organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Anhydro-3,6-di-O-benzyl-2-deoxy-1,2-C-dichloromethylene-D-glycero-Dgulo-hexitol

Henok H. Kinfe,* Blessing A. Aderibigbe and Alfred Muller*

Research Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa

Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za

Received 26 September 2011; accepted 4 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.023; wR factor = 0.055; data-to-parameter ratio = 13.2.

In the title compound, $C_{21}H_{22}Cl_2O_4$, the pyranosyl ring adopts a twist-boat conformation with the *O*-benzyl groups in equatorial positions. In the crystal, $O-H\cdots O$ hydrogen bonding results in infinite chains of molecules along [100]. The structure is further consolidated by weak $C-H\cdots O$, C- $H\cdots Cl$ and $C-H\cdots \pi$ interactions. The absolute structure was determined.

Related literature

For *O*-benzyl deprotection methodologies, see: Akiyama *et al.* (1991). For a related structure, see: Shanmugasundaram *et al.* (2002). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{22}Cl_2O_4\\ M_r = 409.29\\ Orthorhombic, P2_12_12_1\\ a = 5.2985 \ (1) \ {\rm \AA}\\ b = 18.8511 \ (3) \ {\rm \AA}\\ c = 19.5973 \ (4) \ {\rm \AA} \end{array}$

 $V = 1957.43 (6) Å^{3}$ Z = 4Cu K\alpha radiation $\mu = 3.19 \text{ mm}^{-1}$ T = 100 K0.16 \times 0.06 \times 0.05 mm

Data collection

Bruker APEX DUO 4K CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.630, T_{max} = 0.857$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.055$ S = 1.053241 reflections 245 parameters H-atom parameters constrained 14434 measured reflections 3241 independent reflections 3108 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$

 $\begin{array}{l} \Delta \rho_{max} = 0.14 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.19 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1327 \mbox{ Friedel Pairs} \\ \mbox{ Flack parameter: } 0.009 \mbox{ (9)} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C7 and C17-C22 rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots O3^{i}$	0.84	2.18	2.9905 (10)	163
C13−H13···O2 ⁱⁱ	1.00	2.45	3.4005 (19)	158
C18−H18···O3 ⁱ	0.95	2.58	3.521 (2)	171
C20−H20···Cl1 ⁱⁱⁱ	0.95	2.75	3.6268 (19)	154
$C8 - H8B \cdots Cg1^{iv}$	0.99	2.76	3.7480 (18)	175
$C16 - H16B \cdots Cg2^{iv}$	0.99	2.79	3.7195 (17)	156

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (ii) x + 1, y, z; (iii) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mr C. Ncube is thanked for the data collection of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2453).

References

Akiyama, T., Hirofuji, H. & Ozaki, S. (1991). *Tetrahedron Lett.* **32**, 1321–1324. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,

Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. **32**, 115–119.

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Shanmugasundaram, B., Varghese, B. & Balasubramanian, K. K. (2002). Carbohydr. Res. 337, 1523–1527.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2888 [doi:10.1107/S1600536811040815]

1,5-Anhydro-3,6-di-O-benzyl-2-deoxy-1,2-C-dichloromethylene-D-*glycero*-D*gulo*-hexitol

Henok H. Kinfe, Blessing A. Aderibigbe and Alfred Muller

S1. Comment

A combination of AlCl₃ and a base additive such as *N*,*N*-dimethylaniline cleaves benzyl ethers efficiently (Akiyama *et al.*, 1991). We have found that treatment of dichlorocyclopropyl sugar derivative A with AlCl₃ in toluene and in the absence of a base additive resulted to selective deprotection and afforded 4-*O*-debenzylated sugar derivative I in 73% yield (Fig. 2). Although ¹H NMR data could be used to establish the structure of the product, the highly reactive and strained bicyclic junction requires single-crystal X-ray diffraction study to determine the stereochemistry of the product (Shanmugasundaram *et al.*, 2002)

In the title compound (Fig. 1) the *O*--benzyl groups are all in equatorial positions. The pyran ring adopts a twist-boat conformation with ring puckering parameters of $q_2 = 0.6935$ (15) Å, $q_3 = -0.1106$ (16) Å, Q = 0.7023 (16) Å and $\varphi_2 = 342.07$ (14)° (Cremer & Pople, 1975). Strong O—H…O hydrogen bonding create infinite one-dimensional chains along the [100] direction. Several weak C—H…O/Cl/*Cg* interactions are also noted and listed in Table 1.

