

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-[1,3-Phenylenebis(methylene)]dibenzenesulfonamide

Ejaz,^a Islam Ullah Khan,^a* Hira Ahmad^a and William T. A. Harrison^b

^aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: iuklodhi@yahoo.com

Received 28 September 2011; accepted 3 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.103; data-to-parameter ratio = 17.9.

The complete molecule of the title compound, $C_{20}H_{20}N_2O_4S_2$, is generated by crystallographic twofold symmetry, with two C atoms lying on the rotation axis. The dihedral angle between the central benzene ring and the pendant ring is 68.42 (6)° and the dihedral angle between the pendant rings is $45.11 (5)^\circ$. The torsion angles for the C-S-N-C and S-N-C-C fragments are -73.22(15) and $-150.45(13)^{\circ}$, respectively. In the crystal, molecules are linked by N-H···O hydrogen bonds, generating corrugated (001) sheets. Aromatic $\pi - \pi$ stacking [centroid-centroid separation = 3.8925 (12) and 3.9777 (12) Å] and weak C–H···O interactions also occur.

Related literature

For a related structure, see: Khan et al. (2011).

organic compounds

Experimental

Crystal data

*.)	
$C_{20}H_{20}N_2O_4S_2$ $M_r = 416.50$ Monoclinic, C2/c a = 16.4319 (6) Å b = 7.8024 (3) Å c = 16.1217 (6) Å $B = 111.543 (2)^{\circ}$	$V = 1922.54 (12) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 296 K $0.15 \times 0.11 \times 0.08 \text{ mm}$
r ()	
Data collection	
Bruker APEXII CCD diffractometer 8653 measured reflections	2346 independent reflections 1841 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.103$ S = 1.07 2346 reflections 131 parameters	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O2^{i}$ $C5 - H5 \cdots O1^{ii}$ $C10 - H10 \cdots O1^{iii}$	0.81 (2) 0.93 0.93	2.16 (2) 2.55 2.57	2.960 (2) 3.461 (2) 3.379 (3)	166 (2) 166 146

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2323).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Khan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, 02371

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3037 [doi:10.1107/S1600536811040694]

N,N'-[1,3-Phenylenebis(methylene)]dibenzenesulfonamide

Ejaz, Islam Ullah Khan, Hira Ahmad and William T. A. Harrison

S1. Comment

As part of our ongoing structural studies of sulfonamides (Khan *et al.*, 2011), the synthesis and structure of the title compound are described herein.

The complete molecule of the title compound is generated by crystallographic twofold symmetry (Fig. 1), with atoms C9 and C11 lying on the rotation axis. The diehdral angle between the central benzene ring and the pendant ring is $68.42 (6)^{\circ}$. The dihedral angle between the two pendant rings is $45.11 (5)^{\circ}$. The conformation of the C4—S1—N1—C7 fragment is approximately *gauche* [-73.22 (15)°] whereas the torsion angle for S1—N1—C8—C9 of -150.45 (13)° indicates a conformation between *gauche* and *anti*. The bond-angle sum for N1 of 350.6° seems to indicate a valence state close to sp^2 hybridization.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1), to generate corrugated (010) sheets (Fig. 2). Weak aromatic π - π stacking [centroid-centroid separation = 3.8925 (12) and 3.9777 (12) Å] occurs between the layers and weak C—H···O interactions may help to consolidate the packing.

S2. Experimental

The *m*-xylylenediamine (0.132 ml, 1.0 mmol) was mixed with 20 ml distilled water in a 50 ml round bottom flask. Benzene sulfonyl chloride (0.255 ml, 2.0 mmol) was added while maintaining the pH of the reaction mixture at ca. 9.0 using sodium carbonate solution (3%) and the mixture was stirred for five hours. The white precipitated product was filtered, washed, dried and crystallized from methanol to generate colourless blocks of the title compound.

S3. Refinement

The N-bound H atom was located in a difference map and its position was freely refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, showing the numbering cheme and 50% displacement ellipsoids [Symmetry code: (i) 1–x, y, 1/2 - z].

