# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# catena-Poly[2-methyl-1*H*-imidazol-3-ium [(aquachloridocadmate)-di-*µ*-chlorido]]

#### **Run-Qiang Zhu**

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurunqiang@163.com

Received 6 October 2011; accepted 17 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.083; data-to-parameter ratio = 22.6.

The asymmetric unit of the title compound,  $\{(C_4H_7N_2)-[CdCl_3(H_2O)]\}_n$ , contains one 1-methyl-1*H*-imidazol-3-ium cation, one Cd<sup>II</sup> atom, three Cl atoms and one water molecule. Adjacent Cd ions are interconnected alternately by paired Cl<sup>-</sup> bridges to generate an infinite one-dimensional coordination chain along the *b* axis. In the chain, the crystallographically unique Cd<sup>II</sup> atom, with a distorted octahedral geometry, is coordinated by five Cl<sup>-</sup> ions and one water molecule. Intrachain O-H···Cl hydrogen bonding and N-H···Cl hydrogen bonding between the cations and the anionic chains consolidate the crystal packing.

#### **Related literature**

For general background to ferroelectric metal-organic compounds with framework structures, see: Fu *et al.* (2009); Ye *et al.* (2006); Zhang *et al.* (2008, 2010).



### Experimental

#### Crystal data

| $C_4H_7N_2$ [CdCl <sub>3</sub> (H <sub>2</sub> O)] | V = 1006.0 (3) Å <sup>3</sup>     |
|----------------------------------------------------|-----------------------------------|
| $A_r = 319.88$                                     | Z = 4                             |
| Aonoclinic, $P2_1/c$                               | Mo $K\alpha$ radiation            |
| $= 9.0479 (18) \text{\AA}$                         | $\mu = 2.92 \text{ mm}^{-1}$      |
| P = 14.922 (3) Å                                   | T = 293  K                        |
| = 7.4711 (15) Å                                    | $0.30 \times 0.25 \times 0.20$ mm |
| $B = 94.17 \ (3)^{\circ}$                          |                                   |

### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{min} = 0.421, T_{max} = 0.558$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.033$ | 102 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.083$               | H-atom parameters constrained                              |
| S = 1.12                        | $\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2308 reflections                | $\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$ |

10317 measured reflections

 $R_{\rm int} = 0.082$ 

2308 independent reflections

2038 reflections with  $I > 2\sigma(I)$ 

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                | D-H          | $H \cdots A$                            | $D \cdots A$   | $D - \mathbf{H} \cdots \mathbf{A}$    |
|-----------------------------------------------------------------|--------------|-----------------------------------------|----------------|---------------------------------------|
| $N2-H2A\cdots O1$                                               | 0.86         | 2.13                                    | 2.884 (3)      | 146                                   |
| $N1 - H1D \cdots Cl1^{i}$                                       | 0.86         | 2.33                                    | 3.163 (3)      | 164                                   |
| O1−H1G···Cl1 <sup>ii</sup>                                      | 0.85         | 2.40                                    | 3.250 (2)      | 174                                   |
| $O1 - H1F \cdot \cdot \cdot Cl1^{iii}$                          | 0.85         | 2.44                                    | 3.174 (2)      | 146                                   |
| Symmetry codes:<br>$-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}.$ | (i) $-x + 2$ | $2, y + \frac{1}{2}, -z + \frac{1}{2};$ | (ii) $x, -y +$ | $\frac{1}{2}, z + \frac{1}{2};$ (iii) |

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2126).

#### References

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

# supporting information

Acta Cryst. (2011). E67, m1584 [doi:10.1107/S1600536811042905]

# *catena*-Poly[2-methyl-1*H*-imidazol-3-ium [(aquachloridocadmate)-di-*µ*-chlorido]]

# **Run-Qiang Zhu**

# S1. Comment

The basic method to find potential ferroelectric phase change materials is the measurement of the dielectric constant as function of temperature (Fu *et al.*, 2009; Ye *et al.*, 2006; Zhang *et al.*, 2008, 2010). Unfortunately, the title compound's dielectric constant does not change from 80 K to 298 K (m.p. 319–329).

X-ray analysis (Fig. 1) revealed that the title compound possesses 1-D chain structures. In the chain, the Cd atoms are connected by two Cl atoms acting as bridges between Cd1 and Cd1[x, 0.5 - y, 1/2 + z] centers. The Cd—Cl( $\mu_2$ ) distances from 2.5973 (11) to 2.6293 (12) Å are slightly longer than that of Cd—Cl(terminal) 2.5916 (10) Å. It is interesting to note that the free 2-methyl imidazole molecules extend the 1-D host chains into a 3-D supramolecular network *via* the hydrogen-bonded interactions (Table 1, Fig. 2).

