organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dicyclohexyl-N"-(3-fluorobenzoyl)-N,N'-dimethylphosphoric triamide

Mehrdad Pourayoubi,^a* Samad Shoghpour,^a Giuseppe Bruno^b and Hadi Amiri Rudbari^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 30 September 2011; accepted 17 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å;

R factor = 0.049; wR factor = 0.157; data-to-parameter ratio = 16.5.

In the title compound, $C_{21}H_{33}FN_3O_2P$, the P atom has a distorted tetrahedral environment and the N atoms display geometries consistent with a model of sp^2 hybridization (with bond-angle sums for the tertiary N atoms of 357.8 and 358.7°). The phosphoryl and carbonyl groups are *anti* with respect to each other. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate $R_2^2(8)$ loops.

Related literature

For the coordination properties of carbacylamidophosphates, see: Pourayoubi et al. (2011b); Gholivand et al. (2010); Znovjvak et al. (2009); Trush et al. (2005); Gubina et al. (2002). For related structures, see: Pourayoubi et al. (2011a); Pourayoubi & Saneei (2011). For the *syn* orientation of the P(=O) group and NH unit in the C(O)NHP(O) skeleton for most known carbacylamidophosphates, see: Toghraee et al. (2011). For a procedure to synthesise the starting phosphoruschlorine compound, see: Pourayoubi et al. (2011c). For graphset notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental

Crystal data

C21H33FN3O2P $M_r = 409.47$ Monoclinic, C2/c a = 22.6634 (8) Å b = 12.9587(5) Å c = 17.6627 (7) Å $\beta = 119.061 (1)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008) $T_{\min} = 0.658, T_{\max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$wR(F^2) = 0.157$	independent and constrained
S = 1.02	refinement
4228 reflections	$\Delta \rho_{\rm max} = 0.93 \ {\rm e} \ {\rm \AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
1 restraint	

V = 4534.3 (3) Å³

Mo $K\alpha$ radiation

 $0.32 \times 0.28 \times 0.16 \text{ mm}$

20958 measured reflections

4228 independent reflections

3254 reflections with $I > 2\sigma(I)$

 $\mu = 0.15 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.031$

Z = 8

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$	0.78 (2)	2.04 (2)	2.807 (2)	165 (2)
Symmetry code: (i) -	$-x + \frac{1}{2}, -v + \frac{3}{2}, -v$	-z.		

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2034).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.
- Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318-2324.
- Gubina, K. E., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Amirkhanov, V. M. & Domasevitch, K. V. (2002). Polyhedron, 21, 963-967.
- Pourayoubi, M., Fadaei, H. & Parvez, M. (2011a). Acta Cryst. E67, o2046.
- Pourayoubi, M., Golen, J. A., Rostami Chaijan, M., Divjakovic, V., Negari, M. & Rheingold, A. L. (2011b). Acta Cryst. C67, m160-m164.
- Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o2201.

- Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. E67, 0934.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680– 1690.
- Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.
- Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). *Polyhedron*, 28, 3731–3738.

supporting information

Acta Cryst. (2011). E67, o3028–o3029 [doi:10.1107/S1600536811043017]