S2. Experimental

AlCl₃ (37 mg, 0.28 mmol) was added to a solution of dichlorocyclopropyl sugar derivative (see A in scheme 2)(100 mg, 0.20 mmol) in toluene (1 ml) and the resulting mixture was stirred for 2 h at room temperature. The reaction mixture was then diluted with water and the aqueous phase was extracted with toluene. The combined organic phases were dried over MgSO₄, filtered and evaporated *in vacuo*. Chromatography on silica gel (ethyl acetate/hexane, 5:95) of the residue and recrystallization from hexane gave dichlorocyclopropyl sugar derivative I in 73% yield as a white solid.

S3. Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00, 0.99, 0.95 and 0.84 Å for methine, methylene, aromatic and hydroxyl H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}$, except for the hydroxyl where $U_{iso}(H) = 1.5U_{eq}$ was utilized. The initial positions of hydroxyl hydrogen atom was located from a Fourier difference map and refined as fixed rotor. The D enantiomer refined to a final Flack parameter of 0.009 (9).

Figure 1

A view of the title compound; displacement ellipsoids are drawn at 50% probability level.

Figure 2

Reaction scheme for the dihalocarbene cyclopropanation of the protected glucal.

1,5-Anhydro-3,6-di-O-benzyl-2-deoxy-1,2-C-dichloromethylene- D-glycero-D-gulo-hexitol

Crystal data	
$C_{21}H_{22}Cl_2O_4$	F(000) = 856
$M_r = 409.29$	$D_{\rm x} = 1.389 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 8719 reflections
a = 5.2985 (1) Å	$\theta = 4.5 - 64.5^{\circ}$
b = 18.8511 (3) Å	$\mu = 3.19 \text{ mm}^{-1}$
c = 19.5973 (4) Å	T = 100 K
V = 1957.43 (6) Å ³	Needle, colorless
Z = 4	$0.16 \times 0.06 \times 0.05 \text{ mm}$

Data collection

Bruker APEX DUO 4K CCD	14434 measured reflections
diffractometer	3241 independent reflections
Incoatec Quazar Multilayer Mirror	3108 reflections with $I > 2\sigma(I)$
monochromator	$R_{\rm int} = 0.038$
Detector resolution: 8.4 pixels mm ⁻¹	$\theta_{\rm max} = 64.9^\circ, \theta_{\rm min} = 4.5^\circ$
φ and ω scans	$h = -3 \rightarrow 6$
Absorption correction: multi-scan	$k = -21 \rightarrow 22$
(SADABS; Bruker, 2008)	$l = -22 \rightarrow 22$
$T_{\min} = 0.630, \ T_{\max} = 0.857$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.023$	H-atom parameters constrained
$wR(F^2) = 0.055$	$w = 1/[\sigma^2(F_0^2) + (0.0249P)^2 + 0.1406P]$
S = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
3241 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
245 parameters	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1327 Friedel
direct methods	Pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.009 (9)

map

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 1989 frames were collected with a frame width of 1° covering up to $\theta = 64.94^{\circ}$ with 97.8% completeness accomplished.

Analytical data: mp 91–93 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.50–7.20 (m, 10H), 4.77 (d, J = 11.7 Hz, 1H), 4.61–4.50 (m, 3H), 3.90–3.80 (m, 4H), 3.65 (dd, J = 1.5 and 3.3 Hz, 1H), 3.56 (dd, J = 4.4 and 9.2 Hz, 1H), 2.59 (bs, 1H), 1.73 (dd, J = 4.6 and 8.2 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 137.9, 137.1, 128.6, 128.4, 128.2, 127.7, 127.6, 79.2, 76.4, 73.5, 71.9, 70.5, 68.3, 58.9, 33.2.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5355 (4)	1.08839 (10)	0.90087 (9)	0.0335 (4)	
H1	0.4672	1.0591	0.866	0.04*	
C2	0.7181 (4)	1.13816 (11)	0.88478 (10)	0.0425 (5)	
H2	0.7732	1.143	0.8389	0.051*	
C3	0.8206 (4)	1.18073 (11)	0.93482 (10)	0.0354 (5)	
Н3	0.9442	1.2153	0.9234	0.042*	
C4	0.7428 (3)	1.17297 (9)	1.00165 (9)	0.0292 (4)	
H4	0.8145	1.2017	1.0365	0.035*	

