Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chlorido\{ N-[2-(diphenylphosphanyl)-benzyl]-1-(pyridin-2-yl)methanamineκ \boldsymbol{c} \}gold(I)

Telisha Traut, ${ }^{\text {a,b }}$ Frederik H. Kriel, ${ }^{\text {b }}$ Werner E. van Zyl ${ }^{\text {ab }} \ddagger$ and D. Bradley G. Williams ${ }^{\text {a* }}$ §

${ }^{\text {a }}$ Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa, and ${ }^{\text {b }}$ Biomed, Mintek, Private Bag X3015, Randburg 2125, South Africa

Correspondence e-mail: bwilliams@uj.ac.za

Received 17 October 2011; accepted 24 October 2011

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.029 ; w R$ factor $=0.067$; data-to-parameter ratio $=20.3$.

In the title compound, $\left[\mathrm{AuCl}\left(\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{P}\right)\right]$, the Au^{I} atom is in a typical almost linear coordination environment defined by phosphane P and Cl atoms [bond angle $=175.48(4)^{\circ}$]. Helical supramolecular chains along the b axis and mediated by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds feature in the crystal packing.

Related literature

For previously published crystal structures of related P, N-type $\mathrm{Au}(\mathrm{I})$ complexes, see: Williams et al. (2007). For catalytic reactions of these types of complexes, see: Williams \& Pretorius (2008). For related structures, see: Baenziger et al. (1976); Bellon et al. (1969). For the synthesis of the ligand, see: Shirakawa et al. (1997).

Experimental

Crystal data

$\left[\mathrm{AuCl}\left(\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{P}\right)\right]$	$b=14.1443(10) \AA$
$M_{r}=614.84$	
Monoclinic, $P 2_{1} / n$	$c=13.2354(11) \AA$
$a=12.5888(9) \AA$	$\beta=107.128(3)^{\circ} \AA$
	$V=2252.2(3) \AA^{3}$

\ddagger Current address: School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa. § Additional address: Industrial Research Limited, 69 Gracefield Road, Lower Hutt 5040, New Zealand.

$Z=4$

Mo $K \alpha$ radiation
$\mu=6.74 \mathrm{~mm}^{-1}$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: integration (SADABS; Bruker, 1999)
$T_{\text {min }}=0.303, T_{\text {max }}=0.559$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.067$
$S=0.97$
5572 reflections
275 parameters
$T=173 \mathrm{~K}$
$0.40 \times 0.18 \times 0.16 \mathrm{~mm}$

13864 measured reflections 5572 independent reflections 4399 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$

Table 1
Selected bond lengths (\AA).

$\mathrm{Au} 1-\mathrm{P} 1$	$2.2410(10)$	$\mathrm{Au} 1-\mathrm{Cl} 1$	2.2921 (10)

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.87(6)$	$2.68(5)$	$3.536(4)$	$169(5)$

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank AuTEK Biomed (Mintek and Harmony Gold) and the University of Johannesburg for financial support. We also thank the University of the Witwatersrand for the use of their X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5001).

References

Baenziger, N. C., Bennett, W. E. \& Soborofe, D. M. (1976). Acta Cryst. B32, 962-963.
Bellon, P. L., Manassero, M. \& Sansoni, M. (1969). Ric. Sci. 39, 173-175.
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shirakawa, E., Yoshida, H. \& Takaya, H. (1997). Tetrahedron Lett. 38, 37593762.

Williams, D. B. G. \& Pretorius, M. (2008). J. Mol. Catal. A Chem. 284, 77-84.
Williams, D. B. G., Traut, T., Kriel, F. H. \& Van Zyl, W. E. (2007). Inorg. Chem. Commun. 10, 538-542.