N,*N*'-[1,3-Phenylenebis(methylene)]dibenzenesulfonamide

Crystal data	
$C_{20}H_{20}N_2O_4S_2$ $M_r = 416.50$ Monoclinic, $C2/c$ Hall symbol: -C 2yc a = 16.4319 (6) Å	F(000) = 872 $D_x = 1.439 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 2346 reflections $\theta = 2.9-28.3^{\circ}$
b = 7.8024 (3) Å c = 16.1217 (6) Å $\beta = 111.543 (2)^{\circ}$ $V = 1922.54 (12) \text{ Å}^{3}$ Z = 4	$\mu = 0.31 \text{ mm}^{-1}$ T = 296 K Block, colourless 0.15 × 0.11 × 0.08 mm
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 8653 measured reflections 2346 independent reflections	1841 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -21 \rightarrow 21$ $k = -9 \rightarrow 10$ $l = -21 \rightarrow 21$
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.103$ *S* = 1.07 2346 reflections 131 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 1.1784P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.23478 (13)	0.4749 (3)	0.57485 (13)	0.0492 (5)
H1A	0.2133	0.4616	0.6204	0.059*
C2	0.18163 (12)	0.5397 (3)	0.49388 (14)	0.0493 (5)
H2	0.1239	0.5677	0.4846	0.059*
C3	0.21285 (11)	0.5637 (3)	0.42623 (12)	0.0405 (4)
Н3	0.1766	0.6069	0.3713	0.049*
C4	0.29908 (10)	0.5225 (2)	0.44139 (10)	0.0313 (4)
C5	0.35276 (12)	0.4531 (2)	0.52240 (11)	0.0396 (4)
Н5	0.4102	0.4230	0.5318	0.048*
C6	0.31953 (13)	0.4296 (3)	0.58870 (12)	0.0481 (5)
H6	0.3548	0.3828	0.6431	0.058*
C7	0.43547 (11)	0.2757 (2)	0.36899 (11)	0.0378 (4)
H7A	0.4162	0.1957	0.4041	0.045*
H7B	0.4827	0.3439	0.4096	0.045*
C8	0.46828 (10)	0.1780 (2)	0.30692 (11)	0.0332 (4)
C9	0.5000	0.2653 (3)	0.2500	0.0320 (5)
Н9	0.5000	0.3845	0.2500	0.038*
C10	0.46821 (12)	0.0009 (3)	0.30605 (13)	0.0429 (4)
H10	0.4467	-0.0593	0.3434	0.052*
C11	0.5000	-0.0871 (4)	0.2500	0.0504 (7)
H11	0.5000	-0.2063	0.2500	0.061*
S1	0.34361 (3)	0.56500 (6)	0.35953 (3)	0.03403 (15)
N1	0.36255 (9)	0.3882 (2)	0.31843 (10)	0.0382 (4)
H1	0.3187 (13)	0.339 (3)	0.2865 (14)	0.046*
01	0.42667 (8)	0.64544 (18)	0.40359 (9)	0.0459 (3)
O2	0.27803 (9)	0.65172 (19)	0.28749 (8)	0.0502 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0510 (11)	0.0624 (14)	0.0390 (10)	-0.0120 (10)	0.0223 (9)	-0.0015 (9)
C2	0.0371 (10)	0.0647 (14)	0.0507 (11)	-0.0021 (9)	0.0213 (9)	-0.0029 (10)
C3	0.0355 (9)	0.0490 (12)	0.0342 (9)	0.0017 (8)	0.0097 (7)	0.0017 (8)
C4	0.0330 (8)	0.0318 (9)	0.0282 (7)	-0.0021 (6)	0.0101 (6)	-0.0021 (6)
C5	0.0362 (9)	0.0459 (11)	0.0343 (8)	0.0004 (7)	0.0101 (7)	0.0019 (7)
C6	0.0526 (11)	0.0575 (13)	0.0307 (9)	-0.0038 (9)	0.0110 (8)	0.0074 (8)

supporting information

C7	0.0364 (9)	0.0416 (11)	0.0367 (9)	0.0013 (7)	0.0151 (7)	0.0044 (8)
C8	0.0264 (7)	0.0335 (10)	0.0379 (8)	-0.0002 (6)	0.0098 (7)	0.0026 (7)
C9	0.0316 (11)	0.0233 (12)	0.0409 (12)	0.000	0.0131 (10)	0.000
C10	0.0406 (9)	0.0337 (10)	0.0530 (11)	-0.0052 (8)	0.0155 (9)	0.0091 (9)
C11	0.0536 (16)	0.0234 (14)	0.0696 (19)	0.000	0.0171 (15)	0.000
S 1	0.0348 (2)	0.0367 (3)	0.0307 (2)	0.00170 (17)	0.01223 (17)	0.00359 (17)
N1	0.0313 (7)	0.0452 (10)	0.0358 (8)	0.0011 (6)	0.0095 (6)	-0.0079 (7)
O1	0.0439 (7)	0.0438 (8)	0.0516 (7)	-0.0117 (6)	0.0195 (6)	0.0002 (6)
O2	0.0544 (8)	0.0605 (10)	0.0357 (7)	0.0195 (7)	0.0165 (6)	0.0149 (6)

Geometric parameters (Å, °)

