metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[2,2'-(2-aminoethylimino)di(ethylammonium)] di-*µ*-sulfido-bis[disulfidostannate(IV)]

Emma Karey,^a Kimberly A. Rosmus,^b Jennifer A. Aitken^b and Joseph MacNeil^a*

^aDepartment of Chemistry, Chatham University, 1 Woodland Road, Pittsburgh, PA 15232, USA, and ^bDepartment of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA Correspondence e-mail: macneil@chatham.edu

Received 22 August 2011; accepted 20 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.021; wR factor = 0.058; data-to-parameter ratio = 37.2.

The asymmetric unit of the title compound, $(C_6H_{20}N_4)_2[Sn_2S_6]$, comprises half of a $[Sn_2S_6]^{4-}$ anion and a diprotonated tris(2-aminoethyl)amine cation. The anion lies on an inversion center, while the atoms of the cation occupy general positions. An intramolecular N-H···N hydrogen bond is observed in the cation. In the crystal, strong $N-H \cdots S$ hydrogen bonding between the terminal sulfur atoms of the anion and the protonated amine N atoms of the cations result in a three-dimensional network.

Related literature

For synthetic conditions and the structure of the hydrated form of this complex, see: Näther et al. (2003). For solvothermal syntheses of compounds with $[Sn_2S_6]^{4-}$ anions, see: Behrens et al. (2003); Jia et al. (2005); Jiang et al. (1998a); Li et al. (1997). For other thiostannate anions, see: Jiang et al. (1998b). For a review article covering related compounds, see: Zhou et al. (2009).

Experimental

Crystal data

$(C_6H_{20}N_4)_2[Sn_2S_6]$	<i>b</i> = 14.8845 (3) Å
$M_r = 363.13$	c = 10.2498 (2) Å
Monoclinic, $P2_1/c$	$\beta = 115.758 \ (1)^{\circ}$
a = 9.9280 (2) Å	V = 1364.15 (5) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 2.31 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\min} = 0.334, T_{\max} = 0.467$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.058$ S = 1.044907 reflections

Table 1 Selected bond lengths (Å).

Sn1-S2	2.3447 (4)	Sn1-S3	2.4564 (4)
Sn1-S1	2.3307 (4)	Sn1-S3 ⁱ	2.4550 (4)

T = 296 K

 $R_{\rm int} = 0.023$

132 parameters

 $\Delta \rho_{\text{max}} = 1.22 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.51$ e Å⁻³

 $0.61 \times 0.57 \times 0.39 \text{ mm}$

25432 measured reflections 4907 independent reflections

4460 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry code: (i) $-x_{1} - v + 1, -z + 1$.

Table 2

Hydrogen-bond	geometry ([A, °]).
---------------	------------	--------	----

$D-\mathrm{H}\cdots A$ $D-\mathrm{H}$ $\mathrm{H}\cdots A$ $D\cdots A$ $D-\mathrm{H}\cdots$	٠A
$N9-H9C\cdots N10$ 0.89 2.10 2.965 (3) 163	
$N9-H9B\cdots S1^{ii}$ 0.89 2.44 3.314 (2) 167	
$N9-H9A\cdots S2^{iii}$ 0.89 2.49 3.370 (2) 168	
$N7 - H7C \cdot \cdot \cdot S1^{i}$ 0.89 2.36 3.243 (2) 174	
$N7 - H7B \cdot \cdot \cdot S2^{iv}$ 0.89 2.40 3.278 (2) 170	
$N7 - H7A \cdot S2^{v}$ 0.89 2.57 3.411 (2) 159	

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) x, y, z - 1; (v) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

This project was funded by the National Science Foundation (NSF) CAREER Award DMR-0645304 and the instrumentation was purchased with NSF grant, CRIF-0234872. This material is based upon work supported by the NSF under CHE-1005145 and CHE-1144419.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2373).

