metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di- μ -pivalato- $\kappa^3 O_{,O'}:O':\kappa^3 O:O_{,O'}$ bis[(methanol- κ O)bis(2.2.6.6-tetramethylheptane-3,5-dionato)praseodymium(III)]

Qingguo Meng,* Ann M. Cross, P. Stanley May, Andrew G. Sykes and Mary T. Berry

Department of Chemistry, University of South Dakota, 414E Clark, CL115, Vermillion, SD 57069, USA Correspondence e-mail: Qingguo.meng@usd.edu

Received 7 September 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 125 K; mean σ (C–C) = 0.007 Å; R factor = 0.035; wR factor = 0.097; data-to-parameter ratio = 17.4.

the centrosymmetric In dimeric title compound, $[Pr_2(C_5H_9O_2)_2(C_{11}H_{19}O_2)_4(CH_3OH)_2]$, the two praseodymium(III) atoms are eight-coordinate and are bridged by O atoms from the two pivalate anions. Each Pr^{III} ion is further coordinated by two chelating 2,2,6,6-tetramethyl-3,5-heptanedionate (thd⁻) ligands and one methanol molecule. The distance between the two Pr^{III} ions is 4.273 (5) Å. Intramolecular hydrogen bonds exists between the methanol hydroxy group on one PrIII atom and a chelating O atom of a thd⁻ ligand coordinated to the symmetry-related Pr^{III} atom.

Related literature

For general background to 2.2,6,6-tetramethyl-3,5-heptanedione-based volatile complexes involving lanthanide ions, see: Sievers et al. (1967). For the preparation of [Pr(thd)₃], see: Eisentraut & Sievers (1965). For a related $[Ln_2(thd)_6]$ dimeric structure, see: Mode & Smith (1969). For an example of adducts of [Ln(thd)₃], see: Baxter et al. (1995). For the dimeric structure of [Pr₂(thd)₆], see: Erasmus & Boeyens (1970). For applications of these compounds, see: Meng et al. (2010).

 $\beta = 94.372 \ (1)^{\circ}$ V = 3226.1 (6) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.38 \times 0.32$ mm

30451 measured reflections

5712 independent reflections

4618 reflections with $I > 2\sigma(I)$

 $\mu = 1.55 \text{ mm}^{-1}$ T = 125 K

 $R_{\rm int} = 0.046$

Z = 2

Experimental

Crystal data
$Pr_2(C_5H_9O_2)_2(C_{11}H_{19}O_2)_4$ -
$(CH_4O)_2]$
$M_r = 1281.20$
Monoclinic, $P2_1/n$
a = 12.6248 (14) Å
b = 16.5113 (18) Å
c = 15.5218 (17) Å

Data collection

Bruker SMART APEXII diffractometer Absorption correction: analytical (SADABS; Sheldrick, 1996) $T_{\min} = 0.543, T_{\max} = 0.637$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.097$	independent and constrained
S = 1.25	refinement
5712 reflections	$\Delta \rho_{\rm max} = 1.54 \text{ e } \text{\AA}^{-3}$
329 parameters	$\Delta \rho_{\rm min} = -0.99 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $D \cdots A$ $O7-H1\cdots O1^{i}$ 0.71 (7) 2.04 (7) 2.741 (4) 178 (9)

Symmetry code: (i) -x + 2, -y, -z + 2.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Science Foundation/EPSCoR (grant No. 0554609) and the State of South Dakota, Governor's Office of Economic Development, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2313).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., McAleese, J., Otway, D. J. & Plakatouras, J. C. (1995). Inorg. Chem. 34, 1384-1394.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eisentraut, K. J. & Sievers, R. E. (1965). J. Am. Chem. Soc. 87, 5254-5256.
- Erasmus, C. S. & Boeyens, J. C. A. (1970). Acta Cryst. B26, 1843-1854.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Meng, Q. G., Witte, R. J., Gong, Y. J., Day, E. L., Chen, J. C., May, P. S. & Berry, M. T. (2010). *Chem. Mater.* 22, 6056–6064.
- Mode, V. A. & Smith, G. S. (1969). J. Inorg. Nucl. Chem. 31, 1857–1859.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sievers, R. E., Eisentraut, K. J., Springer, C. S. Jr & Meek, D. W. (1967). Lanhanide/Actinide Chemistry, edited by R. F. Gould, ch. 11, pp. 141–154. Washington, DC: American Chemical Society.

supporting information

Acta Cryst. (2011). E67, m1514-m1515 [doi:10.1107/S1600536811040128]

Di- μ -pivalato- $\kappa^3 O, O': O'; \kappa^3 O: O, O'$ -bis[(methanol- κO)bis(2,2,6,6-tetramethyl-heptane-3,5-dionato)praseodymium(III)]

Qingguo Meng, Ann M. Cross, P. Stanley May, Andrew G. Sykes and Mary T. Berry

S1. Comment

2,2,6,6-tetramethyl-3,5-heptanedione (thd) lanthanide complexes have found application in many fields, such as in MOCVD, being excellent low temperature precursors. The dimeric structure of $Pr_2(thd)_6$ has been reported on previously (Erasmus & Boeyens, 1970). There each praseodymium(III) atom is surrounded by seven oxygen atoms, two of which are shared equally between the praseodymium(III) atoms.