C6	0.5596 (3)	1.12310 (9)	1.01784 (9)	0.0287 (4)
H6	0.5073	1.1177	1.0639	0.034*
C7	0.4516 (3)	1.08095 (9)	0.96753 (9)	0.0242 (4)
C8	0.2384 (4)	1.03164 (9)	0.98508 (9)	0.0277 (4)
H8A	0.2523	1.017	1.0335	0.033*
H8B	0.0754	1.0565	0.979	0.033*
С9	0.0295 (3)	0.92729 (9)	0.95300 (8)	0.0228 (4)
H9A	-0.1252	0.9554	0.9444	0.027*
H9B	0.0258	0.9108	1.0009	0.027*
C10	0.0368 (3)	0.86420 (8)	0.90551 (8)	0.0190 (3)
H10	-0.1134	0.8344	0.917	0.023*
C11	0.2697 (3)	0.81673 (8)	0.91569 (8)	0.0169 (3)
H11	0.417	0.8468	0.9292	0.02*
C12	0.3303 (3)	0.77835 (8)	0.84966 (8)	0.0165 (3)
H12	0.1789	0.7518	0.8331	0.02*
C13	0.4032 (3)	0.83516 (8)	0.79898 (8)	0.0175 (3)
H13	0.5868	0.8472	0.7966	0.021*
C14	0.2225 (3)	0.89727 (8)	0.79761 (8)	0.0193 (3)
H14	0.2957	0.9461	0.7955	0.023*
C15	0.2516 (3)	0.85065 (9)	0.73630 (8)	0.0198 (3)
C16	0.5667 (3)	0.68293 (8)	0.80641 (8)	0.0190 (3)
H16A	0.6067	0.7097	0.7643	0.023*
H16B	0.4088	0.6561	0.7985	0.023*
C17	0.7775 (3)	0.63247 (8)	0.82228 (8)	0.0192 (3)
C18	0.8761 (3)	0.62666 (9)	0.88720 (9)	0.0258 (4)
H18	0.8135	0.6562	0.9227	0.031*
C19	1.0653 (4)	0.57824 (11)	0.90107 (11)	0.0381 (5)
H19	1.1307	0.5746	0.9461	0.046*
C20	1.1593 (3)	0.53552 (10)	0.85055 (12)	0.0404 (5)
H20	1.2892	0.5024	0.8605	0.048*
C21	1.0652 (3)	0.54082 (10)	0.78545 (12)	0.0401 (5)
H21	1.1301	0.5113	0.7503	0.048*
C22	0.8757 (3)	0.58918 (10)	0.77109 (10)	0.0319 (4)
H22	0.812	0.5929	0.7259	0.038*
01	0.2452 (2)	0.97025 (6)	0.94223 (6)	0.0233 (3)
O2	0.00229 (19)	0.88752 (6)	0.83550 (5)	0.0204 (2)
O3	0.2084 (2)	0.76993 (6)	0.97025 (5)	0.0212 (3)
H3A	0.3402	0.7498	0.9841	0.032*
O4	0.5327 (2)	0.73099 (5)	0.86182 (5)	0.0177 (2)
Cl1	0.41378 (7)	0.88614 (2)	0.66614 (2)	0.02898 (11)
C12	0.00637 (7)	0.79466 (2)	0.711124 (19)	0.02339 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0449 (12)	0.0313 (10)	0.0242 (9)	-0.0091 (9)	-0.0094 (8)	-0.0001 (8)
C2	0.0609 (14)	0.0429 (12)	0.0238 (10)	-0.0156 (11)	-0.0032 (10)	0.0071 (9)
C3	0.0414 (11)	0.0277 (10)	0.0370 (11)	-0.0071 (9)	-0.0040 (8)	0.0040 (9)