References

- Behrens, M., Scherb, S., Näther, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367-1373
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Jia, D. X., Dai, J., Zhu, Q. Y., Lu, W. & Guo, W. J. (2005). Chin. J. Struct. Chem. 24. 1157-1163.
- Jiang, T., Lough, A. & Ozin, G. A. (1998b). Adv. Mater. 10, 42-46.

- Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998a). J. Mater. Chem. 8, 733–741.
- Li, J., Marler, B., Kessler, H., Soulard, M. & Kallus, S. (1997). Inorg. Chem. 36, 4697–4701.
- Näther, C., Scherb, S. & Bensch, W. (2003). Acta Cryst. E59, m280-m282.
- Palmer, D. (2010). Crystal Maker CrystalMaker Software Ltd, Oxford, England.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhou, J., Dai, J., Bian, G. Q. & Li, C. Y. (2009). Coord. Chem. Rev. 253, 1221– 1247.

supporting information

Acta Cryst. (2011). E67, m1516-m1517 [doi:10.1107/S1600536811038657]

Bis[2,2'-(2-aminoethylimino)di(ethylammonium)] di-µ-sulfido-bis[disulfidostannate(IV)]

Emma Karey, Kimberly A. Rosmus, Jennifer A. Aitken and Joseph MacNeil

S1. Comment

While solvothermal syntheses have produced an assortment of anionic thiostannate building blocks, the $[Sn_2S_6]^4$ moiety has been one of the most common (Zhou *et al.*, 2009). It has also been shown that under certain conditions $[Sn_2S_6]^4$ anions can be converted to forms such as $[Sn_3S_7]^{2-}$ and $[Sn_4S_9]^{-}$, forming two-dimensional layered anionic networks (Jiang et al., 1998a,b). In 2003, solvothermal experiments aimed at preparing $[Co(tren)_2][Sn_2S_6]$ using the chelating ligand tris-(2-aminoethyl)amine (C₆H₁₈N₄, tren), resulted in the isolation and characterization of (H₂tren)₂[Sn₂S₆]²H₂O (Näther *et al.*, 2003) as a side product. We have now shown that the anhydrous version of this compound, (I) can be accessed when the reaction is carried out in anhydrous conditions and without any transition metal present. In the title compound, $(H_2 \text{tren})_2[\text{Sn}_2\text{S}_6]$, (Fig. 1), the terminal Sn—S bonds, at 2.3307 (4) and 2.3447 (5) Å, are shorter than the Sn—S bond of 2.4565 (6) Å formed with the bridging sulfur. The interior S—Sn—S angle of 92.78 (2)° is tighter than those involving terminal sulfurs, where these angles range from 108.22 (2) to 120.55 (2)°. Collectively, the geometric parameters of the $[Sn_2S_6]^4$ anion are in reasonable accordance with similar structures (Näther *et al.*, 2003; Behrens *et al.*, 2003). In the $(H_2 \text{tren})^{2+}$ cation, the C—N bond lengths for the two protonated pendant amines are slightly longer, at 1.490 (3) and 1.473 (3) Å, than the 1.446 (5) Å C—N bond for the neutral arm. The most distinct structural difference between the anhydrous structure and the previously reported hydrated form (Näther *et al.*, 2003) is the positioning of the NH₂ pedant amine. In the hydrated structure, it is aligned to facilitate a H-bonding interaction (H···N—H of 2.08 Å) with an NH₃⁺ amine on a neighboring cation. In the anhydrous structure, the hydrogen bonding interaction (N9-H9C...N10, 2.10 Å) is formed within the same ligand, Fig. 2. Strong hydrogen bonding between the terminal sulfur atoms on the anion and the protonated amine centers on the cation (Fig. 2, Table 2) results in a three-dimensional network, Fig. 3.