# S2. Experimental

A mixture of 2-methyl imidazole (2.4 g, 30 mmol), cadmium chloride (3.15 g, 10 mmol) in water was stirred for several days at ambient temperature. Colourless block crystals were obtained.

# S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å and N—H = 0.86, with  $U_{iso}(H) = 1.2U_{eq}(C,N)$  and  $1.5U_{eq}(C)$  for methyl H atoms. The H atoms of the water molecule were restrained with O—H = 0.85 Å yielding O1—H1G = 0.8501 Å and O1—H1F = 0.8500 Å, with  $U_{iso}(H) = 1.2U_{eq}(O)$ 



# Figure 1

A partial packing diagram of the title compound, with the displacement ellipsoids drawn at the 30% probability level, the intramolecular hydrogen bond is shown as a dashed line.



# Figure 2

Packing diagram of the title compound, hydrogen bonds are shown as dashed lines.

# catena-Poly[2-methyl-1H-imidazol-3-ium [(aquachloridocadmate)-di-µ-chlorido]]

#### Crystal data

 $\begin{array}{l} (C_4H_7N_2)[CdCl_3(H_2O)]\\ M_r = 319.88\\ \text{Monoclinic, } P2_1/c\\ \text{Hall symbol: -P 2ybc}\\ a = 9.0479 \ (18) \ \text{\AA}\\ b = 14.922 \ (3) \ \text{\AA}\\ c = 7.4711 \ (15) \ \text{\AA}\\ \beta = 94.17 \ (3)^\circ\\ V = 1006.0 \ (3) \ \text{\AA}^3\\ Z = 4 \end{array}$ 

#### Data collection

| Rigaku SCXmini                           | 230             |
|------------------------------------------|-----------------|
| diffractometer                           | 203             |
| Radiation source: fine-focus sealed tube | $R_{\rm int}$   |
| Graphite monochromator                   | $	heta_{ m ma}$ |
| $\omega$ scans                           | h =             |
| Absorption correction: multi-scan        | k =             |
| (CrystalClear; Rigaku, 2005)             | l =             |
| $T_{\min} = 0.421, \ T_{\max} = 0.558$   | 2 s             |
| 10317 measured reflections               | inte            |
|                                          |                 |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.083$ S = 1.122308 reflections 102 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 616  $D_x = 2.112 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2308 reflections  $\theta = 2.2-27.5^{\circ}$   $\mu = 2.92 \text{ mm}^{-1}$  T = 293 KBlock, colourless  $0.30 \times 0.25 \times 0.20 \text{ mm}$ 

2308 independent reflections 2038 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.082$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$   $h = -11 \rightarrow 11$   $k = -19 \rightarrow 19$   $l = -9 \rightarrow 9$ 2 standard reflections every 150 reflections intensity decay: none

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0174P)^2 + 0.0243P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.72$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.71$  e Å<sup>-3</sup> Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc<sup>2</sup>\lambda<sup>3</sup>/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0729 (19)

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A | $(A^2)$ | ?) |
|------------------------------------------------------------------------------------------------|---------|----|
|------------------------------------------------------------------------------------------------|---------|----|

|     | x            | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|--------------|-----------------------------|
| Cd1 | 0.57821 (2)  | 0.235443 (17) | 0.32343 (3)  | 0.02778 (14)                |
| C13 | 0.38194 (10) | 0.26229 (6)   | 0.06038 (12) | 0.0358 (2)                  |

