Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Bis[2,4-dichloro-6-(ethyliminomethyl)-phenolato- $\left.\kappa^{2} N, O\right]$ nickel(II)

Qiu Ping Huang, Shu Hua Zhang,* Jing Jing Guo, Chao Feng and Fu Shun Tang*

Key Laboratory of Non-ferrous Metal Materials and Processing Technology, Ministry of Education, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
Correspondence e-mail: zsh720108@163.com, 387810573@qq.com
Received 10 October 2011; accepted 19 October 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.031 ; w R$ factor $=0.055$; data-to-parameter ratio $=13.6$.

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{NO}\right)_{2}\right]$, the $\mathrm{Ni}^{\text {II }}$ ion lies on an inversion centre and is coordinated in a slightly distorted square-planar geometry by an N and an O atom from two symmetry-related bidentate 2,4-dichloro-6-(ethyliminomethyl)phenolate ligands. In the crystal structure, there are short $\mathrm{Cl} \cdots \mathrm{Cl}$ distances of 3.506 (1) and 3.350 (1) \AA.

Related literature

For halogen-halogen interactions in supramolecular chemistry and crystal engineering, see: Cohen et al. (1964); Desiraju (1989); Xiao \& Zhang (2008); Aakeröy et al. (2011).

Experimental

Crystal data
[$\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{NO}\right)_{2}$]
$M_{r}=492.84$
Monoclinic, $P 2_{\mathrm{a}} / \mathrm{c}$
$a=7.5004$ (6) A
$b=9.3155$ (7) A
$c=14.1498$ (12) \AA
$\beta=103.841(1)^{\circ}$

Data collection

Bruker SMART CCD

 diffractometerAbsorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.612, T_{\text {max }}=0.667$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.055$
$S=0.97$
1685 reflections

$$
\begin{aligned}
& V=959.94(13) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.58 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.32 \times 0.28 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

4890 measured reflections 1685 independent reflections 1267 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

$$
\begin{aligned}
& 124 \text { parameters } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& \Delta \rho_{\max }=0.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was financially supported by the National Natural Science Foundation of China (grant No. 21161006) and by the Startup Foundation of Guilin University of Technology (to SHZ).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5353).

References

Aakeröy, C. B., Sinha, A. S., Chopade, P. D. \& Desper, J. (2011). Dalton Trans. 41, doi:10.1039/C1DT10911A.
Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
Cohen, M. D., Schmidt, G. M. J. \& Sonntag, F. I. (1964). J. Chem. Soc. pp. 20002013.

Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xiao, Y. \& Zhang, M. (2008). Acta Cryst. E64, m1231.

supporting information

Acta Cryst. (2011). E67, m1611 [doi:10.1107/S160053681104325X]

Bis[2,4-dichloro-6-(ethyliminomethyl)phenolato- $\kappa^{2} N, O$]nickel(II) Qiu Ping Huang, Shu Hua Zhang, Jing Jing Guo, Chao Feng and Fu Shun Tang

S1. Comment

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of chloro substituents on aromatic systems have aroused interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964; Desiraju, 1989; Xiao \& Zhang, 2008; Aakeröy et al. 2011). The title compound, (I), contains a deprotonated 2,4-dichloro-2-ethyliminomethyl-phenol ligand, with two Cl atoms accesible for $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions.
In (I), the $\mathrm{Ni}^{\mathrm{II}}$ ion lies on an inversion center and is coordinated by two O and two N atoms from two symmetry related bidentate 2,4 -diChloro- N-ethylsalicylaldimino ligands, forming a slightly distorted square-planar geometry (Fig. 1). In the crystal, there are short $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts $\left(\mathrm{Cl1} \cdots \mathrm{Cl}^{\mathrm{i}} 3.506\right.$ (1) $\AA, \mathrm{Cl} 2 \cdots \mathrm{Cl} 2^{\mathrm{ii}} 3.350$ (1) \AA symmetry code:(i) $1-x, 1 / 2+y$, $1 / 2-z$, (ii) $-x,-y,-z$) (Fig. 2).

