

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,5'-Selenobis(2-hydroxybenzaldehyde)

Ming-Hu Wu^a* and Wen-Ju Liu^b

^aSchool of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, and ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: minghuwu@hotmail.com

Received 8 October 2011; accepted 12 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.122; data-to-parameter ratio = 14.8.

In the title molecule, $C_{14}H_{10}O_4Se$, the dihedral angle between the two benzene rings is 74.6 (1)°. Both hydroxybenzaldehyde groups form intramolecular $O-H\cdots O$ hydrogen bonds. In the crystal, pairs of molecules are linked by pairs of weak C- $H\cdots \pi$ (arene) interactions, forming centrosymmetric dimers. In addition, molecules are linked by $\pi-\pi$ stacking interactions, with a centroid–centroid distance of 3.785 (2) Å, forming chains along the *c* axis.

Related literature

For background to organo-selenium compounds, see: Mukherjee *et al.* (2006); Phadnis *et al.* (2005); Braga *et al.* (2005); Mugesh *et al.* (2001).

Experimental

Crystal data $C_{14}H_{10}O_4Se$ $M_r = 321.18$ Monoclinic, $P2_1/n$ a = 7.7652 (5) Å

b = 11.9129 (8) Å

c = 13.3353 (9) Å β = 90.304 (1)° V = 1233.58 (14) Å³ Z = 4 Mo K\alpha radiation $0.30 \times 0.20 \times 0.20$ mm

7045 measured reflections 2550 independent reflections 2041 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.100$

 $\mu = 3.05 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.461, T_{\max} = 0.581$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 172 parameters $wR(F^2) = 0.122$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.64$ e Å $^{-3}$ 2550 reflections $\Delta \rho_{min} = -0.54$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C8-C13 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots O2$	0.82	1.90	2.621 (4)	146
$03 - H3A \cdots O4$	0.82	1.95	2.660 (4)	145
$C10 - H10 \cdots Cg^{i}$	0.93	2.89	3.763 (3)	158

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors gratefully acknowledge financial support of this work as a project of Guangdong Provincial Department of Education.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5352).

References

Braga, A. L., Lüdtke, D. S., Paixao, M. W., Alberto, E. E., Stefabi, H. A. & Juliano, L. (2005). *Eur. J. Org. Chem.* 20, 4260–4264.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Mugesh, G., Du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125-2180.

- Mukherjee, C., Tiwari, P. & Misra, A. K. (2006). Tetrahedron Lett. 47, 441-445.
- Phadnis, P. P. & Mugesh, G. (2005). Org. Biomol. Chem. 3, 2476–2481.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2983 [doi:10.1107/S1600536811042097]

5,5'-Selenobis(2-hydroxybenzaldehyde)

Ming-Hu Wu and Wen-Ju Liu

S1. Comment

The organo-selenium nucleus is one of the most abundant structural nucleus found in natural products and biologically active molecules (*e.g.*, seleno-carbohydrates, selenoamino acids, and seleno-peptides)(Mukherjee *et al.*, 2006; Phadnis *et al.*, 2005; Braga *et al.*, 2005). Moreover, organoselenium compounds have emerged as an exceptional class of structures that exemplify a role in biochemical processes, serving as important therapeutic compounds ranging from antiviral and anticancer agents to a variety of situations where free radicals are involved (Mugesh *et al.*, 2001). We are currently studing the synthesis of a new series of organoselenium compounds, such as selanes, diselenides and macrocyclic Schiff bases containing selenium atoms. Reported herein are the synthesis and X-ray structure of the title compound.

In the molecule (Fig. 1), the dihedral angle between the two benzene rings is 74.6 (1)°. Two intramolecular O—H···O hydrogen bonds are present in the molecule. The Se1—C1 and Se1—C8 bond lengths are the same within experimental error. The Se1—C1—C6—C5 and Se1—C8—C13—C12 torsional angles of -174.5 (2)° and -174.6 (2)°, respectively, indicate a slight deviation of the selenium atoms from the mean planes of the benzene rings.

In the crystal, pairs of molecules are linked by weak C—H··· π (arene) interactions (see Table 1, Fig. 2). In addition, molecules are linked by Cg1··· $Cg2^{ii}$ (symmetry code (ii): -1/2+x, 1/2-y, 1/2+z) and Cg2··· $Cg1^{iii}$ (symmetry code (iii): 1/2+x, 1/2-y, -1/2+z) π - π stacking interactions with a centroid-centroid distance of 3.785 (2)Å to form one-dimensional chains along the c axis (Fig. 3). Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings.

S2. Experimental

A mixture of salicylaldehyde (87.93 g, 0.72 mol), selenium dioxide (26.63 g, 0.24 mol)and concentrated hydrochloric acid (132 ml) was stirred for 0.5 h at room temperature. Then, the mixture was further stirred for 50 h at 353 K. The resulting reddish brown solid was filtered, washed with water and ethanol. The obtained yellowish solid was recrystallized with ethyl acetate and etanol (v:v=5:1) to give yellowish crystals of the title compound in yield 20.8%, which are suitable for X-ray analysis.