N,N'-Dicyclohexyl-N''-(3-fluorobenzoyl)-N,N'-dimethylphosphoric triamide

Mehrdad Pourayoubi, Samad Shoghpour, Giuseppe Bruno and Hadi Amiri Rudbari

S1. Comment

It is now well recognized that carbacylamidophosphates offer very good candidates for coordination chemistry purposes, since they bear a C(O)NHP(O) bifunctional group which is the phosphaza- analogue of β -diketones. In this context, a variety of coordination compounds with both transition and non-transition metal cations have been reported (Pourayoubi *et al.*, 2011*b*; Gholivand *et al.*, 2010; Znovjyak *et al.*, 2009; Trush *et al.*, 2005; Gubina *et al.*, 2002). Therefore, the synthesis and crystal structure investigations of carbacylamidophosphates have been of particular interest in our research team (Pourayoubi *et al.*, 2011*a*; Pourayoubi & Saneei, 2011). In this work, the synthesis and crystal structure of a new carbacylamidophosphate, P(O)[NHC(O)C₆H₄(3-F)][N(CH₃)(C₆H₁₁)]₂, is reported. The molecular structure (*ORTEP* view) of the title compound is shown in Fig. 1. The phosphoryl group and the NH unit are located in a *syn* position with respect to each other similar to most of the carbacylamidophosphates (Toghraee *et al.*, 2011). The P atom has a distorted tetrahedral configuration with the bond angles around the P atom in the range of 105.9 (1)–116.4 (1)°. The P=O, C=O and P—N bond lengths and the P—N—C bond angles are in the range of the expected values. The sum of the surrounding angles around the tertiary N atoms confirms their *sp*² hybridization. In the crystal structure, two neighboring molecules are hydrogen-bonded to each other by two equal intermolecular P=O···H—N hydrogen bonds (O1···N1 = 2.807 (2) Å) (Table 1) to form a centrosymmetric dimer as an $R_2^2(8)$ ring.

S2. Experimental

Synthesis of 3-F–C₆H₄C(O)NHP(O)Cl₂ 3-F–C₆H₄C(O)NHP(O)Cl₂ was prepared according to the procedure which was previously used for preparation of 2-F–C₆H₄C(O)NHP(O)Cl₂ (Pourayoubi *et al.***, 2011***c***) by using 3-F–C₆H₄C(O)NH₂ instead of 2-F–C₆H₄C(O)NH₂. Synthesis of the title molecule** To a solution of 3-F–C₆H₄C(O)NHP(O)Cl₂ (0.512 g, 2 mmol) in CHCl₃ (20 ml), a solution of *N*-methylcyclohexylamine (0.906 g, 8 mmol) in CHCl₃ (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated *in vacuo* and then the resulting solid was washed with water. Single crystals of title compound were obtained from a solution of CH₃OH and CHCl₃ (2:1) after slow evaporation at room temperature. IR (KBr, cm⁻¹): 3068 (NH), 2930, 2855, 1685 (C=O), 1589, 1491, 1448, 1393, 1287, 1272, 1181, 1161, 1005, 982, 886, 860, 749, 682.

S3. Refinement

Several H atoms were located on the final ΔF map, the H atoms were included in the refinement using the `riding model' method with the *X*—H bond geometry and the H isotropic displacement parameter depending on the parent atom *X*.

Figure 1

An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.

N,N'-Dicyclohexyl-N''-(3-fluorobenzoyl)- N,N'-dimethylphosphoric triamide

Crystal data
$C_{21}H_{33}FN_3O_2P$
$M_r = 409.47$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 22.6634 (8) Å
<i>b</i> = 12.9587 (5) Å
c = 17.6627 (7) Å
$\beta = 119.061 (1)^{\circ}$
V = 4534.3 (3) Å ³
Z = 8

F(000) = 1760 $D_x = 1.200 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8133 reflections $\theta = 2.4-27.0^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 296 KCubic, colourless $0.32 \times 0.28 \times 0.16 \text{ mm}$ Data collection