C4	0.0328 (11)	0.0236 (9)	0.0312 (10)	0.0032 (8)	-0.0041 (8)	-0.0067 (8)
C6	0.0321 (10)	0.0271 (10)	0.0270 (9)	0.0047 (8)	0.0042 (7)	-0.0073 (8)
C7	0.0249 (10)	0.0191 (9)	0.0286 (9)	0.0066 (7)	-0.0018 (7)	-0.0017 (7)
C8	0.0302 (10)	0.0220 (9)	0.0309 (10)	0.0035 (8)	0.0049 (8)	-0.0091 (8)
C9	0.0180 (9)	0.0255 (9)	0.0248 (9)	0.0044 (7)	0.0039 (7)	0.0002 (7)
C10	0.0153 (8)	0.0219 (8)	0.0197 (8)	0.0009 (7)	0.0019 (6)	0.0030 (6)
C11	0.0134 (8)	0.0182 (8)	0.0192 (8)	-0.0015 (7)	-0.0013 (6)	0.0021 (6)
C12	0.0118 (8)	0.0184 (8)	0.0193 (8)	0.0006 (6)	-0.0017 (6)	0.0011 (7)
C13	0.0126 (7)	0.0194 (8)	0.0206 (8)	-0.0007 (6)	0.0001 (6)	0.0026 (7)
C14	0.0159 (8)	0.0188 (8)	0.0231 (8)	-0.0007 (6)	-0.0010 (6)	0.0025 (7)
C15	0.0165 (8)	0.0216 (9)	0.0212 (8)	-0.0017 (7)	-0.0001 (6)	0.0047 (7)
C16	0.0207 (8)	0.0171 (8)	0.0192 (8)	-0.0007 (6)	-0.0016 (6)	-0.0012 (6)
C17	0.0155 (8)	0.0145 (8)	0.0277 (9)	-0.0041 (6)	0.0024 (7)	-0.0010 (7)
C18	0.0231 (9)	0.0281 (10)	0.0261 (9)	0.0049 (8)	0.0015 (7)	0.0037 (8)
C19	0.0298 (11)	0.0417 (12)	0.0429 (12)	0.0095 (9)	-0.0045 (8)	0.0103 (10)
C20	0.0234 (10)	0.0260 (10)	0.0717 (16)	0.0089 (8)	-0.0016 (9)	0.0021 (11)
C21	0.0231 (10)	0.0260 (10)	0.0712 (15)	0.0002 (8)	0.0070 (10)	-0.0215 (10)
C22	0.0234 (9)	0.0328 (10)	0.0395 (11)	-0.0008 (8)	-0.0024 (8)	-0.0179 (8)
01	0.0220 (6)	0.0199 (6)	0.0280 (6)	0.0017 (5)	0.0058 (5)	-0.0077 (5)
O2	0.0156 (5)	0.0245 (6)	0.0210 (5)	0.0039 (5)	-0.0006 (4)	0.0016 (5)
03	0.0197 (6)	0.0251 (6)	0.0188 (6)	0.0016 (5)	0.0013 (5)	0.0058 (5)
O4	0.0183 (6)	0.0179 (5)	0.0170 (5)	0.0036 (5)	-0.0025 (4)	-0.0011 (4)
C11	0.0229 (2)	0.0396 (3)	0.0245 (2)	-0.00114 (19)	0.00327 (16)	0.0137 (2)
Cl2	0.01837 (19)	0.0297 (2)	0.02214 (19)	-0.00268 (17)	-0.00245 (15)	-0.00181 (16)

Geometric parameters (Å, °)

C1—C2	1.384 (3)	C12—C13	1.511 (2)
C1—C7	1.387 (3)	C12—H12	1
C1—H1	0.95	C13—C15	1.496 (2)
C2—C3	1.379 (3)	C13—C14	1.513 (2)
C2—H2	0.95	C13—H13	1
C3—C4	1.381 (3)	C14—O2	1.3950 (19)
С3—Н3	0.95	C14—C15	1.497 (2)
C4—C6	1.388 (3)	C14—H14	1
C4—H4	0.95	C15—Cl2	1.7452 (16)
C6—C7	1.389 (2)	C15—C11	1.7541 (16)
С6—Н6	0.95	C16—O4	1.4254 (18)
С7—С8	1.503 (3)	C16—C17	1.500 (2)
C8—O1	1.4303 (19)	C16—H16A	0.99
C8—H8A	0.99	C16—H16B	0.99
C8—H8B	0.99	C17—C18	1.380 (2)
С9—01	1.416 (2)	C17—C22	1.394 (2)
C9—C10	1.511 (2)	C18—C19	1.383 (2)
С9—Н9А	0.99	C18—H18	0.95
С9—Н9В	0.99	C19—C20	1.370 (3)
С10—О2	1.4523 (18)	C19—H19	0.95
C10-C11	1.538 (2)	C20—C21	1.373 (3)