We report herein on the crystal structure of a dimeric analog of the above mentioned complex with each Pr^{III} ion coordinating to two 2,2,6,6-tetramethyl-3,5-heptanedionate (thd⁻) ligands, one pivalate ligand, and one solvent methanol molecule. The pivalate ligand in the title compound is thought to be formed by thermal decomposition of one of a thd⁻ ligands of the precursor $Pr(thd)_3$ under the current reaction conditions. The thermal decomposition mechanism is not quite clear at the moment, but it is probably due to the dissociation of the tert-butyl group from the thd⁻ ligand, followed by the rearrangement of the fragment.

The molecular structure of the title compound is illustrated in Fig. 1. It is a centrosymmetric dimeric structure where each metal is octa-coordinate, not septa as in the $Pr_2(thd)_6$ structure mentioned above. Two thd ligands chelate to each metal center in addition to a chelating pivalate anion and a methanol solvate molecule. One of the pivalate oxygen atoms, O6, bridges the two Pr^{III} atoms in a μ_2 -pivalto-O,O,O' manner; as does one of the O atoms of the thd ligands in $Pr_2(thd)_6$ (Erasmus & Boeyens, 1970). Intramolecular O-H…O hydrogen bonds involving the methanol hydroxyl group on one Pr^{III} atom with a chelating O atom of a thd ligand coordinated to the symmetry related Pr^{III} atom, stablise the molecular structure (Table 1).

Decomposition of the crystal was observed upon heating to around 340 K, before melting. So compared to Pr(thd)₃ [Eisentraut & Sievers, 1965] the title compound cannot be considered as a good precursor for MOCVD applications.

S2. Experimental

 $Pr(thd)_3$ (where thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) was prepared as described previously (Eisentraut & Sievers, 1965). For the preparation of the title compound, 0.1 g of $Pr(thd)_3$ was heated to 420 K under the vacuum of 10⁻⁶ Torr for 6 h. The pivalate ligand in the title compound is thought to be formed by thermal decomposition of one of the thd ligands under the current reaction conditions. After heat-treatment, the residual product obtained was dissolved in 10 ml of methanol. The solution was stirred for 30 mins untill completely dissolved and then filtered. Green crystals, suitable for X-ray diffraction analysis, were obtained from the methanol solution, left to evaporate slowly at room temperature, after 48 h [Yield ca. 30%]. Decomposition of the crystals was observed upon heating to around 340 K, before melting.

S3. Refinement

The OH H atom was located in a difference Fourier map and was freely refined. The C-bound H-atoms were included in calulated positions and treated as riding atoms: C-H = 0.95 and 0.98 Å for CH and CH₃ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.2 for CH H-atoms, and k = 1.5 for CH₃ H-atoms.

Figure 1

The molecular structure of the title complex, with the numbering scheme and displacement ellipsoids drawn at the 35% probability level [the H atoms have been omitted for clarity].

Di- μ -pivalato- $\kappa^3 O, O': O'; \kappa^3 O: O, O'$ -bis[(methanol- κO)bis(2,2,6,6-tetramethylheptane-3,5-dionato)praseodymium(III)]

