## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 6,6'-(Pyridine-2,6-diyl)bis(pyrrolo[3,4-b]-pyridine-5,7-dione)

P. C. W. Van der Berg,* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
Correspondence e-mail: vanderbergpcw@ufs.ac.za

Received 5 October 2011; accepted 24 October 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.034 ; w R$ factor $=0.091$; data-to-parameter ratio $=15.0$.

## Experimental

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{4}$
$M_{r}=371.31$
Monoclinic, $C 2 / c$
$a=14.539$ (1) A
$b=7.391$ (1) $\AA$
$c=15.686$ (1) $\AA$
$\beta=108.752(2)^{\circ}$

$$
V=1596.1(3) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.34 \times 0.29 \times 0.27 \mathrm{~mm}$

## Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.681, T_{\text {max }}=0.746$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 128$ parameters
$w R\left(F^{2}\right)=0.091 \quad$ H-atom parameters constrained
$S=1.06$
1920 reflections

12803 measured reflections 1920 independent reflections 1717 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}_{\mathrm{max}} \AA^{-3}$

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: $\operatorname{WinGX}$ (Farrugia, 1999).

The Research fund of the University of the Free State, the NRF and NTembi are thankfully acknowledged for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2352).

## References

Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brink, A., Visser, H. G. \& Roodt, A. (2011). Acta Cryst. E67, m34-m35.
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. \& Woollins, J. D. (2004). Dalton Trans. pp. 862-871.
Schutte, M., Visser, H. G. \& Brink, A. (2009). Acta Cryst. E65, m1575-m1576.
Schutte, M., Visser, H. G. \& Roodt, A. (2010). Acta Cryst. E66, m859-m860.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supporting information

Acta Cryst. (2011). E67, o3130 [doi:10.1107/S160053681104414X]

## 6,6'-(Pyridine-2,6-diyl)bis(pyrrolo[3,4-b]pyridine-5,7-dione)

P. C. W. Van der Berg, Hendrik G. Visser and Andreas Roodt

## S1. Comment

The title compound was synthesized as a ligand for potential use in medical and radiopharmaceutical applications (Schutte et al., 2009; Schutte et al., 2010; Brink et al., 2011).
The title compound, $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{4}$, has crystallographically imposed two-fold rotational symmetry. The asymmetric unit contains one half-molecule with $\mathrm{C} 1, \mathrm{H} 1$ and N 1 lying on a two-fold rotational axis. The dihedral angle between the central pyridine ring and the pyrrolo-pyridine side rings is $77.86(2)^{\circ}$ while the angle between the two side chains is $60.87(2)^{\circ}$.
In the crystal, all bond distances and angles are normal (Jain et al. (2004). The molecules pack in layers, diagonally across the $a c$ plane in a head-to-tail fashion and the structure is stabilized by $\pi-\pi$ stacking between the outlying pyridine rings of inversion-related structures. The centroid to centroid distances between these stacked rings $=3.6960$ ( 8 ) $\AA$ (see Fig. 2).

## S2. Experimental

Under oxygen atmosphere: 2,3-pyridinedicarboxylic acid ( $1.000 \mathrm{~g}, 5.982 \mathrm{mmol}$ ) was added as a solid in one portion to a suspension of 2,6-diaminopyridine ( $0.3092 \mathrm{~g}, 2.833 \mathrm{mmol}$ ) in pyridine $(10 \mathrm{ml})$ and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 40 min . Triphenylphosphite ( 10 ml ) was added dropwise over 10 minutes after which the temperature was increased to $90-100{ }^{\circ} \mathrm{C}$ and stirred for a further 24 h . On cooling the precipitate was filtered, washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and then $\mathrm{MeOH}(50 \mathrm{ml})$. The precipitate was recrystallized in chloroform to obtain colourless crystals after five days.

## S3. Refinement

The aromatic H atoms were placed in geometrically idealized positions at $\mathrm{C}-\mathrm{H}=0.93 \AA$, respectively and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak is located $0.67 \AA$ from C 5 and the deepest hole is situated $1.26 \AA$ from C1


## Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the $50 \%$ probability level. Unlabelled atoms are related to their labelled counterparts by a crystallographic 2-fold rotation about $b$.