S2. Experimental

The title compound was prepared by solvothermal synthesis, using conditions comparable to Näther *et al.* (2003). 5.0 ml of tris-2-aminoethylamine (tren) was mixed with 1.00 mmol Sn and 3.0 mmol S in a 23 ml Parr^(R); acid digestion apparatus. The mixture was heated to 423 K over 5 h and maintained at that temperature for 144 h. It was cooled to 363 K at 2 K/h, then cooled to 313 K at 6 K/h. The clear, colorless crystals were washed with hexane and recovered by vacuum filtration. This protocol produced large crystals, often several mm on the longest axis, and in one instance measuring over 20 mm.

S3. Refinement

All H atoms except for those on N(10) were placed at calculated positions (C—H at 0.97 Å, N—H at 0.87 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(N)$. The two H atoms on N(10) were identified from the difference Fourier map and refined as a rigid group with $U_{iso}(H) = 1.5U_{eq}(N)$.

Figure 1

The structure of $(C_6H_{20}N_4)_2[Sn_2S_6]$. The thermal ellipsoids have been drawn at the 50% probability level. Symmetry code: (i) = -x, -y + 1, -z + 1.

Figure 2

Hydrogen bonding interactions within the $(H_2 tren)^{2+}$ cation and between the cation and the terminal sulfurs of the $[Sn_2S_6]^{4-}$ anion. Symmetry codes as presented in Table 2.

View down the a axis illustrating the three-dimensional hydrogen bonding network.

Bis[2,2'-(2-aminoethylimino)di(ethylammonium)] di-µ-sulfido-bis[disulfidostannate(IV)]

Crystal data

 $(C_6H_{20}N_4)_2[Sn_2S_6]$ $M_r = 363.13$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.9280 (2) Å b = 14.8845 (3) Å c = 10.2498 (2) Å $\beta = 115.758$ (1)° V = 1364.15 (5) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω Scans scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.334, T_{\max} = 0.467$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.058$ S = 1.04 F(000) = 728 $D_x = 1.768 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9995 reflections $\theta = 2.3-33.1^{\circ}$ $\mu = 2.31 \text{ mm}^{-1}$ T = 296 KClear, colourless $0.61 \times 0.57 \times 0.39 \text{ mm}$

25432 measured reflections 4907 independent reflections 4460 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 33.1^\circ, \theta_{min} = 2.3^\circ$ $h = -14 \rightarrow 14$ $k = -22 \rightarrow 22$ $l = -15 \rightarrow 15$