Crystal data

$[\Pr_{2}(C_{5}H_{9}O_{2})_{2}(C_{11}H_{19}O_{2})_{4}(CH_{4}O)_{2}]$ $M_{r} = 1281.20$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 12.6248 (14) Å b = 16.5113 (18) Å c = 15.5218 (17) Å $\beta = 94.372 (1)^{\circ}$ $V = 3226.1 (6) Å^{3}$ Z = 2	F(000) = 1336 $D_x = 1.319 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9813 reflections $\theta = 2.4-25.1^{\circ}$ $\mu = 1.55 \text{ mm}^{-1}$ T = 125 K Block, green $0.45 \times 0.38 \times 0.32 \text{ mm}$
Data collection	
Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: analytical (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.543$, $T_{max} = 0.637$ 30451 measured reflections 5712 independent reflections 4618 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.046$	$k = -19 \rightarrow 19$
$\theta_{\text{max}} = 25.1^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$	$l = -18 \rightarrow 18$
$h = -15 \rightarrow 15$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
<i>S</i> = 1.25	H atoms treated by a mixture of independent
5712 reflections	and constrained refinement
329 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0263P)^2 + 9.812P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 1.54 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.99 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pr1	0.98360 (2)	0.12656 (1)	0.97361 (1)	0.0203 (1)
01	1.1711 (2)	0.10441 (18)	0.9683 (2)	0.0262 (10)
O2	1.0808 (2)	0.21145 (18)	1.07815 (19)	0.0278 (10)
O3	1.0094 (3)	0.24206 (19)	0.8849 (2)	0.0308 (10)
O4	0.8519 (2)	0.22213 (18)	0.9949 (2)	0.0284 (10)
05	0.9711 (3)	0.07544 (19)	0.8224 (2)	0.0341 (11)
O6	0.9893 (2)	0.02507 (18)	1.08838 (18)	0.0246 (9)
O7	0.8080 (3)	0.0510(2)	0.9706 (2)	0.0322 (11)
C1	1.2114 (7)	0.3914 (4)	1.0976 (4)	0.069 (3)
C2	1.1907 (4)	0.3149 (3)	1.1468 (3)	0.0303 (16)
C3	1.2858 (5)	0.2944 (4)	1.2099 (4)	0.064 (2)
C4	1.0950 (5)	0.3276 (4)	1.1989 (4)	0.0503 (19)
C5	1.1705 (4)	0.2443 (3)	1.0824 (3)	0.0258 (14)
C6	1.2523 (4)	0.2210 (3)	1.0312 (3)	0.0310 (16)
C7	1.2507 (4)	0.1533 (3)	0.9784 (3)	0.0275 (14)
C8	1.3480 (4)	0.1339 (3)	0.9275 (3)	0.0324 (16)
C9	1.3721 (5)	0.2076 (3)	0.8721 (4)	0.0462 (17)
C10	1.4445 (4)	0.1180 (4)	0.9916 (4)	0.048 (2)
C11	1.3275 (5)	0.0608 (4)	0.8686 (4)	0.052 (2)
C12	1.0987 (6)	0.4229 (5)	0.8574 (4)	0.069 (3)
C13	1.0794 (5)	0.3147 (4)	0.7452 (4)	0.0482 (19)
C14	0.9372 (5)	0.4167 (4)	0.7546 (4)	0.0481 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	1.0207 (4)	0.3665 (3)	0.8080 (3)	0.0311 (14)
C16	0.9708 (4)	0.3120 (3)	0.8746 (3)	0.0262 (12)
C17	0.8885 (4)	0.3415 (3)	0.9219 (3)	0.0278 (16)
C18	0.8339 (3)	0.2971 (3)	0.9793 (3)	0.0244 (12)
C19	0.7440 (4)	0.3330 (3)	1.0288 (3)	0.0287 (16)
C20	0.7766 (4)	0.3273(3)	1.1259 (3)	0.0398 (17)
C21	0 7197 (4)	0.3215(3) 0.4216(3)	1 0063 (3)	0.0350(17)
C22	0.6450(4)	0.1210(3) 0.2819(3)	1.0003(3) 1.0081(4)	0.0320(17) 0.0419(19)
C23	0.9975(4)	0.0033(3)	0.8346(3)	0.0266(12)
C24	1,0108(4)	-0.0528(3)	0.0510(3) 0.7589(3)	0.0200(12) 0.0340(14)
C25	1.0440 (6)	-0.0038(4)	0.6821(4)	0.060 (2)
C26	1.0937 (5)	-0.1185(3)	0.0021(1) 0.7836(4)	0.000(2) 0.0457(19)
C20	0.9012(5)	-0.0911(4)	0.7371(3)	0.0497(19)
C28	0.7012(5)	0.0543(4)	0.7371(3) 0.9025(4)	0.0490(19)
U20 Н1	0.815 (6)	0.0343(4)	0.9025(4)	0.055(2)
	0.813 (0)	0.38350	1.06400	0.00(2) 0.1040*
	1.27520	0.38330	1.00400	0.1040*
	1.22320	0.43020	1.13830	0.1040*
	1.14910	0.40420	1.03840	0.1040*
пра	1.34660	0.28020	1.1//80	0.0960*
нэв	1.2/080	0.24470	1.24140	0.0960*
HSC	1.29870	0.33900	1.25110	0.0960*
H4A	1.08170	0.27820	1.23130	0.0760*
H4B	1.03260	0.34010	1.15970	0.0760*
H4C	1.10900	0.37270	1.23930	0.0760*
H/	1.31380	0.25440	1.03300	0.03/0*
H9A	1.38610	0.25480	0.90940	0.0690*
H9B	1.31100	0.21870	0.83100	0.0690*
H9C	1.43470	0.19620	0.84030	0.0690*
HI0A	1.45710	0.16530	1.02910	0.0720*
H10B	1.50720	0.10800	0.95970	0.0720*
H10C	1.43070	0.07050	1.02690	0.0720*
H11A	1.26590	0.07160	0.82790	0.0780*
H11B	1.31320	0.01320	0.90350	0.0780*
H11C	1.39010	0.05070	0.83650	0.0780*
H12A	1.15190	0.39080	0.89170	0.1040*
H12B	1.06040	0.45740	0.89590	0.1040*
H12C	1.13410	0.45680	0.81650	0.1040*
H13A	1.02890	0.27850	0.71340	0.0720*
H13B	1.13410	0.28240	0.77770	0.0720*
H13C	1.11290	0.35000	0.70440	0.0720*
H14A	0.88730	0.38030	0.72240	0.0720*
H14B	0.97250	0.45100	0.71400	0.0720*
H14C	0.89850	0.45070	0.79330	0.0720*
H17	0.86870	0.39660	0.91360	0.0330*
H20A	0.79210	0.27080	1.14150	0.0600*
H20B	0.71850	0.34710	1.15860	0.0600*
H20C	0.84010	0.36040	1.13970	0.0600*
H21A	0.78340	0.45450	1.02020	0.0530*