C10—H10	1	C20—H20	0.95
C11—O3	1.4239 (18)	C21—C22	1.385 (3)
C11—C12	1.517 (2)	C21—H21	0.95
C11—H11	1	С22—Н22	0.95
C12—O4	1.4157 (18)	ОЗ—НЗА	0.84
C2—C1—C7	120.47 (17)	C11—C12—H12	110.3
C2—C1—H1	119.8	C15—C13—C12	122.73 (13)
C7—C1—H1	119.8	C15—C13—C14	59.65 (10)
C3—C2—C1	120.52 (19)	C12—C13—C14	113.49 (13)
С3—С2—Н2	119.7	C15—C13—H13	116.1
C1—C2—H2	119.7	С12—С13—Н13	116.1
C2—C3—C4	119.70 (19)	C14—C13—H13	116.1
С2—С3—Н3	120.2	O2—C14—C15	115.86 (13)
С4—С3—Н3	120.2	O2—C14—C13	114.71 (13)
C3—C4—C6	119.82 (17)	C15—C14—C13	59.64 (10)
C3—C4—H4	120.1	02—C14—H14	117.9
C6—C4—H4	120.1	C15—C14—H14	117.9
C4—C6—C7	120.86 (16)	C13—C14—H14	117.9
C4—C6—H6	119.6	C13 - C15 - C14	60.72 (10)
C7—C6—H6	119.6	C13 - C15 - C12	120.91(11)
C1-C7-C6	118 60 (17)	C14-C15-C12	120.36(11)
C1 - C7 - C8	121 26 (16)	C13 - C15 - C11	120.00(11) 117.06(11)
C6-C7-C8	120.05 (16)	C14-C15-C11	117.00(11) 117.12(11)
01 - C8 - C7	110 31 (13)	C_{12} C_{15} C_{11}	111,12 (11)
01 - C8 - H8A	109.6	04-C16-C17	109.83(12)
C7 - C8 - H8A	109.6	04-C16-H16A	109.85 (12)
O1 - C8 - H8B	109.6	C17 - C16 - H16A	109.7
C7_C8_H8B	109.6	O4-C16-H16B	109.7
$H_{8}A = C_{8} = H_{8}B$	108.1	C17_C16_H16B	109.7
$\Omega_1 - C_9 - C_{10}$	100.1 109.73(12)	H_{164} $-C_{16}$ $-H_{16B}$	109.7
01 - C9 - H9A	109.75 (12)	C18 - C17 - C22	118 41 (16)
C10 C9 H9A	109.7	C18 - C17 - C16	121.58(14)
01 - C9 - H9B	109.7	C^{22} C^{17} C^{16}	121.50(14) 120.01(15)
C10-C9-H9B	109.7	$C_{17} - C_{18} - C_{19}$	120.01(13) 120.55(17)
H9A_C9_H9B	108.2	C17 - C18 - H18	119 7
02-C10-C9	109.91 (12)	C19-C18-H18	119.7
02 - C10 - C11	113 57 (12)	C_{20} C_{19} C_{18}	120.64 (19)
$C_{2} = C_{10} = C_{11}$	113.57 (12)	C_{20} C_{19} H_{19}	110 7
02-C10-H10	106.4	C_{18} C_{19} H_{19}	119.7
C9-C10-H10	106.4	C19-C20-C21	119.7
C_{11} C_{10} H_{10}	106.4	$C_{19} = C_{20} = H_{20}$	120.1
03-C11-C12	113 16 (12)	C_{21} C_{20} H_{20}	120.1
03-C11-C10	105 95 (12)	C_{20} C_{21} C_{22} C_{22}	119 98 (18)
C_{12} C_{11} C_{10}	109.68 (12)	C_{20} C_{21} H_{21}	120
03-C11-H11	109.3	$C_{22} = C_{21} = H_{21}$	120
C12—C11—H11	109.3	$C_{21} - C_{22} - C_{17}$	120 65 (18)
C10-C11-H11	109.3	$C_{21} = C_{22} = H_{22}$	119.7
~			<i>/ • /</i>