Bruker APEXII CCD	20958 measured reflections
diffractometer	4228 independent reflections
Radiation source: fine-focus sealed tube	3254 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.031$
φ and ω scans	$\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -27 \rightarrow 27$
(<i>SADABS</i> ; Sheldrick, 2008)	$k = -15 \rightarrow 15$
$T_{\min} = 0.658, T_{\max} = 0.746$	$l = -21 \rightarrow 21$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.157$ S = 1.02 4228 reflections 257 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0936P)^2 + 3.0653P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.93$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.19691 (2)	0.87686 (4)	0.02588 (3)	0.03552 (19)	
O2	0.30019 (9)	0.98806 (14)	0.18782 (12)	0.0637 (5)	
F1	0.46037 (14)	0.6077 (2)	0.31270 (17)	0.1416 (10)	
01	0.16844 (7)	0.78142 (11)	-0.02507 (9)	0.0426 (4)	
N1	0.27588 (8)	0.84697 (15)	0.10211 (11)	0.0370 (4)	
C1	0.31644 (10)	0.90341 (18)	0.17448 (13)	0.0417 (5)	
C3	0.15054 (14)	1.02308 (19)	0.0955 (2)	0.0618 (7)	
H3A	0.1710	1.0669	0.0709	0.093*	
H3B	0.1751	1.0282	0.1575	0.093*	
H3C	0.1047	1.0443	0.0749	0.093*	
N2	0.20318 (9)	0.97566 (15)	-0.02662 (12)	0.0479 (5)	
C19	0.0611 (3)	0.7585 (4)	0.2030 (4)	0.135 (2)	
H19A	0.0582	0.8200	0.2323	0.162*	
H19B	0.0428	0.7012	0.2204	0.162*	
C20	0.0200 (2)	0.7734 (4)	0.1057 (4)	0.1268 (18)	