4907 reflections132 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

neighbouring sites H-atom parameters constrained $\Delta \rho_{max} = 0.002$ $\Delta \rho_{max} = 1.22 \text{ e} \text{ Å}^{-3}$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0298P)^2 + 0.7916P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Lambda/\sigma) = 0.002$
	neighbouring sites H-atom parameters constrained	$\Delta \rho_{\text{max}} = 1.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{max}} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	r	12	7	17. */17	
01	A 01002 (1)	<i>y</i>	2		
Sni	0.01082(1)	0.468130(7)	0.66292 (1)	0.02312(4)	
SI	0.18598 (5)	0.52916 (3)	0.87984 (5)	0.03186 (9)	
S 2	-0.15015 (5)	0.35310 (3)	0.66377 (5)	0.03259 (9)	
S3	0.13815 (5)	0.41901 (3)	0.51649 (5)	0.03229 (9)	
C1	0.1339 (2)	0.3225 (1)	0.0717 (2)	0.0349 (3)	
H1A	0.1600	0.3833	0.0573	0.042*	
H1B	0.1715	0.2818	0.0213	0.042*	
C2	0.2059 (2)	0.3005 (1)	0.2327 (2)	0.0380 (4)	
H2A	0.1620	0.3379	0.2817	0.046*	
H2B	0.1862	0.2382	0.2463	0.046*	
C3	0.4166 (3)	0.4070 (2)	0.3308 (4)	0.0552 (6)	
H3A	0.4711	0.4130	0.4351	0.066*	
H3B	0.3308	0.4468	0.2984	0.066*	
C4	0.5166 (3)	0.4348 (2)	0.2610 (3)	0.0528 (6)	
H4A	0.4596	0.4337	0.1565	0.063*	
H4B	0.5507	0.4959	0.2895	0.063*	
C5	0.4481 (3)	0.2526 (2)	0.4178 (2)	0.0466 (5)	
H5A	0.5397	0.2814	0.4852	0.056*	
H5B	0.3875	0.2407	0.4689	0.056*	
C6	0.4856 (3)	0.1665 (2)	0.3699 (3)	0.0510 (5)	
H6A	0.5435	0.1297	0.4538	0.061*	
H6B	0.3942	0.1344	0.3106	0.061*	
N7	-0.0318 (2)	0.3140(1)	0.0112 (2)	0.0350 (3)	
H7A	-0.0551	0.2610	0.0361	0.053*	
H7B	-0.0715	0.3181	-0.0849	0.053*	
H7C	-0.0677	0.3577	0.0462	0.053*	
N8	0.3655 (2)	0.3154(1)	0.2955 (2)	0.0340 (3)	
N9	0.6473 (2)	0.3752 (1)	0.3030(2)	0.0393 (4)	
H9A	0.7035	0.3791	0.3981	0.059*	
H9B	0.7009	0.3916	0.2564	0.059*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H9C	0.6165	0.3187	0.2799	0.059*
N10	0.5705 (3)	0.1814 (1)	0.2875 (3)	0.0535 (5)
H10A	0.6363	0.1388	0.2887	0.080*
H10B	0.5046	0.1868	0.1857	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.02520 (5)	0.02399 (6)	0.02090 (5)	-0.00209 (3)	0.01070 (4)	-0.00039 (3)
S1	0.0316 (2)	0.0363 (2)	0.0254 (2)	-0.0069(1)	0.0102 (1)	-0.0050(1)
S2	0.0325 (2)	0.0375 (2)	0.0268 (2)	-0.0115 (2)	0.0120(1)	0.0009(1)
S3	0.0400 (2)	0.0321 (2)	0.0300 (2)	0.0127 (2)	0.0201 (2)	0.0057 (1)
C1	0.0357 (8)	0.0370 (9)	0.0362 (9)	0.0016 (7)	0.0196 (7)	0.0056 (7)
C2	0.0316 (8)	0.049(1)	0.0347 (9)	-0.0045 (7)	0.0157 (7)	-0.0022 (8)
C3	0.052 (1)	0.036(1)	0.089 (2)	-0.0123 (9)	0.041 (1)	-0.019(1)
C4	0.049 (1)	0.037(1)	0.075 (2)	-0.0066 (8)	0.022 (1)	0.011 (1)
C5	0.042 (1)	0.062(1)	0.037(1)	-0.0056 (9)	0.0190 (9)	-0.0023 (9)
C6	0.043 (1)	0.056(1)	0.053 (1)	0.0121 (9)	0.020(1)	0.021 (1)
N7	0.0356 (7)	0.0375 (8)	0.0291 (7)	0.0014 (6)	0.0112 (6)	0.0019 (6)
N8	0.0280 (6)	0.0343 (7)	0.0407 (8)	-0.0060 (5)	0.0160 (6)	-0.0056 (6)
N9	0.0330 (7)	0.0461 (9)	0.0379 (8)	-0.0106 (7)	0.0146 (6)	0.0023 (7)
N10	0.055 (1)	0.049 (1)	0.067 (1)	-0.0051 (9)	0.037 (1)	-0.009 (1)

Geometric parameters (Å, °)