| C12 | 0.78469 (10) | 0.25735 (5)  | 0.08951 (12) | 0.0318 (2)  |
|-----|--------------|--------------|--------------|-------------|
| Cl1 | 0.59444 (8)  | 0.06319 (6)  | 0.28507 (11) | 0.0381 (2)  |
| N2  | 0.8602 (3)   | 0.4748 (2)   | 0.2374 (4)   | 0.0461 (8)  |
| H2A | 0.8000       | 0.4318       | 0.2563       | 0.055*      |
| C2  | 1.0070 (4)   | 0.4697 (2)   | 0.2644 (4)   | 0.0395 (8)  |
| C3  | 0.8185 (4)   | 0.5580 (3)   | 0.1755 (5)   | 0.0487 (10) |
| Н3  | 0.7224       | 0.5780       | 0.1460       | 0.058*      |
| C1  | 1.0943 (4)   | 0.3909 (3)   | 0.3283 (5)   | 0.0588 (12) |
| H1A | 1.1219       | 0.3567       | 0.2272       | 0.088*      |
| H1B | 1.0357       | 0.3544       | 0.4018       | 0.088*      |
| H1C | 1.1819       | 0.4105       | 0.3975       | 0.088*      |
| N1  | 1.0572 (3)   | 0.5493 (2)   | 0.2218 (4)   | 0.0458 (8)  |
| H1D | 1.1492       | 0.5643       | 0.2283       | 0.055*      |
| C4  | 0.9424 (4)   | 0.6046 (3)   | 0.1659 (5)   | 0.0509 (10) |
| H4  | 0.9500       | 0.6637       | 0.1282       | 0.061*      |
| O1  | 0.5944 (2)   | 0.39528 (16) | 0.3580 (3)   | 0.0371 (6)  |
| H1G | 0.5922       | 0.4101       | 0.4677       | 0.045*      |
| H1F | 0.5230       | 0.4207       | 0.2978       | 0.045*      |
|     |              |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|--------------|--------------|--------------|--------------|
| Cd1 | 0.0307 (2)  | 0.0277 (2)  | 0.02493 (19) | -0.00076 (9) | 0.00188 (13) | 0.00017 (8)  |
| C13 | 0.0272 (5)  | 0.0527 (6)  | 0.0275 (5)   | 0.0054 (3)   | 0.0023 (4)   | 0.0021 (3)   |
| Cl2 | 0.0266 (4)  | 0.0399 (5)  | 0.0287 (4)   | -0.0026 (3)  | 0.0010 (4)   | 0.0007 (3)   |
| Cl1 | 0.0325 (4)  | 0.0251 (4)  | 0.0565 (5)   | -0.0026 (3)  | 0.0024 (4)   | -0.0006 (4)  |
| N2  | 0.0311 (15) | 0.044 (2)   | 0.063 (2)    | -0.0122 (14) | 0.0037 (15)  | 0.0024 (15)  |
| C2  | 0.0347 (19) | 0.040 (2)   | 0.044 (2)    | -0.0029 (16) | 0.0047 (17)  | -0.0045 (16) |
| C3  | 0.0349 (19) | 0.049 (2)   | 0.063 (2)    | 0.0025 (18)  | 0.0062 (18)  | 0.002 (2)    |
| C1  | 0.057 (3)   | 0.057 (3)   | 0.062 (3)    | 0.012 (2)    | 0.000 (2)    | 0.0006 (19)  |
| N1  | 0.0290 (15) | 0.049 (2)   | 0.060 (2)    | -0.0095 (14) | 0.0037 (14)  | -0.0025 (16) |
| C4  | 0.052 (2)   | 0.037 (2)   | 0.064 (3)    | -0.0008 (18) | 0.004 (2)    | 0.0003 (18)  |
| 01  | 0.0370 (12) | 0.0341 (15) | 0.0402 (12)  | 0.0050 (10)  | 0.0029 (10)  | 0.0065 (10)  |
|     |             |             |              |              |              |              |

Geometric parameters (Å, °)

| Cd1—O1                | 2.402 (2)   | C2—C1  | 1.476 (5) |
|-----------------------|-------------|--------|-----------|
| Cd1—Cl3               | 2.5824 (12) | C3—C4  | 1.325 (5) |
| Cd1—Cl1               | 2.5916 (10) | С3—Н3  | 0.9300    |
| Cd1—Cl3 <sup>i</sup>  | 2.5973 (11) | C1—H1A | 0.9600    |
| Cd1—Cl2 <sup>i</sup>  | 2.6293 (12) | C1—H1B | 0.9600    |
| Cd1—Cl2               | 2.6694 (11) | C1—H1C | 0.9600    |
| Cl3—Cd1 <sup>ii</sup> | 2.5973 (11) | N1—C4  | 1.368 (4) |
| Cl2—Cd1 <sup>ii</sup> | 2.6293 (12) | N1—H1D | 0.8600    |
| N2—C2                 | 1.331 (4)   | C4—H4  | 0.9300    |
| N2—C3                 | 1.369 (5)   | O1—H1G | 0.8501    |
| N2—H2A                | 0.8600      | O1—H1F | 0.8500    |
| C2—N1                 | 1.318 (4)   |        |           |