supporting information

H21B	0.66200	0.44090	1.03980	0.0530*
H21C	0.69830	0.42610	0.94440	0.0530*
H22A	0.66050	0.22530	1.02300	0.0630*
H22B	0.62320	0.28610	0.94630	0.0630*
H22C	0.58760	0.30160	1.04170	0.0630*
H25A	1.05250	-0.04010	0.63320	0.0900*
H25B	1.11150	0.02370	0.69800	0.0900*
H25C	0.98920	0.03660	0.66580	0.0900*
H26A	1.10130	-0.15420	0.73400	0.0680*
H26B	1.07040	-0.15040	0.83200	0.0680*
H26C	1.16220	-0.09300	0.80070	0.0680*
H27A	0.90490	-0.12820	0.68810	0.0730*
H27B	0.84920	-0.04840	0.72190	0.0730*
H27C	0.87960	-0.12110	0.78730	0.0730*
H28A	0.66840	0.01990	0.91620	0.0820*
H28B	0.75650	0.03500	0.84920	0.0820*
H28C	0.70350	0.11030	0.89450	0.0820*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pr1	0.0231 (1)	0.0146 (1)	0.0236 (1)	-0.0010(1)	0.0035(1)	0.0002 (1)
01	0.0259 (17)	0.0199 (16)	0.0330 (17)	-0.0011 (13)	0.0044 (13)	-0.0017 (13)
O2	0.0286 (18)	0.0250 (16)	0.0302 (17)	-0.0025 (14)	0.0052 (13)	-0.0039 (13)
O3	0.0314 (18)	0.0230 (17)	0.0393 (19)	0.0017 (14)	0.0111 (14)	0.0051 (14)
O4	0.0314 (18)	0.0209 (16)	0.0344 (17)	0.0014 (14)	0.0118 (14)	0.0041 (13)
O5	0.052 (2)	0.0183 (17)	0.0317 (18)	0.0037 (15)	0.0012 (15)	0.0029 (13)
O6	0.0296 (17)	0.0212 (15)	0.0233 (15)	-0.0004 (13)	0.0042 (12)	-0.0026 (12)
O 7	0.0292 (19)	0.0244 (19)	0.043 (2)	-0.0015 (15)	0.0027 (15)	0.0018 (16)
C1	0.122 (7)	0.032 (3)	0.058 (4)	-0.020 (4)	0.031 (4)	-0.013 (3)
C2	0.033 (3)	0.025 (2)	0.033 (3)	-0.003(2)	0.004 (2)	-0.007(2)
C3	0.055 (4)	0.064 (4)	0.069 (4)	0.012 (3)	-0.012 (3)	-0.032 (4)
C4	0.048 (3)	0.044 (3)	0.060 (4)	-0.007 (3)	0.011 (3)	-0.022 (3)
C5	0.030 (3)	0.022 (2)	0.025 (2)	-0.0015 (19)	-0.0001 (18)	0.0026 (18)
C6	0.029 (3)	0.024 (2)	0.041 (3)	-0.009 (2)	0.010 (2)	-0.009 (2)
C7	0.031 (3)	0.025 (2)	0.027 (2)	0.000 (2)	0.0048 (19)	0.0040 (18)
C8	0.028 (2)	0.033 (3)	0.038 (3)	-0.004(2)	0.015 (2)	-0.002(2)
C9	0.050 (3)	0.044 (3)	0.047 (3)	-0.003(3)	0.020 (3)	0.005 (3)
C10	0.035 (3)	0.051 (4)	0.060 (4)	0.007 (3)	0.012 (3)	0.006 (3)
C11	0.056 (4)	0.048 (3)	0.057 (4)	-0.012 (3)	0.031 (3)	-0.020 (3)
C12	0.081 (5)	0.076 (5)	0.050 (4)	-0.050 (4)	-0.002 (3)	0.008 (3)
C13	0.055 (4)	0.047 (3)	0.045 (3)	0.009 (3)	0.020 (3)	0.014 (3)
C14	0.058 (4)	0.041 (3)	0.047 (3)	0.009 (3)	0.015 (3)	0.017 (3)
C15	0.034 (3)	0.027 (2)	0.033 (2)	-0.002(2)	0.007 (2)	0.003 (2)
C16	0.031 (2)	0.020 (2)	0.027 (2)	-0.0025 (19)	-0.0010 (19)	-0.0018 (18)
C17	0.035 (3)	0.015 (2)	0.034 (3)	0.0027 (19)	0.006 (2)	0.0056 (18)
C18	0.023 (2)	0.023 (2)	0.027 (2)	-0.0018 (18)	0.0002 (18)	-0.0045 (18)
C19	0.031 (3)	0.019 (2)	0.037 (3)	0.0043 (19)	0.008 (2)	0.0000 (19)