S3. Refinement

All H atoms were placed in calculated positions (C—H = 0.93 Å, O—H = 0.82Å) and included in a riding-model approximation, with U_{iso} (H) = 1.2 U_{iso} (C) or 1.5 U_{iso} (O)

Figure 1

The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal packing showing the hydrogen bonding interactions as thin solid lines. H atoms not involved in hydrogen bonds have been omitted.

Figure 3

Part of the crystal structure showing π - π stacking interactions between benzene rings as thin solid lines.

5,5'-Selenobis(2-hydroxybenzaldehyde)

Crystal data C₁₄H₁₀O₄Se $M_r = 321.18$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.7652 (5) Å b = 11.9129 (8) Å c = 13.3353 (9) Å $\beta = 90.304$ (1)° V = 1233.58 (14) Å³ Z = 4

F(000) = 640 $D_x = 1.729 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3183 reflections $\theta = 2.3-27.8^{\circ}$ $\mu = 3.05 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$ Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.461, T_{\max} = 0.581$ <i>Refinement</i>	7045 measured reflections 2550 independent reflections 2041 reflections with $I > 2\sigma(I)$ $R_{int} = 0.100$ $\theta_{max} = 26.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 14$ $l = -16 \rightarrow 16$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$w R(F^2) = 0.122$	neighbouring sites
S = 1.08	H-atom parameters constrained
2550 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.64 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.54 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Se1	0.10731 (4)	0.81234 (3)	0.62308 (2)	0.04535 (18)
C8	0.0015 (4)	0.7027 (3)	0.7079 (2)	0.0347 (7)
C1	0.2434 (4)	0.7156 (3)	0.5393 (2)	0.0334 (6)
C5	0.5117 (4)	0.6774 (2)	0.4565 (2)	0.0340 (7)
C6	0.4134 (4)	0.7406 (3)	0.5238 (2)	0.0356 (7)
H6	0.4640	0.8000	0.5583	0.043*
O1	0.5229 (3)	0.5247 (2)	0.33974 (17)	0.0514 (6)
H1	0.6219	0.5483	0.3355	0.077*
C13	-0.1686 (4)	0.7131 (3)	0.7323 (2)	0.0369 (7)
H13	-0.2337	0.7699	0.7028	0.044*
C3	0.2627 (4)	0.5615 (3)	0.4229 (2)	0.0412 (7)
Н3	0.2116	0.5011	0.3901	0.049*
O2	0.7856 (3)	0.6539 (2)	0.38446 (19)	0.0577 (7)
O4	-0.5065 (3)	0.5951 (2)	0.8838 (2)	0.0593 (7)
C4	0.4354 (4)	0.5874 (3)	0.4060 (2)	0.0350 (7)
C12	-0.2473 (4)	0.6400 (3)	0.8007 (2)	0.0366 (7)
C2	0.1688 (4)	0.6257 (3)	0.4884 (2)	0.0389 (7)
H2	0.0534	0.6089	0.4990	0.047*
C7	0.6922 (4)	0.7058 (3)	0.4396 (3)	0.0443 (8)
H7	0.7378	0.7674	0.4733	0.053*
C10	0.0214 (4)	0.5417 (3)	0.8167 (3)	0.0504 (9)
H10	0.0866	0.4834	0.8436	0.060*
C9	0.0956 (4)	0.6158 (3)	0.7512 (3)	0.0463 (8)
Н9	0.2115	0.6077	0.7354	0.056*
C11	-0.1501 (4)	0.5530 (3)	0.8433 (3)	0.0456 (8)

supporting information

O3	-0.2165 (3)	0.4793 (2)	0.9087 (2)	0.0676 (8)	
H3A	-0.3182	0.4942	0.9183	0.101*	
C14	-0.4287 (4)	0.6536 (3)	0.8254 (3)	0.0490 (8)	
H14	-0.4889	0.7113	0.7941	0.059*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Se1	0.0460 (2)	0.0397 (2)	0.0505 (3)	0.00471 (13)	0.01921 (17)	-0.00162 (15)
C8	0.0277 (15)	0.0413 (18)	0.0351 (15)	0.0014 (12)	0.0057 (12)	-0.0033 (13)
C1	0.0240 (14)	0.0430 (16)	0.0332 (15)	0.0034 (12)	0.0040 (12)	-0.0008 (14)
C5	0.0275 (15)	0.0406 (17)	0.0339 (14)	-0.0006 (12)	0.0046 (12)	0.0039 (13)
C6	0.0374 (16)	0.0373 (17)	0.0320 (15)	-0.0022 (13)	0.0003 (13)	-0.0048 (14)
01	0.0497 (13)	0.0560 (15)	0.0485 (13)	0.0027 (11)	0.0165 (11)	-0.0142 (12)
C13	0.0354 (16)	0.0412 (17)	0.0341 (15)	0.0065 (13)	0.0019 (13)	-0.0070 (14)
C3	0.0424 (17)	0.0436 (18)	0.0376 (16)	-0.0076 (14)	0.0034 (14)	-0.0079 (15)
O2	0.0352 (14)	0.0726 (17)	0.0653 (16)	0.0044 (12)	0.0168 (12)	-0.0026 (15)
O4	0.0416 (14)	0.0705 (18)	0.0661 (16)	-0.0140 (12)	0.0206 (12)	-0.0110 (14)
C4	0.0287 (14)	0.0457 (18)	0.0306 (14)	0.0029 (13)	0.0023 (12)	0.0015 (14)
C12	0.0291 (15)	0.0434 (18)	0.0373 (16)	-0.0036 (13)	0.0032 (13)	-0.0113 (14)
C2	0.0253 (15)	0.050 (2)	0.0410 (17)	-0.0050 (13)	0.0053 (13)	0.0005 (15)
C7	0.0268 (16)	0.058 (2)	0.0483 (18)	-0.0035 (14)	0.0002 (14)	0.0020 (17)
C10	0.0308 (16)	0.049 (2)	0.072 (2)	0.0094 (15)	0.0054 (16)	0.0137 (19)
C9	0.0317 (16)	0.050 (2)	0.058 (2)	0.0061 (14)	0.0081 (15)	-0.0037 (17)
C11	0.0453 (18)	0.0418 (19)	0.0496 (18)	-0.0030 (15)	0.0058 (15)	-0.0008 (17)
O3	0.0511 (15)	0.0664 (18)	0.086 (2)	-0.0042 (13)	0.0179 (14)	0.0289 (16)
C14	0.0383 (19)	0.058 (2)	0.0504 (19)	-0.0010 (16)	0.0074 (16)	-0.0098 (19)