supporting information

Chlorido\{N-[2-(diphenylphosphanyl)benzyl]-1-(pyridin-2-yl)methanamine-

Telisha Traut, Frederik H. Kriel, Werner E. van Zyl and D. Bradley G. Williams

S1. Comment

We have previously published crystal structure data regarding three related P, N type $\mathrm{Au}(\mathrm{I})$ complexes, two of which exhibited inter- and intra-molecular gold-gold interactions, as well as displaying differential gold binding affinity for the phosphorus and nitrogen atoms, respectively (Williams et al., 2007). These complexes were obtained as a part of our continued interest in the versatility and transition metal complexation of heteroditopic, multifunctional P, N-based ligands. We are especially interested in this class of compounds for their proven efficiency as catalysts in certain chemical reactions (Williams et al., 2008), as well as for their potential in medicinal applications, an aspect which has not received much attention in literature..
As a part of this on-going study, we have prepared an amino-phosphine ligand (II) from 2-(diphenylphosphanyl)benzaldehyde as starting material (I), proceeding via the Schiff base which is reduced to amine (II). This P, N product formed the crystalline title $\mathrm{Au}(\mathrm{I})$ complex (III) from a saturated chloroform solution. This complex is of particular interest as the two N atoms should in theory have different gold binding affinities due to the difference in the state of their hybridization ($s p^{2} v s s p^{3}$), in keeping with previously published results (Williams, et al., 2007).
The title compound (III), Fig. 1, crystallizes in the monoclinic space group $P 2_{1} / c$. The crystal packing is stabilized by weak intra-molecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Fig. 2). The coordination at the gold metal centre showed a virtually linear $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ system (bond angle of $175.48(4)^{\circ}$) as is common for two-coordinate $\mathrm{Au}(\mathrm{I})$ compounds. The $\mathrm{Au}-\mathrm{P}$ distance of 2.241 (1) \AA compares favourably to the $\mathrm{Au}-\mathrm{P}$ distance in the similar (triphenylphosphine)gold(I) chloride structure of 2.235 (3) \AA (Baenziger et al., 1976), but is shorter than the corresponding bond distance in the related (triphenylphosphine)gold(I) cyanide of 2.27 (1) \AA (Bellon et al., 1969). As expected, the $\mathrm{Au}-\mathrm{Cl}$ distance of 2.292 (1) \AA compares well with that observed for (triphenylphosphine)gold(I) chloride at 2.279 (3) \AA.