supporting information

C20	0.044 (3)	0.039 (3)	0.037 (3)	0.014 (2)	0.008 (2)	0.003 (2)
C21	0.041 (3)	0.028 (3)	0.037 (3)	0.008 (2)	0.010(2)	-0.003 (2)
C22	0.028 (3)	0.037 (3)	0.062 (4)	0.001 (2)	0.012 (2)	-0.001 (3)
C23	0.026 (2)	0.025 (2)	0.029 (2)	-0.0051 (19)	0.0027 (18)	0.0011 (19)
C24	0.059 (3)	0.023 (2)	0.021 (2)	-0.004 (2)	0.010(2)	-0.0028 (19)
C25	0.107 (6)	0.041 (3)	0.036 (3)	-0.006 (3)	0.031 (3)	-0.001 (3)
C26	0.060 (4)	0.037 (3)	0.042 (3)	0.005 (3)	0.017 (3)	-0.009 (2)
C27	0.070 (4)	0.042 (3)	0.032 (3)	-0.014 (3)	-0.015 (3)	-0.002(2)
C28	0.039 (3)	0.067 (4)	0.058 (4)	-0.006 (3)	-0.003 (3)	0.011 (3)

Geometric parameters (Å, °)

Pr1-01	2.403 (3)	С3—Н3С	0.9800
Pr1—O2	2.408 (3)	C4—H4A	0.9800
Pr1—O3	2.389 (3)	C4—H4B	0.9800
Pr1—O4	2.334 (3)	C4—H4C	0.9800
Pr1—O5	2.488 (3)	C6—H7	0.9500
Pr1—O6	2.443 (3)	С9—Н9А	0.9800
Pr1—O7	2.541 (4)	С9—Н9В	0.9800
Pr1—O6 ⁱ	2.713 (3)	С9—Н9С	0.9800
O1—C7	1.289 (6)	C10—H10A	0.9800
O2—C5	1.253 (6)	C10—H10B	0.9800
O3—C16	1.259 (6)	C10—H10C	0.9800
O4—C18	1.278 (6)	C11—H11A	0.9800
O5—C23	1.247 (6)	C11—H11B	0.9800
O6-C23 ⁱ	1.283 (5)	C11—H11C	0.9800
O7—C28	1.406 (7)	C12—H12A	0.9800
O7—H1	0.71 (7)	C12—H12B	0.9800
C1—C2	1.509 (8)	C12—H12C	0.9800
C2—C3	1.528 (8)	C13—H13A	0.9800
C2—C5	1.544 (7)	C13—H13B	0.9800
C2—C4	1.519 (8)	C13—H13C	0.9800
C5—C6	1.404 (7)	C14—H14A	0.9800
С6—С7	1.385 (7)	C14—H14B	0.9800
С7—С8	1.544 (7)	C14—H14C	0.9800
С8—С9	1.534 (7)	C17—H17	0.9500
C8—C10	1.536 (7)	C20—H20A	0.9800
C8—C11	1.524 (8)	C20—H20B	0.9800
C12—C15	1.520 (9)	C20—H20C	0.9800
C13—C15	1.530 (8)	C21—H21A	0.9800
C14—C15	1.534 (8)	C21—H21B	0.9800
C15—C16	1.541 (7)	C21—H21C	0.9800
C16—C17	1.404 (7)	C22—H22A	0.9800
C17—C18	1.378 (7)	C22—H22B	0.9800
C18—C19	1.537 (6)	C22—H22C	0.9800
C19—C21	1.530 (7)	C25—H25A	0.9800
C19—C22	1.522 (7)	C25—H25B	0.9800
C19—C20	1.535 (7)	C25—H25C	0.9800