U20A	-0.0261	0.7003	0.0005	0 152*
	-0.0201	0.7903	0.0903	0.152*
C21	0.0193	0.7094	0.0709	0.132
	0.04874 (13)	0.8595 (5)	0.0733 (2)	0.0828 (10)
	0.0251	0.0057	0.0108	0.099*
	0.0430	0.9232	0.0971	0.099°
	0.12210 (11)	0.83/18(19)	0.10158 (15)	0.0477(5)
HIO	0.1235	0.7713	0.0752	0.05/*
N3	0.15171 (9)	0.91587 (14)	0.06955 (12)	0.0429 (4)
C4	0.38187 (11)	0.8550 (2)	0.2368/(13)	0.0458 (6)
05	0.39071 (12)	0.7492 (2)	0.24479 (15)	0.0563 (6)
H5	0.3560	0.7044	0.2099	0.068*
C6	0.45265 (15)	0.7122 (3)	0.30609 (18)	0.0740 (9)
C7	0.50556 (14)	0.7743 (4)	0.35762 (17)	0.0865 (12)
H7	0.5470	0.7466	0.3975	0.104*
C18	0.1330 (3)	0.7373 (3)	0.2291 (3)	0.1109 (15)
H18A	0.1362	0.6723	0.2041	0.133*
H18B	0.1588	0.7311	0.2917	0.133*
C17	0.16264 (17)	0.8231 (3)	0.19916 (18)	0.0774 (9)
H17A	0.1626	0.8871	0.2277	0.093*
H17B	0.2090	0.8064	0.2154	0.093*
C10	0.26677 (11)	1.00986 (18)	-0.02259 (15)	0.0462 (5)
H10	0.3035	0.9781	0.0293	0.055*
C15	0.27532 (14)	0.9741 (2)	-0.09852 (16)	0.0599 (7)
H15A	0.2726	0.8994	-0.1022	0.072*
H15B	0.2390	1.0019	-0.1518	0.072*
C14	0.34258 (17)	1.0089 (3)	-0.0885 (2)	0.0776 (9)
H14A	0.3454	0.9893	-0.1397	0.093*
H14B	0.3788	0.9743	-0.0391	0.093*
C13	0.35163 (19)	1.1247 (3)	-0.0759 (2)	0.0881 (10)
H13A	0.3961	1.1439	-0.0664	0.106*
H13B	0.3183	1.1595	-0.1277	0.106*
C12	0.34381 (19)	1.1582 (3)	0.0008 (3)	0.0898 (10)
H12A	0.3480	1.2326	0.0066	0.108*
H12B	0.3796	1.1278	0.0532	0.108*
C11	0.27582 (17)	1.1256 (2)	-0.0098(2)	0.0723 (8)
H11A	0.2729	1.1454	0.0412	0.087*
H11B	0.2400	1.1606	-0.0594	0.087*
C2	0.13971 (13)	1.0138 (2)	-0.09931 (19)	0.0692 (8)
H2A	0.1022	0.9864	-0.0948	0.104*
H2B	0.1367	0.9921	-0.1530	0.104*
H2C	0.1389	1.0878	-0.0975	0.104*
C9	0.43442(12)	0.9204 (3)	0.28957 (16)	0.0652 (7)
H9	0.4284	0.9915	0.2851	0.078*
C8	0.49597 (15)	0.8784 (4)	0.34893 (19)	0.0887 (12)
H8	0.5315	0.9221	0.3836	0.106*
H1	0 2925 (11)	0.8035(17)	0.0877 (14)	0.038 (6)*
				0.000 (0)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0267 (3)	0.0428 (3)	0.0322 (3)	0.0018 (2)	0.0104 (2)	-0.0015 (2)
O2	0.0569 (11)	0.0588 (11)	0.0590 (11)	0.0018 (8)	0.0153 (9)	-0.0221 (8)
F1	0.117 (2)	0.160 (2)	0.1197 (19)	0.0660 (17)	0.0356 (16)	0.0554 (17)
01	0.0301 (7)	0.0530 (9)	0.0395 (8)	-0.0025 (6)	0.0128 (6)	-0.0097 (7)
N1	0.0297 (9)	0.0432 (10)	0.0319 (9)	0.0053 (7)	0.0100 (7)	-0.0046 (7)
C1	0.0344 (11)	0.0534 (14)	0.0345 (11)	-0.0035 (9)	0.0145 (9)	-0.0065 (9)
C3	0.0623 (16)	0.0495 (15)	0.0805 (19)	0.0079 (12)	0.0401 (15)	-0.0068 (13)
N2	0.0341 (10)	0.0566 (12)	0.0448 (10)	0.0024 (8)	0.0127 (8)	0.0117 (9)
C19	0.197 (6)	0.116 (3)	0.183 (5)	-0.055 (3)	0.164 (5)	-0.036 (3)
C20	0.098 (3)	0.134 (4)	0.195 (5)	-0.058 (3)	0.108 (4)	-0.058 (4)
C21	0.0469 (15)	0.108 (2)	0.099 (2)	-0.0154 (15)	0.0406 (16)	-0.0275 (19)
C16	0.0438 (12)	0.0544 (14)	0.0504 (13)	-0.0089 (10)	0.0272 (11)	-0.0132 (11)
N3	0.0382 (10)	0.0433 (10)	0.0495 (10)	0.0031 (8)	0.0231 (8)	-0.0041 (8)
C4	0.0318 (11)	0.0755 (17)	0.0283 (10)	-0.0034 (10)	0.0133 (9)	-0.0064 (10)
C5	0.0392 (13)	0.0812 (19)	0.0388 (12)	0.0100 (12)	0.0113 (10)	0.0077 (12)
C6	0.0586 (17)	0.106 (2)	0.0518 (15)	0.0363 (17)	0.0225 (14)	0.0271 (16)
C7	0.0364 (15)	0.173 (4)	0.0375 (14)	0.0246 (19)	0.0079 (12)	0.0137 (19)
C18	0.168 (5)	0.103 (3)	0.096 (3)	-0.021 (3)	0.090 (3)	0.008 (2)
C17	0.080(2)	0.096 (2)	0.0561 (17)	-0.0145 (17)	0.0327 (16)	0.0047 (16)
C10	0.0408 (12)	0.0554 (14)	0.0414 (12)	-0.0026 (10)	0.0192 (10)	0.0040 (10)
C15	0.0671 (17)	0.0661 (17)	0.0508 (14)	-0.0006 (13)	0.0321 (13)	-0.0005 (12)
C14	0.081 (2)	0.104 (2)	0.0696 (19)	-0.0008 (18)	0.0532 (18)	0.0014 (17)
C13	0.081 (2)	0.109 (3)	0.092 (2)	-0.0239 (19)	0.055 (2)	0.0053 (19)
C12	0.087 (2)	0.085 (2)	0.116 (3)	-0.0347 (19)	0.064 (2)	-0.021 (2)
C11	0.077 (2)	0.0608 (17)	0.095 (2)	-0.0165 (14)	0.0536 (18)	-0.0173 (15)
C2	0.0450 (14)	0.0756 (19)	0.0676 (17)	0.0094 (13)	0.0120 (13)	0.0298 (14)
C9	0.0389 (13)	0.104 (2)	0.0453 (14)	-0.0153 (13)	0.0144 (11)	-0.0201 (14)
C8	0.0348 (14)	0.173 (4)	0.0450 (16)	-0.0165 (19)	0.0090 (12)	-0.020 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