Figure 2
Packing and illustration of $\pi-\pi$ stacking in the crystal.
6,6'-(Pyridine-2,6-diyl)bis(pyrrolo[3,4-b]pyridine-5,7-dione)

## Crystal data

$\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{4}$
$M_{r}=371.31$
Monoclinic, $C 2 / c$
$a=14.539$ (1) $\AA$
$b=7.391$ (1) $\AA$
$c=15.686$ (1) $\AA$
$\beta=108.752$ (2) ${ }^{\circ}$
$V=1596.1$ (3) $\AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=760 \\
& D_{\mathrm{x}}=1.545 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 6738 \text { reflections } \\
& \theta=2.7-28.3^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Cuboid, colourless } \\
& 0.34 \times 0.29 \times 0.27 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker X8 APEXII 4K KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega$ and $\varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.681, T_{\max }=0.746$

$$
\begin{aligned}
& 12803 \text { measured reflections } \\
& 1920 \text { independent reflections } \\
& 1717 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.024 \\
& \theta_{\max }=28^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-19 \rightarrow 15 \\
& k=-9 \rightarrow 9 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.091$
$S=1.06$
1920 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0432 P)^{2}+1.2599 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$

## Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of $30 \mathrm{~s} /$ frame. A total of 1758 frames were collected with a frame width of $0.5^{\circ}$ covering up to $\theta=28.00^{\circ}$ with $99.3 \%$ completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $-0.05122(6)$ | $0.18475(11)$ | $0.00789(5)$ | $0.0226(2)$ |
| O2 | $0.22325(6)$ | $0.31769(14)$ | $0.24267(6)$ | $0.0327(2)$ |
| N1 | 0 | $0.22247(19)$ | 0.25 | $0.0206(3)$ |
| N2 | $0.07684(7)$ | $0.22769(13)$ | $0.13958(6)$ | $0.0209(2)$ |
| N3 | $0.07688(7)$ | $0.39842(13)$ | $-0.07379(6)$ | $0.0212(2)$ |
| C7 | $0.17897(8)$ | $0.39008(15)$ | $0.08242(7)$ | $0.0210(2)$ |
| C4 | $0.02795(8)$ | $0.24566(15)$ | $0.04720(7)$ | $0.0186(2)$ |
| C10 | $0.15034(8)$ | $0.48687(16)$ | $-0.09009(8)$ | $0.0231(2)$ |
| H10 | 0.1419 | 0.5224 | -0.149 | $0.028^{*}$ |
| C6 | $0.16835(8)$ | $0.31349(16)$ | $0.16665(8)$ | $0.0232(2)$ |
| C5 | $0.09539(8)$ | $0.35189(15)$ | $0.01192(7)$ | $0.0184(2)$ |
| C8 | $0.25407(8)$ | $0.48175(16)$ | $0.06507(8)$ | $0.0249(3)$ |
| H8 | 0.3115 | 0.5102 | 0.1104 | $0.03 *$ |
| C9 | $0.23809(8)$ | $0.52873(16)$ | $-0.02460(8)$ | $0.0246(3)$ |