S2. Experimental

The ligand (II) was synthesized in a similar manner to a literature procedure (Shirakawa et al., 1997) and the title compound was prepared as per previously described methods (Williams et al., 2007).
The amino-phosphine ligand (II) employed in this study was prepared from the 2-(diphenylphosphanyl)benzaldehyde starting material (I). The synthesis involved reacting (I) $(300 \mathrm{mg}, 0.689 \mathrm{mmol})$ with 1.5 equivalents of 2-(aminomethyl)pyridine $(0.106 \mathrm{ml}, 1.033 \mathrm{mmol})$ in toluene $(15 \mathrm{ml})$ as solvent. The reaction mixture was stirred under reflux (oil bath temperature $140-150^{\circ} \mathrm{C}$) for 5 h , after which the solvent was removed in vacuo. The intermediate imino-phosphine product was dissolved in dried $\mathrm{MeOH}(10 \mathrm{ml}) . \mathrm{NaBH}_{4}(3$ equivalents) was added and the reaction mixture stirred at room temperature for 15 h . The reduction reaction was quenched by the addition of deionized $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{H}_{2} \mathrm{O}$ and DCM and the resultant organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solids were removed via filtration and the solvent removed in vacuo. The pure amino-phosphine ligand (II) was recovered in high yield (85%) after bulb-to-bulb
vacuum distillation.
Amino-phosphine ligand (II) ($120 \mathrm{mg}, 0.314 \mathrm{mmol}$) was dissolved in 20 mL of diethyl ether. To this solution were added 0.95 equivalents of (THT)AuCl ($96 \mathrm{mg}, 0.298 \mathrm{mmol}$) dissolved in 2 mL of chloroform. The (THT)AuCl solution was slowly added to the ligand solution and the mixture stirred at room temperature for 5 minutes. The solvent was evaporated in vacuo to ca 5 ml and the white, powdered product (III) was precipitated from the solution by the addition of 10 ml cold hexane (x3). Colourless monoclinic crystals were grown from a chloroform solution of the product. Yield $108 \mathrm{mg}, 56 \%$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, p.p.m.) $8.41[\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], 7.64 [dd, $J=6.6$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], $7.57-7.36$ [m, 11H, aromatic], 7.20 [d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic], $7.13-7.06$ [m, 2 H , aromatic], 6.81 [dd, $J=$ 12.8 and $4.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic], $4.20\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2} \mathrm{~N}\right], 3.68\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right], 1.81[\mathrm{~s}, \mathrm{NH}] .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz , p.p.m.) 158.8 [s, 1 C$], 149.1$ [s, 1 C$], 144.1$ [d, $\left.J_{C, P}=10.9 \mathrm{~Hz}, 1 \mathrm{C}\right], 136.4$ [s, 1 C$], 134.1\left[\mathrm{~d}, J_{C, P}=13.8 \mathrm{~Hz}, 4 \mathrm{C}\right]$, $133.9\left[\mathrm{~d}, J_{C, P}=7.1 \mathrm{~Hz}, 1 \mathrm{C}\right], 131.8\left[\mathrm{~d}, J_{C, P}=2.3 \mathrm{~Hz}, 1 \mathrm{C}\right], 131.6\left[\mathrm{~d}, J_{C, P}=2.3 \mathrm{~Hz}, 2 \mathrm{C}\right], 130.3\left[\mathrm{~d}, J_{C, P}=8.9 \mathrm{~Hz}, 1 \mathrm{C}\right]$, $129.8[\mathrm{~s}, 1 \mathrm{C}], 129.1\left[\mathrm{~d}, J_{C, P}=11.8 \mathrm{~Hz}, 4 \mathrm{C}\right], 128.1\left[\mathrm{~d}, J_{C, P}=16.3 \mathrm{~Hz}, 1 \mathrm{C}\right], 127.3\left[\mathrm{~d}, J_{C, P}=10.0 \mathrm{~Hz}, 1 \mathrm{C}\right], 126.7$ [d, $J_{C, P}=$ $59.0 \mathrm{~Hz}, 1 \mathrm{C}], 122.4[\mathrm{~s}, 1 \mathrm{C}], 121.8[\mathrm{~s}, 1 \mathrm{C}], 54.1[\mathrm{~s}, 1 \mathrm{C}], 52.5\left[\mathrm{~d}, J_{C, P}=16.3 \mathrm{~Hz}, 1 \mathrm{C}\right] .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.42\right.$ MHz, p.p.m.): 26.7 [s].

S3. Refinement

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ (Ar $-\mathrm{H})$ or $0.97\left(\mathrm{CH}_{2}\right) \AA$, and with $U_{\text {eq }}=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The amine-H atom was refined. The maximum and minimum residual electron density peaks of 1.96 and $1.30 \mathrm{e}^{-3}$, respectively, were located $0.88 \AA$ and $0.76 \AA$ from the Au1 atom.

Figure 1
Molecular structure of the title compound drawn with dispacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Chlorido $\{N$ - [2-(diphenylphosphanyl)benzyl]-1-(pyridin-2-yl)methanamine- κ $P\}$ gold (I)

Crystal data

$\left[\mathrm{AuCl}\left(\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{P}\right)\right]$
$M_{r}=614.84$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=12.5888$ (9) \AA
$b=14.1443$ (10) \AA
$c=13.2354$ (11) \AA
$\beta=107.128$ (3) ${ }^{\circ}$
$V=2252.2(3) \AA^{3}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: integration
(SADABS; Bruker, 1999)
$T_{\min }=0.303, T_{\text {max }}=0.559$

$$
\begin{aligned}
& Z=4 \\
& F(000)=1192 \\
& D_{\mathrm{x}}=1.813 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \mu=6.74 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Needle, colourless } \\
& 0.40 \times 0.18 \times 0.16 \mathrm{~mm} \\
& \\
& \\
& 13864 \text { measured reflections } \\
& 5572 \text { independent reflections } \\
& 4399 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.056 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=2.0^{\circ} \\
& h=-15 \rightarrow 16 \\
& k=-14 \rightarrow 18 \\
& l=-17 \rightarrow 13
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.067$
$S=0.97$
5572 reflections
275 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.3621(3)$	$0.3261(3)$	$-0.0026(3)$	$0.0274(8)$
C12	$0.3958(3)$	$0.2313(3)$	$0.0098(4)$	$0.0334(9)$
H12	0.3973	0.1994	0.0716	0.040^{*}
C13	$0.4266(3)$	$0.1849(3)$	$-0.0686(4)$	$0.0394(10)$