P1-01	1.4803 (15)	C6—C7	1.362 (5)
P1—N2	1.6271 (19)	С7—С8	1.362 (5)
P1—N3	1.6333 (17)	С7—Н7	0.9300
P1—N1	1.6808 (17)	C18—C17	1.521 (4)
O2—C1	1.216 (3)	C18—H18A	0.9700
F1—C6	1.363 (4)	C18—H18B	0.9700
N1C1	1.368 (3)	C17—H17A	0.9700
N1—H1	0.78 (2)	C17—H17B	0.9700
C1—C4	1.490 (3)	C10—C11	1.515 (3)
C3—N3	1.467 (3)	C10—C15	1.518 (3)
С3—НЗА	0.9600	C10—H10	0.9800
С3—Н3В	0.9600	C15—C14	1.515 (4)
С3—Н3С	0.9600	C15—H15A	0.9700
N2—C2	1.472 (3)	C15—H15B	0.9700

N2—C10	1.476 (3)	C14—C13	1.516 (4)
C19—C18	1.487 (6)	C14—H14A	0.9700
C19—C20	1.518 (7)	C14—H14B	0.9700
C19—H19A	0.9700	C13—C12	1.513 (5)
C19—H19B	0.9700	C13—H13A	0.9700
C20—C21	1.533 (5)	C13—H13B	0.9700
C20—H20A	0.9700	C12—C11	1.519 (4)
С20—Н20В	0.9700	C12—H12A	0.9700
C21—C16	1.514 (4)	C12—H12B	0.9700
C21—H21A	0.9700	C11—H11A	0.9700
C21—H21B	0.9700	C11—H11B	0.9700
C16—N3	1 476 (3)	C2—H2A	0.9600
C_{16} C_{17}	1.170(3) 1.520(4)	C2—H2B	0.9600
C16—H16	0.9800	C2 H2D C2 H2C	0.9600
C4-C5	1.383(4)	$C_2 = C_2$	1 386 (4)
C_{4} C_{9}	1.385(4)	C_{0} H0	0.0300
C_{1}	1.300(5) 1.377(3)	C_{2} H_{2}	0.9300
C5_H5	0.0300	0-110	0.9500
05-115	0.9300		
01 P1 N2	116 35 (10)	C10 C18 C17	111 1 (4)
O1 - 1 - N2 O1 - P1 - N3	110.35 (10)	C19 - C18 - C17	100 4
N2 P1 N3	110.95(9) 105.90(10)	C17 C18 H18A	109.4
$N_2 - r_1 - N_3$	105.90(10) 105.02(0)	C1/-C10	109.4
VI-PI-NI	105.95 (9)	С19—С16—П16В	109.4
N2—P1—N1	100.50(9)	CI/-CIS-HISB	109.4
N3—PI—NI	111.17(9) 12(59(1())	$\frac{116A}{C16} - \frac{C16}{C18} = \frac{C16}{C18}$	108.0
CI-NI-PI	120.38 (10)	C16 - C17 - C18	110.9 (3)
CI-NI-HI	118.4 (17)	C16—C17—H17A	109.5
PI—NI—HI	113.4 (16)	C18— $C17$ — $H17A$	109.5
02-CI-NI	122.3 (2)	C16—C17—H17B	109.5
02	121.5 (2)	C18—C17—H17B	109.5
NI - CI - C4	116.18 (19)	HI/A - CI/-HI/B	108.0
N3—C3—H3A	109.5	N2—C10—C11	111.3 (2)
N3—C3—H3B	109.5	N2—C10—C15	114.0 (2)
НЗА—СЗ—НЗВ	109.5	C11—C10—C15	111.6 (2)
N3—C3—H3C	109.5	N2—C10—H10	106.5
НЗА—СЗ—НЗС	109.5	C11—C10—H10	106.5
НЗВ—СЗ—НЗС	109.5	C15—C10—H10	106.5
C2—N2—C10	117.30 (19)	C14—C15—C10	111.0 (2)
C2—N2—P1	116.26 (16)	C14—C15—H15A	109.4
C10—N2—P1	124.22 (15)	C10—C15—H15A	109.4
C18—C19—C20	110.6 (3)	C14—C15—H15B	109.4
C18—C19—H19A	109.5	C10—C15—H15B	109.4
С20—С19—Н19А	109.5	H15A—C15—H15B	108.0
C18—C19—H19B	109.5	C15—C14—C13	111.6 (3)
С20—С19—Н19В	109.5	C15—C14—H14A	109.3
H19A-C19-H19B	108.1	C13—C14—H14A	109.3
C19—C20—C21	112.0 (3)	C15—C14—H14B	109.3
C19-C20-H20A	109.2	C13—C14—H14B	109.3