C23—C24	1.516 (7)	C26—H26A	0.9800
C24—C26	1.536 (8)	C26—H26B	0.9800
C24—C27	1.535 (8)	C26—H26C	0.9800
C24—C25	1.526 (8)	C27—H27A	0.9800
C1—H1A	0.9800	C27—H27B	0.9800
C1—H1B	0.9800	С27—Н27С	0.9800
C1—H1C	0.9800	C28—H28A	0.9800
C3—H3A	0.9800	C28—H28B	0.9800
C3_H3B	0.9800	C28_H28C	0.9800
C3—113B	0.9000	628-11280	0.9800
O1 $Br1$ $O2$	70.06 (10)	C2 C2 H2D	100.00
$01 - P_{11} - 02$	70.00(10)	$C_2 = C_3 = H_3 C_2$	109.00
01—Pr1—03	85.03 (12)		110.00
01—Pr1—04	145.29 (10)	H3A—C3—H3B	109.00
OI—PrI—O5	84.71 (11)	НЗА—СЗ—НЗС	110.00
O1—Pr1—O6	86.92 (9)	НЗВ—СЗ—НЗС	109.00
O1—Pr1—O7	141.72 (11)	C2—C4—H4A	109.00
$O1$ — $Pr1$ — $O6^{i}$	72.32 (9)	C2—C4—H4B	109.00
O2—Pr1—O3	80.73 (11)	C2—C4—H4C	109.00
O2—Pr1—O4	80.97 (10)	H4A—C4—H4B	109.00
O2—Pr1—O5	145.64 (11)	H4A—C4—H4C	109.00
O2—Pr1—O6	85.57 (10)	H4B—C4—H4C	110.00
O2—Pr1—O7	134.20 (10)	С5—С6—Н7	117.00
$O2$ — $Pr1$ — $O6^{i}$	134.79 (9)	С7—С6—Н7	117.00
O3—Pr1—O4	70.84 (11)	С8—С9—Н9А	110.00
O3—Pr1—O5	74.26 (10)	С8—С9—Н9В	109.00
03 - Pr1 - 06	165 97 (10)	C8—C9—H9C	109.00
03 - Pr1 - 07	102.57(10) 122.58(12)	H9A - C9 - H9B	109.00
$O_3 Pr1 O6^i$	122.30(12) 120.30(10)	$H_{0A} = C_{0} + H_{0C}$	110.00
$0.4 \text{ Pr}^{-1} 0.5$	120.39(10) 111.61(11)	HOR CO HOC	100.00
04 - 111 - 05	111.01(11) 110.01(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.00
04—P11—06	110.01(10)	C_{0} C_{10} H_{10} C_{0}	109.00
04 Pr1 07	72.82 (10)	C8-C10-H10B	109.00
$04 - Pr1 - 06^{4}$	141.68 (9)	C8-CI0-HIOC	109.00
05—Pr1—06	116.84 (10)	H10A—C10—H10B	110.00
O5—Pr1—O7	79.84 (11)	H10A—C10—H10C	109.00
$O5$ — $Pr1$ — $O6^{1}$	49.69 (9)	H10B—C10—H10C	109.00
O6—Pr1—O7	69.75 (9)	C8—C11—H11A	109.00
$O6$ — $Pr1$ — $O6^{i}$	68.17 (9)	C8—C11—H11B	109.00
$O6^{i}$ —Pr1—O7	70.97 (9)	C8—C11—H11C	109.00
Pr1—O1—C7	131.4 (3)	H11A—C11—H11B	109.00
Pr1	134.4 (3)	H11A—C11—H11C	110.00
Pr1	137.5 (3)	H11B—C11—H11C	110.00
Pr1	138.3 (3)	C15—C12—H12A	109.00
Pr1-05-C23	100.6 (3)	C15—C12—H12B	109.00
Pr1—O6—Pr1 ⁱ	111.83 (10)	C15—C12—H12C	109.00
$Pr1-O6-C23^{i}$	157.6 (3)	H12A—C12—H12B	109.00
$Pr1^{i}$ O6 C23 ⁱ	89.0 (3)	H12A—C12—H12C	109.00
Pr1-07-C28	124 8 (3)	H12B-C12-H12C	110.00
Pr1-07-H1	112 (6)	C15-C13-H13A	110.00
			110.00