H13	0.4504	0.1224	-0.0591	0.047*
C14	0.4222 (3)	0.2317 (3)	-0.1619 (4)	0.0395 (11)
H14	0.4421	0.2001	-0.2152	0.047*
C15	0.3883 (3)	0.3247 (4)	-0.1758 (3)	0.0374 (10)
H15	0.3854	0.3558	-0.2384	0.045*
C16	0.3585 (3)	0.3719 (3)	-0.0958 (3)	0.0323 (9)
H16	0.3360	0.4347	-0.1052	0.039*
C21	0.2684 (3)	0.4968 (3)	0.0550 (3)	0.0247 (8)
C22	0.1574 (3)	0.5053 (3)	-0.0094 (3)	0.0304 (9)
H22	0.1113	0.4525	-0.0237	0.036*
C23	0.1170 (3)	0.5929 (3)	-0.0515 (3)	0.0373 (10)
H23	0.0441	0.5982	-0.0945	0.045*
C24	0.1844 (4)	0.6721 (3)	-0.0297 (3)	0.0376 (10)
H24	0.1567	0.7305	-0.0578	0.045*
C25	0.2925 (3)	0.6644 (3)	0.0336 (4)	0.0396 (11)
H25	0.3376	0.7178	0.0482	0.048*
C26	0.3350 (3)	0.5775 (3)	0.0758 (3)	0.0330 (9)
H26	0.4083	0.5731	0.1183	0.040*
C31	0.4514 (3)	0.3993 (3)	0.2079 (3)	0.0257 (8)
C32	0.5495 (3)	0.4040 (3)	0.1776 (3)	0.0313 (9)
H32	0.5454	0.3985	0.1065	0.038*
C33	0.6517 (3)	0.4168 (3)	0.2519 (4)	0.0348 (10)
H33	0.7159	0.4200	0.2308	0.042*
C34	0.6584 (3)	0.4249 (3)	0.3571 (4)	0.0414 (11)
H34	0.7273	0.4333	0.4070	0.050*
C35	0.5637 (3)	0.4205 (3)	0.3893 (4)	0.0380 (10)
H35	0.5694	0.4270	0.4606	0.046*
C36	0.4582 (3)	0.4061 (3)	0.3152 (3)	0.0289 (9)
C37	0.3585 (3)	0.3989 (3)	0.3553 (3)	0.0337 (9)
H37A	0.3271	0.3359	0.3413	0.040*
H37B	0.3814	0.4087	0.4312	0.040*
C38	0.1744 (3)	0.4593 (3)	0.3383 (3)	0.0351 (9)
H38A	0.1951	0.4629	0.4148	0.042*
H38B	0.1420	0.3974	0.3175	0.042*
C39	0.0880 (3)	0.5339 (3)	0.2923 (3)	0.0322 (9)
C40	0.0988 (3)	0.5991 (3)	0.2179 (3)	0.0332 (9)
H40	0.1613	0.5989	0.1940	0.040*
C41	0.0137 (3)	0.6655 (3)	0.1792 (4)	0.0402 (11)
H41	0.0190	0.7098	0.1290	0.048*
C42	-0.0769 (3)	0.6645 (3)	0.2160 (4)	0.0444 (12)
H42	-0.1338	0.7084	0.1920	0.053*
C43	-0.0821 (4)	0.5968 (4)	0.2897 (4)	0.0489 (13)
H43	-0.1446	0.5961	0.3137	0.059*
P1	0.31973 (7)	0.38097 (7)	0.10429 (8)	0.0245 (2)
Cl1	0.06264 (8)	0.17656 (7)	0.15389 (8)	0.0337 (2)
Aul	0.193361 (11)	0.282466 (10)	0.135160 (12)	0.02541 (5)
N1	0.2738 (3)	0.4689 (3)	0.3046 (3)	0.0327 (8)
N2	-0.0018 (3)	0.5310 (3)	0.3295 (3)	0.0449 (10)