| H9 | 0.2863 | 0.5884 | -0.0407 | $0.029^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| C3 | $0.03783(8)$ | $0.12612(16)$ | $0.19763(7)$ | $0.0205(2)$ |
| C2 | $0.04021(8)$ | $-0.06106(16)$ | $0.19451(7)$ | $0.0228(2)$ |
| H2 | 0.0678 | -0.1208 | 0.1565 | $0.027^{*}$ |
| C1 | 0 | $-0.1562(2)$ | 0.25 | $0.0237(3)$ |
| H1 | 0 | -0.282 | 0.25 | $0.028^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0175(4)$ | $0.0269(4)$ | $0.0224(4)$ | $-0.0041(3)$ | $0.0052(3)$ | $-0.0019(3)$ |
| O2 | $0.0241(5)$ | $0.0474(6)$ | $0.0219(4)$ | $-0.0071(4)$ | $0.0010(4)$ | $-0.0015(4)$ |
| N1 | $0.0173(6)$ | $0.0254(7)$ | $0.0177(6)$ | 0 | $0.0037(5)$ | 0 |
| N2 | $0.0179(5)$ | $0.0265(5)$ | $0.0180(4)$ | $-0.0026(4)$ | $0.0053(4)$ | $-0.0012(4)$ |
| N3 | $0.0210(5)$ | $0.0210(5)$ | $0.0226(5)$ | $0.0000(4)$ | $0.0084(4)$ | $-0.0002(4)$ |
| C7 | $0.0184(5)$ | $0.0217(5)$ | $0.0223(5)$ | $0.0000(4)$ | $0.0059(4)$ | $-0.0032(4)$ |
| C4 | $0.0182(5)$ | $0.0193(5)$ | $0.0187(5)$ | $0.0010(4)$ | $0.0064(4)$ | $-0.0017(4)$ |
| C10 | $0.0250(6)$ | $0.0208(5)$ | $0.0262(5)$ | $0.0007(4)$ | $0.0120(5)$ | $0.0008(4)$ |
| C6 | $0.0189(5)$ | $0.0268(6)$ | $0.0230(5)$ | $-0.0019(4)$ | $0.0053(4)$ | $-0.0033(4)$ |
| C5 | $0.0162(5)$ | $0.0176(5)$ | $0.0221(5)$ | $0.0005(4)$ | $0.0070(4)$ | $-0.0027(4)$ |
| C8 | $0.0177(5)$ | $0.0251(6)$ | $0.0306(6)$ | $-0.0027(4)$ | $0.0062(5)$ | $-0.0037(5)$ |
| C9 | $0.0214(5)$ | $0.0206(5)$ | $0.0352(6)$ | $-0.0021(4)$ | $0.0141(5)$ | $-0.0011(5)$ |
| C3 | $0.0168(5)$ | $0.0271(6)$ | $0.0162(5)$ | $-0.0012(4)$ | $0.0033(4)$ | $-0.0001(4)$ |
| C2 | $0.0227(5)$ | $0.0272(6)$ | $0.0168(5)$ | $0.0012(4)$ | $0.0043(4)$ | $-0.0023(4)$ |
| C1 | $0.0273(8)$ | $0.0232(8)$ | $0.0179(7)$ | 0 | $0.0036(6)$ | 0 |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| O1-C4 | 1.2047 (13) | C4-C5 | 1.4944 (15) |
| :---: | :---: | :---: | :---: |
| O2-C6 | 1.2033 (14) | C10-C9 | 1.3915 (17) |
| N1-C3 | 1.3322 (13) | C10-H10 | 0.93 |
| N1-C3 ${ }^{\text {i }}$ | 1.3322 (13) | C8-C9 | 1.3938 (17) |
| N2-C4 | 1.4001 (14) | C8-H8 | 0.93 |
| N2-C6 | 1.4105 (14) | C9-H9 | 0.93 |
| N2-C3 | 1.4306 (14) | C3-C2 | 1.3851 (17) |
| N3-C5 | 1.3286 (14) | C2-C1 | 1.3860 (14) |
| N3-C10 | 1.3450 (15) | C2-H2 | 0.93 |
| C7-C5 | 1.3840 (15) | $\mathrm{C} 1-\mathrm{C} 2^{\text {i }}$ | 1.3860 (14) |
| C7-C8 | 1.3843 (16) | C1-H1 | 0.93 |
| C7-C6 | 1.4904 (16) |  |  |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 3{ }^{\text {i }}$ | 115.37 (14) | N3-C5-C4 | 124.55 (10) |
| C4-N2-C6 | 112.63 (9) | C7-C5-C4 | 108.86 (9) |
| C4-N2-C3 | 122.37 (9) | C7-C8-C9 | 115.73 (11) |
| C6-N2-C3 | 124.95 (9) | C7-C8-H8 | 122.1 |
| C5-N3-C10 | 113.78 (10) | C9-C8-H8 | 122.1 |
| C5-C7-C8 | 119.22 (10) | C10-C9-C8 | 120.36 (11) |
| C5-C7-C6 | 108.44 (10) | C10-C9-H9 | 119.8 |


| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$ | $132.32(10)$ |
| :--- | :--- |
| $\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 2$ | $125.30(10)$ |
| $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$ | $129.75(10)$ |
| $\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$ | $104.95(9)$ |
| $\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 9$ | $124.28(11)$ |
| $\mathrm{N} 3-\mathrm{C} 10-\mathrm{H} 10$ | 117.9 |
| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$ | 117.9 |
| $\mathrm{O} 2-\mathrm{C} 6-\mathrm{N} 2$ | $124.82(11)$ |
| $\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7$ | $130.09(11)$ |
| $\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$ | $105.09(9)$ |
| $\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 7$ | $126.59(10)$ |


| $\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$ | 119.8 |
| :--- | :--- |
| $\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 2$ | $125.15(11)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$ | $116.02(10)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$ | $118.82(10)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$ | $117.65(11)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$ | 121.2 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 121.2 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$ | $119.04(16)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 120.5 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 120.5 |

Symmetry code: (i) $-x, y,-z+1 / 2$.