C28—O7—H1	111 (5)	C15—C13—H13B	109.00
C1—C2—C3	110.6 (5)	C15—C13—H13C	109.00
C3—C2—C4	107.9 (4)	H13A—C13—H13B	109.00
C3—C2—C5	109.3 (4)	H13A—C13—H13C	109.00
C4—C2—C5	110.5 (4)	H13B—C13—H13C	110.00
C1—C2—C4	109.2 (5)	C15—C14—H14A	109.00
C1—C2—C5	109.3 (4)	C15—C14—H14B	109.00
C2—C5—C6	118.8 (4)	C15—C14—H14C	109.00
O2—C5—C2	117.7 (4)	H14A—C14—H14B	109.00
O2—C5—C6	123.5 (4)	H14A—C14—H14C	109.00
C5—C6—C7	125.3 (5)	H14B—C14—H14C	110.00
O1—C7—C8	116.8 (4)	C16—C17—H17	117.00
C6—C7—C8	119.6 (4)	C18—C17—H17	117.00
O1—C7—C6	123.6 (4)	C19—C20—H20A	110.00
C7—C8—C11	111.5 (4)	C19—C20—H20B	109.00
C7—C8—C9	108.8 (4)	C19—C20—H20C	110.00
C7—C8—C10	109.1 (4)	H20A—C20—H20B	109.00
C10-C8-C11	110.1 (5)	H20A—C20—H20C	109.00
C9—C8—C11	108.9 (4)	H20B-C20-H20C	109.00
C9—C8—C10	108.5 (4)	C19—C21—H21A	109.00
C12—C15—C14	109.5 (5)	C19—C21—H21B	110.00
C12—C15—C16	107.6 (4)	C19—C21—H21C	109.00
C13—C15—C16	110.1 (4)	H21A—C21—H21B	109.00
C14—C15—C16	112.3 (4)	H21A—C21—H21C	109.00
C13—C15—C14	107.7 (4)	H21B—C21—H21C	110.00
C12—C15—C13	109.7 (5)	C19—C22—H22A	109.00
C15—C16—C17	120.3 (4)	C19—C22—H22B	109.00
O3—C16—C15	116.5 (4)	C19—C22—H22C	109.00
O3—C16—C17	123.1 (4)	H22A—C22—H22B	110.00
C16—C17—C18	125.4 (5)	H22A—C22—H22C	109.00
C17—C18—C19	122.9 (4)	H22B—C22—H22C	109.00
O4—C18—C17	123.2 (4)	C24—C25—H25A	110.00
O4—C18—C19	114.0 (4)	C24—C25—H25B	110.00
C18—C19—C22	107.9 (4)	C24—C25—H25C	109.00
C20—C19—C21	108.5 (4)	H25A—C25—H25B	110.00
C20—C19—C22	109.1 (4)	H25A—C25—H25C	109.00
C21—C19—C22	109.6 (4)	H25B—C25—H25C	109.00
C18—C19—C21	113.4 (4)	C24—C26—H26A	110.00
C18—C19—C20	108.3 (4)	C24—C26—H26B	109.00
O5—C23—O6 ⁱ	120.3 (4)	C24—C26—H26C	110.00
O5—C23—C24	120.7 (4)	H26A—C26—H26B	109.00
O6 ⁱ —C23—C24	119.0 (4)	H26A—C26—H26C	110.00
C23—C24—C26	110.6 (4)	H26B—C26—H26C	109.00
C23—C24—C27	105.7 (4)	C24—C27—H27A	109.00
C25—C24—C27	110.1 (4)	C24—C27—H27B	109.00
C26—C24—C27	110.5 (4)	С24—С27—Н27С	110.00
C25—C24—C26	110.3 (5)	H27A—C27—H27B	109.00
C23—C24—C25	109.6 (4)	H27A—C27—H27C	109.00

C2—C1—H1A	109.00	H27B—C27—H27C	109.00
C2—C1—H1B	110.00	O7—C28—H28A	110.00
C2—C1—H1C	109.00	O7—C28—H28B	109.00
H1A—C1—H1B	110.00	O7—C28—H28C	109.00
H1A—C1—H1C	109.00	H28A—C28—H28B	109.00
H1B—C1—H1C	109.00	H28A—C28—H28C	110.00
C2—C3—H3A	109.00	H28B—C28—H28C	109.00
O2—Pr1—O1—C7	-35.6 (4)	O4—Pr1—O7—C28	73.0 (4)
O3—Pr1—O1—C7	46.1 (4)	O5—Pr1—O7—C28	-43.6 (4)
O4—Pr1—O1—C7	-0.4 (5)	O6—Pr1—O7—C28	-167.3 (4)
O5—Pr1—O1—C7	120.7 (4)	O6 ⁱ —Pr1—O7—C28	-94.3 (4)
O6—Pr1—O1—C7	-122.0(4)	Pr1—O1—C7—C8	-149.2(3)
07—Pr1—01—C7	-173.1(3)	Pr1—O1—C7—C6	30.4 (7)
$O6^{i}$ Pr1-O1-C7	169.9 (4)	Pr1	161.8 (3)
01 - Pr1 - 02 - C5	29.9 (4)	Pr1-O2-C5-C6	-17.4(7)
03 - Pr1 - 02 - C5	-588(4)	Pr1 - O3 - C16 - C15	1777(3)
04—Pr1— 02 — $C5$	-1307(4)	Pr1-O3-C16-C17	-0.6(8)
05-Pr1-02-C5	-154(5)	Pr1 - 04 - C18 - C17	15.6(7)
06 - Pr1 - 02 - C5	1182(4)	$Pr1_04_18_19$	-1657(3)
07 - Pr1 - 02 - C5	174 1 (4)	$Pr1-05-C23-06^{i}$	71(5)
O_{1}^{i} Pr1-O2-C5	65 2 (4)	$Pr1_05_23_200$	-1750(4)
01 - Pr1 - 03 - C16	-146.9(5)	$Pr1^{i} - 06^{i} - 023 - 05$	175.0(+)
$O_{1} = 0_{1} = 0_{2} = 0_{1} = 0_{2}$	-76.4.(5)	$Pr1 = 06^{i} = 023 = 03$	132.0(3)
02 - 111 - 03 - 016	70.4(3)	$Pr1^{i} O6^{i} C23 C24$	-25.4(10)
05 Pr1 03 C16	1.2(4)	$Pr1 = 06^{i} = 023 = 05$	-64(5)
05 - 111 - 05 - 016	127.4(5)	C1 C2 C5 O2	-1165(6)
0/-F11 - 03 - C16	146.6(4)	$C_1 - C_2 - C_3 - C_2$	-110.3(0)
00 - FII - 03 - CI0	140.0(4)	$C_{3} - C_{2} - C_{3} - C_{0}$	-38.5(0)
01 - F11 - 04 - C18	54.9(3)	$C_4 - C_2 - C_5 - O_2$	3.0(0)
02 - Pri - 04 - C18	08.2(4)	$C_{3} = C_{2} = C_{3} = C_{2}$	122.3(3)
05 - Pri = 04 - C18	-13.1(4)	$C_{4} - C_{2} - C_{3} - C_{6}$	-1/7.1(3)
05-Pr1-04-C18	-78.0(4)	C1 - C2 - C3 - C6	02.7 (0)
00-Pri = 04 - 018	150.0 (4)	02-05-06-07	-8.9(8)
0/-Pr1-04-018	-149.9 (4)	$C_2 = C_5 = C_6 = C_7$	1/1.9 (5)
06 - PrI - 04 - C18	-130.2(4)	$C_{5} - C_{6} - C_{7} - C_{8}$	-1/8.3(4)
01-Pr1-05-023	67.4 (3)	$C_{5} - C_{6} - C_{7} - O_{1}$	2.1 (8)
02 - Pr1 - 05 - C23	109.5 (3)	01 - 07 - 08 - 010	-118.1 (5)
03 - PrI - 05 - C23	154.4 (3)	01	3.7 (6)
04 - Pr1 - 05 - C23	-144.2(3)	01-07-08-09	123.8 (5)
06—Pr1—05—C23	-16.4(3)	C6C7C8C11	-175.9 (5)
07—Pr1—05—C23	-77.4 (3)	C6—C7—C8—C10	62.3 (6)
O6 ¹ —Pr1—O5—C23	-3.8 (3)	C6—C7—C8—C9	-55.9 (6)
$O1$ — $Pr1$ — $O6$ — $Pr1^{1}$	-/2.17 (11)	C13—C15—C16—O3	20.5 (6)
O2—Pr1—O6—Pr1 ¹	-142.39 (11)	C12—C15—C16—C17	79.4 (6)
04—Pr1—06—Pr1 ¹	138.90 (10)	C13—C15—C16—C17	-161.1 (5)
O5—Pr1—O6—Pr1 ¹	10.32 (15)	C14—C15—C16—O3	140.5 (5)
$O7$ — $Pr1$ — $O6$ — $Pr1^{1}$	76.90 (11)	C14—C15—C16—C17	-41.2 (6)
$O6^{i}$ — $Pr1$ — $O6$ — $Pr1^{i}$	0.03 (14)	C12—C15—C16—O3	-99.0 (5)