H1	$0.307(4)$	$0.523(4)$	$0.319(4)$	$0.045(14)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0214 (16)	0.028 (2)	0.032 (2)	-0.0037 (15)	0.0072 (15)	-0.0029 (18)
C12	0.039 (2)	0.028 (2)	0.036 (2)	0.0002 (16)	0.0145 (18)	-0.0009 (18)
C13	0.036 (2)	0.034 (2)	0.050 (3)	-0.0009 (18)	0.016 (2)	-0.007 (2)
C14	0.033 (2)	0.051 (3)	0.038 (3)	-0.0051 (19)	0.0151 (18)	-0.017 (2)
C15	0.031 (2)	0.053 (3)	0.029 (2)	0.0008 (19)	0.0112 (17)	0.002 (2)
C16	0.0264 (19)	0.037 (2)	0.034 (2)	0.0003 (16)	0.0101 (17)	0.0055 (19)
C21	0.0259 (17)	0.025 (2)	0.022 (2)	0.0030 (14)	0.0057 (15)	0.0003 (16)
C22	0.0282 (18)	0.031 (2)	0.029 (2)	-0.0028 (16)	0.0026 (16)	-0.0034 (18)
C23	0.030 (2)	0.041 (3)	0.035 (2)	0.0055 (18)	0.0004 (17)	0.002 (2)
C24	0.044 (2)	0.031 (2)	0.036 (3)	0.0088 (19)	0.0098 (19)	0.005 (2)
C25	0.038 (2)	0.025 (2)	0.053 (3)	-0.0047 (17)	0.008 (2)	0.002 (2)
C26	0.0251 (18)	0.033 (2)	0.035 (2)	-0.0007 (16)	0.0003 (16)	0.0041 (19)
C31	0.0264 (17)	0.022 (2)	0.027 (2)	0.0022 (14)	0.0049 (15)	0.0038 (16)
C32	0.0315 (19)	0.028 (2)	0.032 (2)	0.0012 (16)	0.0061 (17)	0.0045 (18)
C33	0.0224 (17)	0.035 (2)	0.044 (3)	0.0026 (16)	0.0042 (17)	0.006 (2)
C34	0.030 (2)	0.037 (3)	0.047 (3)	0.0009 (17)	-0.0056 (19)	0.002 (2)
C35	0.041 (2)	0.036 (3)	0.029 (2)	0.0055 (18)	-0.0014 (18)	0.003 (2)
C36	0.0312 (19)	0.025 (2)	0.029 (2)	0.0053 (15)	0.0056 (16)	0.0025 (17)
C37	0.037 (2)	0.031 (2)	0.033 (2)	0.0028 (17)	0.0109 (18)	0.0035 (19)
C38	0.040 (2)	0.034 (2)	0.033 (2)	-0.0014 (18)	0.0140 (18)	0.0005 (19)
C39	0.0318 (19)	0.028 (2)	0.038 (2)	-0.0055 (16)	0.0120 (18)	-0.0112 (19)
C40	0.034 (2)	0.028 (2)	0.038 (2)	-0.0069 (17)	0.0109 (18)	-0.0106 (19)
C41	0.037 (2)	0.032 (3)	0.047 (3)	-0.0057 (18)	0.004 (2)	-0.009 (2)
C42	0.031 (2)	0.035 (3)	0.061 (3)	-0.0015 (18)	0.004 (2)	-0.015 (2)
C43	0.033 (2)	0.047 (3)	0.070 (4)	-0.007 (2)	0.020 (2)	-0.017 (3)
P1	0.0234 (4)	0.0238 (5)	0.0260 (5)	0.0000 (4)	0.0068 (4)	0.0013 (4)
Cl1	0.0320 (5)	0.0304 (5)	0.0425 (6)	-0.0029 (4)	0.0168 (4)	0.0038 (5)
Au1	0.02563 (8)	0.02361 (8)	0.02855 (9)	-0.00060 (6)	0.01040 (6)	0.00008 (6)
N1	0.0344 (17)	0.027 (2)	0.036 (2)	0.0019 (15)	0.0107 (15)	0.0005 (16)
N2	0.042 (2)	0.035 (2)	0.062 (3)	-0.0060 (17)	0.0234 (19)	-0.011 (2)

