	0.1026 (15)	0.0569 (10)	-0.0057 (8)	0.0149 (7)	-0.0097 (10)
C8	0.0674 (11)	0.0851 (13)	0.0361 (8)	-0.0066 (9)	0.0059 (7)	-0.0056 (8)
C9	0.0342 (7)	0.0405 (7)	0.0371 (7)	0.0004 (5)	0.0081 (5)	0.0013 (6)
C10	0.0336 (7)	0.0421 (7)	0.0387 (7)	-0.0025 (6)	0.0065 (5)	0.0004 (6)
C11	0.0398 (8)	0.0509 (9)	0.0412 (8)	-0.0030 (6)	0.0041 (6)	-0.0011 (6)
C12	0.0329 (7)	0.0704 (11)	0.0432 (8)	-0.0058 (7)	0.0017 (6)	-0.0036 (7)
C13	0.0638 (12)	0.1100 (17)	0.0506 (10)	-0.0214 (11)	-0.0059 (8)	-0.0201 (11)
C14	0.0774 (15)	0.134 (2)	0.0547 (11)	-0.0001 (14)	-0.0103 (10)	-0.0037 (13)

Geometric parameters (Å, °)

O1—C2	1.3584 (16)	С6—Н6	0.9300
O1—C7	1.4342 (18)	С7—Н7А	0.9600

O2—C4	1 3573 (17)	C7—H7B	0 9600
02 - C8	1 4238 (19)	C7—H7C	0.9600
03-C11	1,3370(18)	C8—H8A	0.9600
03-C13	1 456 (2)	C8—H8B	0.9600
04-C11	1.190(2) 1.1945(18)	C8—H8C	0.9600
N1 C12	1.1345(10)	C_{0} C_{10}	1.3475(19)
C1 C6	1.137(2) 1.3025(10)	C_{0} H0	0.0300
C1 = C0	1.3923(19) 1.4172(18)	C_{10} C_{12}	0.9300
$C_1 = C_2$	1.4172(18) 1.4421(10)	$C_{10} = C_{12}$	1.420(2)
$C_1 = C_2$	1.4451(19) 1.276(2)	C_{10} C_{14}	1.403(2) 1.475(2)
$C_2 = C_3$	1.370(2) 1.382(2)	C_{13} H_{12A}	1.473(3)
C_{2}	1.363(2)	C12 U12D	0.9700
	0.9500		0.9700
C4—C3	1.391(2)	C14—H14A	0.9600
C5—C6	1.377(2)	C14—H14B	0.9600
С5—Н5	0.9300	C14—H14C	0.9600
C2—O1—C7	117.86 (12)	O2—C8—H8B	109.5
C4—O2—C8	117.79 (12)	H8A—C8—H8B	109.5
C11—O3—C13	116.96 (13)	O2—C8—H8C	109.5
C6—C1—C2	116.87 (12)	H8A—C8—H8C	109.5
C6—C1—C9	124.86 (12)	H8B—C8—H8C	109.5
C2—C1—C9	118.26 (12)	C10—C9—C1	132.04 (13)
O1—C2—C3	123.40 (12)	С10—С9—Н9	114.0
O1—C2—C1	115.90 (12)	С1—С9—Н9	114.0
C3—C2—C1	120.70 (12)	C9—C10—C12	124.87 (13)
C2—C3—C4	120.35 (12)	C9—C10—C11	118.55 (12)
С2—С3—Н3	119.8	C12—C10—C11	116.57 (12)
С4—С3—Н3	119.8	O4—C11—O3	124.19 (14)
O2—C4—C3	114.83 (12)	O4—C11—C10	124.48 (14)
O2—C4—C5	124.54 (13)	O3—C11—C10	111.33 (12)
C3—C4—C5	120.63 (13)	N1—C12—C10	179.7 (2)
C6—C5—C4	118.36 (13)	O3—C13—C14	112.15 (18)
С6—С5—Н5	120.8	O3—C13—H13A	109.2
C4—C5—H5	120.8	С14—С13—Н13А	109.2
C5—C6—C1	123.09 (13)	O3—C13—H13B	109.2
С5—С6—Н6	118.5	C14—C13—H13B	109.2
C1—C6—H6	118.5	H13A—C13—H13B	107.9
01—C7—H7A	109.5	C13—C14—H14A	109.5
01—C7—H7B	109.5	C13—C14—H14B	109.5
H7A—C7—H7B	109.5	H14A—C14—H14B	109.5
01—C7—H7C	109.5	C13 - C14 - H14C	109.5
H7A—C7—H7C	109.5	H14A— $C14$ — $H14C$	109.5
Н7В—С7—Н7С	109.5	H14B— $C14$ — $H14C$	109.5
02—C8—H8A	109.5		
C7—O1—C2—C3	0.9 (2)	C4—C5—C6—C1	-0.1 (2)
C7—O1—C2—C1	-179.11 (14)	C2—C1—C6—C5	-0.6 (2)
C6—C1—C2—O1	-179.18 (12)	C9—C1—C6—C5	-179.78 (13)

	0.05(10)	G(G1 G2 G10	
C9—C1—C2—O1	0.05 (19)	C6—C1—C9—C10	-6.4 (2)
C6—C1—C2—C3	0.8 (2)	C2-C1-C9-C10	174.47 (15)
C9—C1—C2—C3	-179.93 (13)	C1—C9—C10—C12	-2.2 (3)
O1—C2—C3—C4	179.66 (13)	C1C9C10C11	178.48 (14)
C1—C2—C3—C4	-0.4 (2)	C13—O3—C11—O4	-2.3 (3)
C8—O2—C4—C3	176.73 (14)	C13—O3—C11—C10	177.39 (15)
C8—O2—C4—C5	-3.5 (2)	C9—C10—C11—O4	0.9 (2)
C2—C3—C4—O2	179.36 (13)	C12—C10—C11—O4	-178.46 (16)
C2—C3—C4—C5	-0.4 (2)	C9—C10—C11—O3	-178.79 (14)
O2—C4—C5—C6	-179.10 (14)	C12—C10—C11—O3	1.84 (19)
C3—C4—C5—C6	0.6 (2)	C11—O3—C13—C14	81.1 (2)