C21—C20—H20A	109.2	H14A—C14—H14B	108.0
С19—С20—Н20В	109.2	C12—C13—C14	110.4 (3)
C21—C20—H20B	109.2	С12—С13—Н13А	109.6
H20A—C20—H20B	107.9	C14—C13—H13A	109.6
C16—C21—C20	109.7 (3)	C12—C13—H13B	109.6
C16—C21—H21A	109.7	C14—C13—H13B	109.6
C20—C21—H21A	109.7	H13A—C13—H13B	108.1
C16—C21—H21B	109.7	C13—C12—C11	111.3 (3)
C20—C21—H21B	109.7	C13—C12—H12A	109.4
H21A—C21—H21B	108.2	C11—C12—H12A	109.4
N3-C16-C21	112.0 (2)	C13—C12—H12B	109.4
N3—C16—C17	112.4 (2)	C11—C12—H12B	109.4
C21—C16—C17	110.9 (2)	H12A—C12—H12B	108.0
N3-C16-H16	107.1	C10-C11-C12	110.4 (3)
C_{21} C_{16} H_{16}	107.1	C10-C11-H11A	109.6
C17 - C16 - H16	107.1	C12— $C11$ — $H11A$	109.6
$C_3 N_3 C_16$	117.01 (18)	C10-C11-H11B	109.6
$C_3 = N_3 = P_1$	117.01(16) 123.44(16)	C_{12} C_{11} H_{11B}	109.0
$C_1 = N_2 = N_1$	123.44(10) 118 25 (15)		109.0
C_{10}	110.23(13) 120.2(2)	$\frac{1111}{111} = \frac{1111}{111}$	100.1
$C_{5} = C_{4} = C_{5}$	120.2(2) 122.4(2)	$N_2 = C_2 = H_2 R$	109.5
$C_3 = C_4 = C_1$	122.4(2)	$N_2 - C_2 - \Pi_2 D$	109.5
C_{9}	117.4(2) 117.8(2)	$\mathbf{H}_{\mathbf{Z}} \mathbf{H}_{\mathbf{Z}} \mathbf{H}$	109.5
$C_0 = C_3 = C_4$	117.8 (5)	$N_2 = C_2 = H_2 C_2$	109.5
C6-C5-H5	121.1	$H_2A = C_2 = H_2C$	109.5
C4—C5—H5	121.1	$H_2B = C_2 = H_2C$	109.5
$C/-C_0-F_1$	119.7 (3)	$C_{8} - C_{9} - C_{4}$	119.2 (3)
C/-C6-C5	123.4 (3)	C8—C9—H9	120.4
F1—C6—C5	116.9 (3)	C4—C9—H9	120.4
C6-C/-C8	118.0 (3)	C/C8C9	121.4 (3)
С6—С/—Н/	121.0	C/—C8—H8	119.3
С8—С7—Н7	121.0	С9—С8—Н8	119.3
01—P1—N1—C1	-165.46 (18)	N1—C1—C4—C9	154.3 (2)
N2—P1—N1—C1	70.1 (2)	C9—C4—C5—C6	0.1 (3)
N3—P1—N1—C1	-44.8 (2)	C1—C4—C5—C6	-178.2 (2)
P1—N1—C1—O2	-5.7 (3)	C4C5C7	-1.4 (4)
P1—N1—C1—C4	173.91 (15)	C4C5	-179.8 (2)
O1—P1—N2—C2	60.3 (2)	F1—C6—C7—C8	179.8 (3)
N3—P1—N2—C2	-63.5 (2)	C5—C6—C7—C8	1.4 (5)
N1—P1—N2—C2	178.06 (19)	C20-C19-C18-C17	56.5 (5)
O1—P1—N2—C10	-102.28 (19)	N3-C16-C17-C18	-176.7 (3)
N3—P1—N2—C10	133.94 (18)	C21—C16—C17—C18	57.1 (4)
N1—P1—N2—C10	15.5 (2)	C19—C18—C17—C16	-57.4 (4)
C18—C19—C20—C21	-56.3 (5)	C2—N2—C10—C11	63.9 (3)
C19—C20—C21—C16	55.5 (4)	P1—N2—C10—C11	-133.7 (2)
C20—C21—C16—N3	178.0 (3)	C2—N2—C10—C15	-63.3 (3)
C20-C21-C16-C17	-55.6 (4)	P1—N2—C10—C15	99.0 (2)
C21—C16—N3—C3	58.5 (3)	N2-C10-C15-C14	-178.1(2)