C1—C2	1.373 (3)	С7—Н7А	0.9700
C1—C6	1.373 (3)	С7—Н7В	0.9700
C1—H1A	0.9300	C8—C10	1.382 (3)
С2—С3	1.378 (3)	C8—C9	1.389 (2)
С2—Н2	0.9300	C9—C8 ⁱ	1.389 (2)
C3—C4	1.385 (2)	С9—Н9	0.9300
С3—Н3	0.9300	C10—C11	1.381 (2)
C4—C5	1.390 (2)	C10—H10	0.9300
C4—S1	1.7596 (17)	C11—C10 ⁱ	1.381 (2)
С5—С6	1.379 (3)	C11—H11	0.9300
С5—Н5	0.9300	S1—O2	1.4314 (12)
С6—Н6	0.9300	S1—O1	1.4315 (13)
C7—N1	1.467 (2)	S1—N1	1.6092 (16)
С7—С8	1.506 (2)	N1—H1	0.81 (2)
C^2 C^1 C^6	120 16 (18)		108 1
$C_2 = C_1 = U_1 \Lambda$	120.10 (18)	$\Pi/A = C / = \Pi/B$	118 86 (17)
$C_2 = C_1 = H_1 \Lambda$	119.9	C10 - C3 - C3	120.01 (16)
$C_0 - C_1 - M_A$	119.9	C10-C3-C7	120.91(10) 120.22(17)
C1 = C2 = C3	120.75 (18)	$C_{2} = C_{3} = C_{1}$	120.22(17) 121.2(2)
C1 - C2 - H2	119.0		121.5 (2)
$C_3 = C_2 = H_2$	119.0	$C_8 = C_9 = H_9$	119.4
$C_2 = C_3 = U_3$	120.6	C_{3} C_{3	119.4
$C_2 = C_3 = H_3$	120.0	C11 - C10 - C8	120.31 (19)
$C4 - C3 - \Pi 3$	120.0	C_{11} C_{10} H_{10}	119.8
$C_3 = C_4 = C_3$	120.78(10) 120.20(13)	$C_{0} = C_{10} = H_{10}$	119.8
$C_{5} = C_{4} = S_{1}$	120.29(13)	C10 - C11 - C10	120.4 (3)
$C_{3} - C_{4} - S_{1}$	110.09 (13)	C10 $C11$ $H11$	119.8
$C_{0} = C_{3} = C_{4}$	119.00 (17)	C10 - C11 - H11	119.8
$C_0 = C_3 = H_5$	120.5	02 - 51 - 01	105.84 (8)
C4 - C3 - H3	120.3	02 - 51 - 101	105.84 (8)
C1 - C6 - C5	120.41 (17)	01 = S1 = N1	100.07 (8)
CI = C6 = H6	119.8	02 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	107.53 (8)
C5-C6-H6	119.8	01 - S1 - C4	107.08 (8)
$NI = C / = C \delta$	110.62 (13)	N1 - S1 - C4	110.10 (8)
NI - C - H A	109.5	C/-NI-SI	121.73 (12)
С8—С/—Н7А	109.5	C'/NIHI	114.8 (15)

supporting information

N1—C7—H7B C8—C7—H7B	109.5 109.5	S1—N1—H1	114.1 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.4 (3) -0.4 (3) 1.9 (3) -175.61 (15) -1.6 (3) 175.99 (15) 1.8 (3) -0.3 (3) -121.05 (17) 59.57 (18) -0.30 (11) 179.09 (15) 0.6 (2)	$\begin{array}{c} C7 &C8 &C10 &C11 \\ C8 &C10 &C11 &C10^{i} \\ C3 &C4 &S1 &O2 \\ C5 &C4 &S1 &O2 \\ C3 &C4 &S1 &O1 \\ C3 &C4 &S1 &O1 \\ C5 &C4 &S1 &N1 \\ C5 &C4 &S1 &N1 \\ C8 &C7 &N1 &S1 \\ O2 &S1 &N1 &C7 \\ O1 &S1 &N1 &C7 \\ C4 &S1 &N1 &C7 \\ C4 &S1 &N1 &C7 \\ C4 &S1 &N1 &C7 \\ \end{array}$	$\begin{array}{r} -178.78 (13) \\ -0.31 (11) \\ 3.65 (17) \\ -173.94 (14) \\ 133.19 (15) \\ -44.39 (17) \\ -111.21 (15) \\ 71.20 (16) \\ -150.45 (13) \\ 170.85 (14) \\ 42.63 (16) \\ -73.22 (15) \end{array}$

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱⁱ	0.81 (2)	2.16 (2)	2.960 (2)	166 (2)
C5—H5····O1 ⁱⁱⁱ	0.93	2.55	3.461 (2)	166
C10— $H10$ ···O1 ^{iv}	0.93	2.57	3.379 (3)	146

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z.