S2. Experimental

A solution of $(0.191 \mathrm{~g}, 1.0 \mathrm{mmol}) 3,5$-dichloro-2-hydroxy-benzaldehyde and $(0.044 \mathrm{~g}, 1 \mathrm{mmol})$ ethylamine and $(0.040 \mathrm{~g}$, 1 mmol) sodium hydroxide in 20 ml absolute methanol was added slowly a solution of nickel nitrate hexahydrate (0.145 $\mathrm{g}, 0.5 \mathrm{mmol}$) in methanol. The mixture was stirred for 3 h at room temperature to give a green solution which was filtered and the filtrate was left to stand at room temperature. Green block-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation. yield: 78.2\% (Based on Nickel). Elemental analysis calculated: C 43.83, H 3.75, N 5.68\%; Found: C 43.79, H,3.78, N 5.71\%.

S3. Refinement

H atoms were positioned geometrically and refined with a riding model, with $\mathrm{C}-\mathrm{H}$ distances $=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}\left(\mathrm{C}_{\text {methyl }}\right)$.

Figure 1
The molecular structure of (I), showing 30\% probability displacement ellipsoids. H atoms are omitted.

Figure 2
Part of the crystal structure showing short $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts as dashed lines.

Bis[2,4-dichloro-6-(ethyliminomethyl) phenolato- $\kappa^{2} N, O$]nickel(II)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{NO}\right)_{2}\right]$
$M_{r}=492.84$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.5004$ (6) \AA
$b=9.3155$ (7) \AA
$c=14.1498(12) \AA$
$\beta=103.841(1)^{\circ}$
$V=959.94$ (13) \AA^{3}
$Z=2$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.612, T_{\text {max }}=0.667$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.055$
$S=0.97$
1685 reflections
124 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=500$
$D_{\mathrm{x}}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1685 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=1.58 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.32 \times 0.28 \times 0.26 \mathrm{~mm}$

4890 measured reflections
1685 independent reflections
1267 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 7$
$k=-11 \rightarrow 8$
$l=-16 \rightarrow 16$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0012 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.6897(3)$	$0.3911(3)$	$0.06190(18)$	$0.0321(6)$
C2	$0.5743(3)$	$0.3976(3)$	$0.12798(17)$	$0.0344(7)$
C3	$0.4233(3)$	$0.3110(3)$	$0.11860(18)$	$0.0383(7)$
H3A	0.3502	0.3176	0.1631	0.046^{*}