C17—C16—N3—C3	-67.1 (3)	C11—C10—C15—C14	54.8 (3)	
C21—C16—N3—P1	-134.1 (2)	C10-C15-C14-C13	-55.0 (3)	
C17—C16—N3—P1	100.3 (2)	C15-C14-C13-C12	56.0 (4)	
O1—P1—N3—C3	-156.59 (19)	C14—C13—C12—C11	-56.9 (4)	
N2—P1—N3—C3	-29.5 (2)	N2-C10-C11-C12	175.9 (3)	
N1—P1—N3—C3	85.8 (2)	C15-C10-C11-C12	-55.6 (4)	
O1—P1—N3—C16	36.84 (18)	C13-C12-C11-C10	56.8 (4)	
N2—P1—N3—C16	163.94 (15)	C5—C4—C9—C8	1.1 (4)	
N1—P1—N3—C16	-80.77 (17)	C1—C4—C9—C8	179.5 (2)	
O2—C1—C4—C5	152.3 (2)	C6—C7—C8—C9	-0.1 (5)	
N1—C1—C4—C5	-27.3 (3)	C4—C9—C8—C7	-1.1 (4)	
O2—C1—C4—C9	-26.1 (3)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.78 (2)	2.04 (2)	2.807 (2)	165 (2)

Symmetry code: (i) -*x*+1/2, -*y*+3/2, -*z*.