| O1—Cd1—Cl3                                  | 87.77 (5)    | N1—C2—C1                                    | 127.5 (3)   |
|---------------------------------------------|--------------|---------------------------------------------|-------------|
| O1—Cd1—Cl1                                  | 173.24 (5)   | N2—C2—C1                                    | 126.8 (4)   |
| Cl3—Cd1—Cl1                                 | 96.38 (3)    | C4—C3—N2                                    | 106.3 (3)   |
| O1—Cd1—Cl3 <sup>i</sup>                     | 87.31 (5)    | С4—С3—Н3                                    | 126.9       |
| Cl3—Cd1—Cl3 <sup>i</sup>                    | 92.88 (3)    | N2—C3—H3                                    | 126.9       |
| Cl1—Cd1—Cl3 <sup>i</sup>                    | 97.78 (3)    | C2—C1—H1A                                   | 109.5       |
| O1—Cd1—Cl2 <sup>i</sup>                     | 81.00 (5)    | C2C1H1B                                     | 109.5       |
| Cl3—Cd1—Cl2 <sup>i</sup>                    | 168.67 (3)   | H1A—C1—H1B                                  | 109.5       |
| Cl1—Cd1—Cl2 <sup>i</sup>                    | 94.66 (2)    | C2—C1—H1C                                   | 109.5       |
| Cl3 <sup>i</sup> —Cd1—Cl2 <sup>i</sup>      | 88.14 (3)    | H1A—C1—H1C                                  | 109.5       |
| O1—Cd1—Cl2                                  | 84.77 (5)    | H1B—C1—H1C                                  | 109.5       |
| Cl3—Cd1—Cl2                                 | 87.60 (3)    | C2—N1—C4                                    | 110.4 (3)   |
| Cl1—Cd1—Cl2                                 | 90.06 (3)    | C2—N1—H1D                                   | 124.8       |
| Cl3 <sup>i</sup> —Cd1—Cl2                   | 172.04 (3)   | C4—N1—H1D                                   | 124.8       |
| Cl2 <sup>i</sup> —Cd1—Cl2                   | 89.85 (3)    | C3—C4—N1                                    | 107.1 (4)   |
| Cd1—Cl3—Cd1 <sup>ii</sup>                   | 93.11 (3)    | C3—C4—H4                                    | 126.4       |
| Cd1 <sup>ii</sup> —Cl2—Cd1                  | 90.42 (3)    | N1—C4—H4                                    | 126.4       |
| C2—N2—C3                                    | 110.5 (3)    | Cd1—O1—H1G                                  | 110.9       |
| C2—N2—H2A                                   | 124.8        | Cd1—O1—H1F                                  | 110.4       |
| C3—N2—H2A                                   | 124.8        | H1G—O1—H1F                                  | 108.9       |
| N1—C2—N2                                    | 105.7 (3)    |                                             |             |
| O1—Cd1—Cl3—Cd1 <sup>ii</sup>                | 91.33 (5)    | Cl2 <sup>i</sup> —Cd1—Cl2—Cd1 <sup>ii</sup> | -175.35 (4) |
| Cl1—Cd1—Cl3—Cd1 <sup>ii</sup>               | -83.31 (3)   | C3—N2—C2—N1                                 | 0.7 (4)     |
| Cl3 <sup>i</sup> —Cd1—Cl3—Cd1 <sup>ii</sup> | 178.53 (4)   | C3—N2—C2—C1                                 | -179.2 (3)  |
| Cl2 <sup>i</sup> —Cd1—Cl3—Cd1 <sup>ii</sup> | 83.60 (12)   | C2—N2—C3—C4                                 | -0.4 (4)    |
| Cl2—Cd1—Cl3—Cd1 <sup>ii</sup>               | 6.48 (3)     | N2-C2-N1-C4                                 | -0.7 (4)    |
| O1—Cd1—Cl2—Cd1 <sup>ii</sup>                | -94.37 (5)   | C1—C2—N1—C4                                 | 179.1 (3)   |
| Cl3—Cd1—Cl2—Cd1 <sup>ii</sup>               | -6.39 (2)    | N2—C3—C4—N1                                 | 0.0 (4)     |
| Cl1—Cd1—Cl2—Cd1 <sup>ii</sup>               | 89.99 (3)    | C2—N1—C4—C3                                 | 0.4 (4)     |
| $Cl3^{i}$ — $Cd1$ — $Cl2$ — $Cd1^{ii}$      | -100.00 (16) |                                             |             |

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*+1/2, *z*-1/2.

# Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|------------------------------|-------------|-------|--------------|---------|
| N2—H2A…O1                    | 0.86        | 2.13  | 2.884 (3)    | 146     |
| N1—H1D····Cl1 <sup>iii</sup> | 0.86        | 2.33  | 3.163 (3)    | 164     |
| O1—H1G···Cl1 <sup>i</sup>    | 0.85        | 2.40  | 3.250 (2)    | 174     |
| O1—H1F····Cl1 <sup>iv</sup>  | 0.85        | 2.44  | 3.174 (2)    | 146     |

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*+2, *y*+1/2, -*z*+1/2; (iv) -*x*+1, *y*+1/2, -*z*+1/2.