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 16$	$1.383(6)$	$\mathrm{C} 32-\mathrm{H} 32$	0.9300
$\mathrm{C} 11-\mathrm{C} 12$	$1.401(6)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.375(6)$
$\mathrm{C} 11-\mathrm{P} 1$	$1.825(4)$	$\mathrm{C} 33-\mathrm{H} 33$	0.9300
$\mathrm{C} 12-\mathrm{C} 13$	$1.377(6)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.381(6)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9300	$\mathrm{C} 34-\mathrm{H} 34$	0.9300
$\mathrm{C} 13-\mathrm{C} 14$	$1.387(7)$	$\mathrm{C} 35-\mathrm{C} 36$	$1.414(5)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9300	$\mathrm{C} 35-\mathrm{H} 35$	0.9300
$\mathrm{C} 14-\mathrm{C} 15$	$1.378(7)$	$\mathrm{C} 36-\mathrm{C} 37$	$1.503(6)$
$\mathrm{C} 14-\mathrm{H} 14$	0.9300	$\mathrm{C} 37-\mathrm{N} 1$	$1.465(5)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.394(6)$	$\mathrm{C} 37-\mathrm{H} 37 \mathrm{~A}$	0.9700

supporting information

C15-H15	0.9300	C37-H37B	0.9700
C16-H16	0.9300	C38-N1	1.454 (5)
C21-C26	1.394 (5)	C38-C39	1.508 (6)
C21-C22	1.412 (5)	C38-H38A	0.9700
C21-P1	1.811 (4)	C38-H38B	0.9700
C22-C23	1.391 (6)	C39-N2	1.360 (5)
$\mathrm{C} 22-\mathrm{H} 22$	0.9300	C39-C40	1.385 (6)
C23-C24	1.384 (6)	C40-C41	1.402 (6)
C23-H23	0.9300	C40-H40	0.9300
C24-C25	1.377 (6)	C41-C42	1.366 (6)
C24-H24	0.9300	C41-H41	0.9300
C25-C26	1.390 (6)	C42-C43	1.382 (7)
C25-H25	0.9300	C42-H42	0.9300
C26-H26	0.9300	C43-N2	1.361 (6)
C31-C36	1.400 (6)	C43-H43	0.9300
C31-C32	1.407 (5)	Au1-P1	2.2410 (10)
C31-P1	1.832 (4)	Au1-Cl1	2.2921 (10)
C32-C33	1.383 (5)	N1-H1	0.86 (5)
C16-C11-C12	118.8 (4)	C33-C34-H34	119.7
C16-C11-P1	123.5 (3)	C35-C34-H34	119.7
C12-C11-P1	117.7 (3)	C34-C35-C36	120.8 (4)
C13-C12-C11	120.7 (4)	C34-C35-H35	119.6
C13-C12-H12	119.6	C36-C35-H35	119.6
C11-C12-H12	119.6	C31-C36-C35	118.6 (4)
C12-C13-C14	119.8 (4)	C31-C36-C37	123.0 (3)
C12-C13-H13	120.1	C35-C36-C37	118.4 (4)
C14-C13-H13	120.1	N1-C37-C36	111.3 (3)
C15-C14-C13	120.3 (4)	N1-C37-H37A	109.4
C15-C14-H14	119.9	C36-C37-H37A	109.4
C13-C14-H14	119.9	N1-C37-H37B	109.4
C14-C15-C16	119.8 (4)	C36-C37-H37B	109.4
C14-C15-H15	120.1	H37A-C37-H37B	108.0
C16-C15-H15	120.1	N1-C38-C39	113.2 (4)
C11-C16-C15	120.5 (4)	N1-C38-H38A	108.9
C11-C16-H16	119.7	C39-C38-H38A	108.9
C15-C16-H16	119.7	N1-C38-H38B	108.9
C26-C21-C22	118.7 (3)	C39-C38-H38B	108.9
C26-C21-P1	122.6 (3)	H38A-C38-H38B	107.7
C22-C21-P1	118.6 (3)	N2-C39-C40	122.9 (4)
C23-C22-C21	119.8 (4)	N2-C39-C38	114.2 (4)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.1	C40-C39-C38	122.9 (4)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.1	C39-C40-C41	118.8 (4)
C24-C23-C22	120.6 (4)	C39-C40-H40	120.6
C24-C23-H23	119.7	$\mathrm{C} 41-\mathrm{C} 40-\mathrm{H} 40$	120.6
C22-C23-H23	119.7	$\mathrm{C} 42-\mathrm{C} 41-\mathrm{C} 40$	119.4 (5)
C25-C24-C23	119.8 (4)	C42-C41-H41	120.3
C25-C24-H24	120.1	C40-C41-H41	120.3