O4—C12—C13	111.35 (12)	C17—C22—H22	119.7
O4—C12—C11	108.51 (12)	C9—O1—C8	110.77 (12)
C13—C12—C11	106.06 (12)	C14—O2—C10	115.94 (11)
O4—C12—H12	110.3	С11—О3—НЗА	109.5
C13—C12—H12	110.3	C12—O4—C16	111.61 (11)
C7—C1—C2—C3	0.5 (3)	C12—C13—C15—Cl2	-9.9 (2)
C1—C2—C3—C4	0.9 (3)	C14—C13—C15—Cl2	-109.85 (14)
C2—C3—C4—C6	-0.9 (3)	C12—C13—C15—Cl1	-152.58 (12)
C3—C4—C6—C7	-0.4 (3)	C14—C13—C15—Cl1	107.49 (13)
C2—C1—C7—C6	-1.7 (3)	O2-C14-C15-C13	-104.74 (15)
C2—C1—C7—C8	174.77 (17)	O2—C14—C15—Cl2	6.00 (19)
C4—C6—C7—C1	1.7 (3)	C13—C14—C15—Cl2	110.74 (14)
C4—C6—C7—C8	-174.85 (16)	O2—C14—C15—Cl1	147.88 (11)
C1—C7—C8—O1	34.7 (2)	C13—C14—C15—Cl1	-107.39 (13)
C6—C7—C8—O1	-148.89 (15)	O4—C16—C17—C18	12.7 (2)
O1—C9—C10—O2	-68.30 (16)	O4—C16—C17—C22	-168.31 (14)
O1—C9—C10—C11	60.10 (17)	C22-C17-C18-C19	-0.9 (2)
O2—C10—C11—O3	-149.38 (12)	C16—C17—C18—C19	178.06 (16)
C9—C10—C11—O3	84.13 (15)	C17—C18—C19—C20	0.4 (3)
O2—C10—C11—C12	-26.92 (18)	C18—C19—C20—C21	0.1 (3)
C9—C10—C11—C12	-153.42 (13)	C19—C20—C21—C22	-0.1 (3)
O3—C11—C12—O4	-57.46 (16)	C20-C21-C22-C17	-0.4 (3)
C10-C11-C12-O4	-175.51 (12)	C18—C17—C22—C21	0.9 (3)
O3—C11—C12—C13	-177.19 (12)	C16—C17—C22—C21	-178.06 (16)
C10-C11-C12-C13	64.76 (16)	C10—C9—O1—C8	178.08 (13)
O4—C12—C13—C15	126.95 (15)	C7—C8—O1—C9	-173.42 (14)
C11—C12—C13—C15	-115.19 (16)	C15—C14—O2—C10	117.76 (14)
O4—C12—C13—C14	-165.12 (12)	C13—C14—O2—C10	51.05 (17)
C11—C12—C13—C14	-47.26 (17)	C9—C10—O2—C14	96.56 (15)
C15—C13—C14—O2	106.67 (15)	C11—C10—O2—C14	-31.80 (18)
C12—C13—C14—O2	-8.71 (19)	C13—C12—O4—C16	-75.51 (15)
C12—C13—C14—C15	-115.39 (15)	C11—C12—O4—C16	168.12 (12)
C12-C13-C15-C14	99.94 (16)	C17—C16—O4—C12	-178.33 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C7 and C17–C22 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
O3—H3 <i>A</i> ···O3 ⁱ	0.84	2.18	2.9905 (10)	163
C11—H11…O1	1.00	2.51	2.9433 (19)	106
C12—H12···Cl2	1.00	2.68	3.2266 (15)	114
С13—Н13…О2 ^{іі}	1.00	2.45	3.4005 (19)	158
C18—H18…O4	0.95	2.37	2.725 (2)	102
C18—H18····O3 ⁱ	0.95	2.58	3.521 (2)	171
C20—H20…C11 ⁱⁱⁱ	0.95	2.75	3.6268 (19)	154

			supporting information	
C8—H8 <i>B</i> ··· <i>Cg</i> 1 ^{iv}	0.99	2.76	3.7480 (18)	175
C16—H16 B ···Cg2 ^{iv}	0.99	2.79	3.7195 (17)	156

Symmetry codes: (i) *x*+1/2, -*y*+3/2, -*z*+2; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, *y*-1/2, -*z*+3/2; (iv) *x*-1, *y*, *z*.