C4	$0.3801(3)$	$0.2139(3)$	$0.0429(2)$	$0.0384(7)$
C5	$0.4853(3)$	$0.2045(3)$	$-0.02361(18)$	$0.0393(7)$
H5A	0.4546	0.1393	-0.0747	0.047^{*}
C6	$0.6402(3)$	$0.2937(3)$	$-0.01460(18)$	$0.0324(6)$
C11	$0.62781(9)$	$0.51726(8)$	$0.22421(4)$	$0.0454(2)$
C12	$0.18645(10)$	$0.10465(8)$	$0.03097(5)$	$0.0538(2)$
Ni1	1.0000	0.5000	0.0000	$0.03205(15)$
O1	$0.8324(2)$	$0.47509(19)$	$0.07451(12)$	$0.0393(5)$
C7	$0.7422(3)$	$0.2847(3)$	$-0.08801(18)$	$0.0374(7)$
H7A	0.7023	0.2171	-0.1369	0.045^{*}
C8	$0.9509(4)$	$0.3268(3)$	$-0.18214(19)$	$0.0465(8)$
H8A	0.9135	0.2303	-0.2040	0.056^{*}
H8B	1.0840	0.3302	-0.1659	0.056^{*}
C9	$0.8770(4)$	$0.4311(4)$	$-0.26300(19)$	$0.0654(10)$
H9A	0.9229	0.4067	-0.3187	0.098^{*}
H9B	0.9155	0.5265	-0.2419	0.098^{*}
H9C	0.7453	0.4266	-0.2800	0.098^{*}
N1	$0.8836(3)$	$0.3602(2)$	$-0.09375(14)$	$0.0337(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0305(15)$	$0.0322(17)$	$0.0333(15)$	$0.0026(13)$	$0.0070(13)$	$0.0053(13)$
C2	$0.0343(16)$	$0.0373(17)$	$0.0315(15)$	$0.0041(13)$	$0.0078(13)$	$0.0053(13)$
C3	$0.0341(16)$	$0.0456(19)$	$0.0376(16)$	$0.0033(14)$	$0.0132(14)$	$0.0094(15)$
C4	$0.0303(16)$	$0.0388(17)$	$0.0449(17)$	$-0.0045(14)$	$0.0068(14)$	$0.0099(15)$
C5	$0.0387(16)$	$0.0399(18)$	$0.0376(17)$	$-0.0064(14)$	$0.0055(15)$	$-0.0018(13)$
C6	$0.0329(15)$	$0.0315(16)$	$0.0332(15)$	$-0.0005(13)$	$0.0084(13)$	$0.0012(13)$
C11	$0.0483(4)$	$0.0536(5)$	$0.0372(4)$	$-0.0018(4)$	$0.0162(4)$	$-0.0060(4)$
C12	$0.0394(4)$	$0.0634(6)$	$0.0583(5)$	$-0.0150(4)$	$0.0110(4)$	$0.0083(4)$
Ni1	$0.0334(3)$	$0.0326(3)$	$0.0319(3)$	$-0.0019(2)$	$0.0112(2)$	$-0.0032(2)$
O1	$0.0403(11)$	$0.0445(13)$	$0.0372(10)$	$-0.0116(10)$	$0.0173(9)$	$-0.0094(9)$
C7	$0.0427(17)$	$0.0348(17)$	$0.0341(16)$	$-0.0010(14)$	$0.0077(14)$	$-0.0038(13)$
C8	$0.0481(18)$	$0.051(2)$	$0.0465(18)$	$-0.0117(15)$	$0.0238(15)$	$-0.0196(16)$
C9	$0.055(2)$	$0.105(3)$	$0.0394(18)$	$-0.013(2)$	$0.0178(17)$	$0.002(2)$
N1	$0.0374(13)$	$0.0342(13)$	$0.0326(12)$	$-0.0020(11)$	$0.0143(11)$	$-0.0027(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.303(3)$	$\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.8382(16)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.393(3)$	$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.914(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.419(3)$	$\mathrm{Ni} 1-\mathrm{N} 1$	$1.914(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.372(3)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.291(3)$
$\mathrm{C} 2-\mathrm{Cl} 1$	$1.731(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.380(3)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.489(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300	$\mathrm{C} 8-\mathrm{C} 9$	$1.502(4)$
$\mathrm{C} 4 — \mathrm{C} 5$	$1.368(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{Cl} 2$	$1.749(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700

C5-C6	1.410 (3)	C9-H9A	0.9600
C5-H5A	0.9300	C9-H9B	0.9600
C6-C7	1.432 (3)	C9-H9C	0.9600
Ni1-O1	1.8382 (16)		
O1-C1-C6	123.7 (2)	O1- ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{N} 1$	87.10 (8)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.6 (2)	N1- ${ }^{\text {i }}$ - ${ }^{\text {11- }}$ - 1	180.0
C6- $\mathrm{C} 1-\mathrm{C} 2$	116.7 (2)	C1-O1-Ni1	130.49 (17)
C3-C2-C1	122.1 (3)	N1-C7-C6	127.1 (3)
C3-C2-Cl1	119.1 (2)	N1-C7-H7A	116.5
C1-C2-Cl1	118.9 (2)	C6-C7-H7A	116.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.7 (3)	N1-C8-C9	111.6 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1	N1-C8-H8A	109.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1	C9-C8-H8A	109.3
C5-C4-C3	120.6 (2)	N1-C8-H8B	109.3
C5-C4-Cl2	119.9 (2)	C9-C8-H8B	109.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 2$	119.4 (2)	H8A-C8-H8B	108.0
C4-C5-C6	119.9 (3)	C8-C9-H9A	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1	C8-C9-H9B	109.5
C6-C5-H5A	120.1	H9A-C9-H9B	109.5
C1-C6-C5	121.0 (2)	C8-C9-H9C	109.5
C1-C6-C7	120.8 (2)	H9A-C9-H9C	109.5
C5-C6-C7	118.2 (2)	H9B-C9-H9C	109.5
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{Ol}^{\text {i }}$	180.00 (13)	C7-N1-C8	112.8 (2)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{1}$	87.10 (8)	C7-N1-Nil	124.90 (19)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	92.90 (8)	C8-N1-Ni1	122.30 (17)
O1-Ni1-N1	92.90 (8)		

Symmetry code: (i) $-x+2,-y+1,-z$.