O1-Pr1-O6-C23 ⁱ	85.1 (7)	C15—C16—C17—C18	176.1 (4)
O2-Pr1-O6-C23 ⁱ	14.9 (7)	O3—C16—C17—C18	-5.7 (8)
O4-Pr1-O6-C23 ⁱ	-63.8 (7)	C16—C17—C18—C19	-179.7 (4)
O5-Pr1-O6-C23 ⁱ	167.6 (7)	C16—C17—C18—O4	-1.1 (8)
O7—Pr1—O6—C23 ⁱ	-125.8 (8)	C17—C18—C19—C20	-119.0 (5)
$O6^{i}$ —Pr1—O6—C23 ⁱ	157.3 (8)	C17—C18—C19—C21	1.5 (6)
O1 ⁱ —Pr1 ⁱ —O6—Pr1	-93.84 (12)	C17—C18—C19—C22	123.0 (5)
$O2^{i}$ — $Pr1^{i}$ — $O6$ — $Pr1$	-59.01 (16)	O4—C18—C19—C21	-177.2 (4)
$O3^{i}$ — $Pr1^{i}$ — $O6$ — $Pr1$	-167.60 (12)	O4—C18—C19—C22	-55.7 (5)
$O4^{i}$ — $Pr1^{i}$ — $O6$ — $Pr1$	95.03 (16)	O4—C18—C19—C20	62.3 (5)
$O5^{i}$ — $Pr1^{i}$ — $O6$ — $Pr1$	167.90 (17)	O6 ⁱ —C23—C24—C26	-31.4 (6)
$O6^{i}$ — $Pr1^{i}$ — $O6$ — $Pr1$	0.03 (12)	O6 ⁱ —C23—C24—C27	88.2 (5)
$O7^{i}$ — $Pr1^{i}$ — $O6$ — $Pr1$	75.15 (11)	O6 ⁱ —C23—C24—C25	-153.2 (5)
O1—Pr1—O7—C28	-111.4 (4)	O5—C23—C24—C25	28.9 (7)
O2—Pr1—O7—C28	131.0 (4)	O5—C23—C24—C26	150.7 (5)
O3—Pr1—O7—C28	20.2 (4)	O5—C23—C24—C27	-89.7 (6)

Symmetry code: (i) -x+2, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
07—H1…O1 ⁱ	0.71 (7)	2.04 (7)	2.741 (4)	178 (9)

Symmetry code: (i) -x+2, -y, -z+2.