$\mathrm{C} 23-\mathrm{C} 24-\mathrm{H} 24$	120.1
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$120.6(4)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 25$	119.7
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{H} 25$	119.7
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$120.4(3)$
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{H} 26$	119.8
$\mathrm{C} 21-\mathrm{C} 26-\mathrm{H} 26$	119.8
$\mathrm{C} 36-\mathrm{C} 31-\mathrm{C} 32$	$119.3(3)$
$\mathrm{C} 36-\mathrm{C} 31-\mathrm{P} 1$	$122.7(3)$
$\mathrm{C} 32-\mathrm{C} 31-\mathrm{P} 1$	$118.0(3)$
$\mathrm{C} 33-\mathrm{C} 32-\mathrm{C} 31$	$121.0(4)$
$\mathrm{C} 33-\mathrm{C} 32-\mathrm{H} 32$	119.5
$\mathrm{C} 31-\mathrm{C} 32-\mathrm{H} 32$	119.5
$\mathrm{C} 34-\mathrm{C} 33-\mathrm{C} 32$	120.1
$\mathrm{C} 34-\mathrm{C} 33-\mathrm{H} 33$	120.1
$\mathrm{C} 32-\mathrm{C} 33-\mathrm{H} 33$	$120.5(4)$
$\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 35$	

$\mathrm{C} 41-\mathrm{C} 42-\mathrm{C} 43$	$118.5(4)$
$\mathrm{C} 41-\mathrm{C} 42-\mathrm{H} 42$	120.8
$\mathrm{C} 43-\mathrm{C} 42-\mathrm{H} 42$	120.8
$\mathrm{~N} 2-\mathrm{C} 43-\mathrm{C} 42$	$124.2(4)$
$\mathrm{N} 2-\mathrm{C} 43-\mathrm{H} 43$	117.9
$\mathrm{C} 42-\mathrm{C} 43-\mathrm{H} 43$	117.9
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 11$	$105.08(18)$
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 31$	$106.85(17)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 31$	$103.51(17)$
$\mathrm{C} 21-\mathrm{P} 1-\mathrm{Au} 1$	$115.56(12)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{Au} 1$	$105.18(13)$
$\mathrm{C} 31-\mathrm{P} 1-\mathrm{Au} 1$	$119.07(13)$
$\mathrm{P} 1-\mathrm{Au} 1-\mathrm{C} 11$	$175.48(4)$
$\mathrm{C} 38-\mathrm{N} 1-\mathrm{C} 37$	$111.9(3)$
$\mathrm{C} 38-\mathrm{N} 1-\mathrm{H} 1$	$115(3)$
$\mathrm{C} 37-\mathrm{N} 1-\mathrm{H} 1$	$105(3)$
$\mathrm{C} 39-\mathrm{N} 2-\mathrm{C} 43$	$116.2(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	$0.87(6)$	$2.68(5)$	$3.536(4)$	$169(5)$

Symmetry code: (i) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