Sn1—S1	2.3307 (4)	C4—H4A	0.9700
Sn1—S2	2.3447 (4)	C4—H4B	0.9700
Sn1—S3 ⁱ	2.4550 (4)	C5—C6	1.477 (4)
Sn1—S3	2.4564 (4)	C5—N8	1.491 (3)
S3—Sn1 ⁱ	2.4550 (4)	C5—H5A	0.9700
C1—N7	1.490 (2)	C5—H5B	0.9700
C1—C2	1.521 (3)	C6—N10	1.446 (3)
C1—H1A	0.9700	C6—H6A	0.9700
C1—H1B	0.9700	C6—H6B	0.9700
C2—N8	1.445 (2)	N7—H7A	0.8900
C2—H2A	0.9700	N7—H7B	0.8900
C2—H2B	0.9700	N7—H7C	0.8900
C3—N8	1.444 (3)	N9—H9A	0.8900
C3—C4	1.512 (4)	N9—H9B	0.8900
С3—НЗА	0.9700	N9—H9C	0.8900
С3—Н3В	0.9700	N10—H10A	0.9066
C4—N9	1.474 (3)	N10—H10B	0.9645
S1—Sn1—S2	120.55 (2)	C6—C5—N8	113.0 (2)
$S1 = Sn1 = S2^{i}$	113 87 (2)	C6-C5-H5A	109.0
$S2$ — $Sn1$ — $S3^{i}$	108.22(2)	N8—C5—H5A	109.0
S1-Sn1-S3	109.28 (2)	C6—C5—H5B	109.0
S2-Sn1-S3	108.51(2)	N8—C5—H5B	109.0
S= SHI 35	100.01 (2)		107.0

S3 ⁱ —Sn1—S3	92.78 (1)	H5A—C5—H5B	107.8
Sn1 ⁱ —S3—Sn1	87.22 (1)	N10—C6—C5	110.8 (2)
N7—C1—C2	110.3 (1)	N10—C6—H6A	109.5
N7—C1—H1A	109.6	С5—С6—Н6А	109.5
C2—C1—H1A	109.6	N10—C6—H6B	109.5
N7—C1—H1B	109.6	С5—С6—Н6В	109.5
C2—C1—H1B	109.6	H6A—C6—H6B	108.1
H1A—C1—H1B	108.1	C1—N7—H7A	109.5
N8—C2—C1	110.9 (2)	C1—N7—H7B	109.5
N8—C2—H2A	109.5	H7A—N7—H7B	109.5
C1—C2—H2A	109.5	C1—N7—H7C	109.5
N8—C2—H2B	109.5	H7A—N7—H7C	109.5
C1—C2—H2B	109.5	H7B—N7—H7C	109.5
H2A—C2—H2B	108.0	C2—N8—C3	117.1 (2)
N8—C3—C4	111.8 (2)	C2—N8—C5	112.0 (2)
N8—C3—H3A	109.3	C3—N8—C5	112.1 (2)
С4—С3—НЗА	109.3	C4—N9—H9A	109.5
N8—C3—H3B	109.3	C4—N9—H9B	109.5
С4—С3—Н3В	109.3	H9A—N9—H9B	109.5
НЗА—СЗ—НЗВ	107.9	C4—N9—H9C	109.5
N9—C4—C3	111.9 (2)	H9A—N9—H9C	109.5
N9—C4—H4A	109.2	H9B—N9—H9C	109.5
C3—C4—H4A	109.2	C6—N10—H10A	119.0
N9—C4—H4B	109.2	C6—N10—H10B	110.6
C3—C4—H4B	109.2	H10A—N10—H10B	102.6
H4A—C4—H4B	107.9		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N9—H9C…N10	0.89	2.10	2.965 (3)	163
N9—H9 <i>B</i> ···S1 ⁱⁱ	0.89	2.44	3.314 (2)	167
N9—H9A···S2 ⁱⁱⁱ	0.89	2.49	3.370 (2)	168
$N7-H7C\cdots S1^{i}$	0.89	2.36	3.243 (2)	174
N7—H7 B ···S2 ^{iv}	0.89	2.40	3.278 (2)	170
N7—H7 A ····S2 ^v	0.89	2.57	3.411 (2)	159

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) x, y, z-1; (v) x, -y+1/2, z-1/2.