Geometric parameters (Å, °)

Se1—C8	1.916 (3)	C3—C4	1.395 (4)	
Se1—C1	1.925 (3)	С3—Н3	0.9300	
C8—C13	1.368 (4)	O2—C7	1.206 (4)	
С8—С9	1.391 (4)	O4—C14	1.209 (4)	
C1—C6	1.370 (4)	C12—C11	1.401 (5)	
C1—C2	1.392 (4)	C12—C14	1.457 (4)	
C5—C4	1.396 (4)	C2—H2	0.9300	
C5—C6	1.401 (4)	С7—Н7	0.9300	
С5—С7	1.461 (4)	С10—С9	1.370 (5)	
С6—Н6	0.9300	C10—C11	1.386 (5)	
O1—C4	1.344 (4)	C10—H10	0.9300	
01—H1	0.8200	С9—Н9	0.9300	
C13—C12	1.403 (5)	C11—O3	1.343 (4)	
С13—Н13	0.9300	O3—H3A	0.8200	
C3—C2	1.374 (4)	C14—H14	0.9300	
C8—Se1—C1	99 96 (14)	C11_C12_C13	119 1 (3)	
C13—C8—C9	118.3 (3)	C11—C12—C13	120.6 (3)	
	(-)			

C13—C8—Se1	119.7 (2)	C13—C12—C14	120.2 (3)
C9—C8—Se1	121.8 (2)	C3—C2—C1	121.2 (3)
C6—C1—C2	119.5 (3)	С3—С2—Н2	119.4
C6—C1—Se1	119.3 (2)	C1—C2—H2	119.4
C2-C1-Se1	121.0 (2)	O2—C7—C5	123.8 (3)
C4—C5—C6	119.4 (3)	O2—C7—H7	118.1
C4—C5—C7	120.6 (3)	С5—С7—Н7	118.1
C6—C5—C7	120.0 (3)	C9—C10—C11	120.5 (3)
C1—C6—C5	120.5 (3)	С9—С10—Н10	119.7
С1—С6—Н6	119.7	C11—C10—H10	119.7
С5—С6—Н6	119.7	C10—C9—C8	121.5 (3)
C4—O1—H1	109.5	С10—С9—Н9	119.3
C8—C13—C12	121.5 (3)	С8—С9—Н9	119.3
С8—С13—Н13	119.2	O3—C11—C10	118.4 (3)
С12—С13—Н13	119.2	O3—C11—C12	122.6 (3)
C2—C3—C4	119.5 (3)	C10-C11-C12	119.0 (3)
С2—С3—Н3	120.2	С11—О3—НЗА	109.5
С4—С3—Н3	120.2	O4—C14—C12	124.7 (4)
O1—C4—C3	118.2 (3)	O4—C14—H14	117.7
O1—C4—C5	121.9 (3)	C12—C14—H14	117.7
C3—C4—C5	119.9 (3)		
C1—Se1—C8—C13	-138.5 (3)	C8—C13—C12—C14	179.7 (3)
C1—Se1—C8—C9	45.8 (3)	C4—C3—C2—C1	-0.8 (5)
C8—Se1—C1—C6	-131.5 (3)	C6—C1—C2—C3	0.0 (5)
C8—Se1—C1—C2	53.3 (3)	Se1—C1—C2—C3	175.2 (2)
C2-C1-C6-C5	0.8 (5)	C4—C5—C7—O2	-1.6 (5)
Se1—C1—C6—C5	-174.5 (2)	C6—C5—C7—O2	178.4 (3)
C4—C5—C6—C1	-0.9 (5)	C11—C10—C9—C8	-1.3 (6)
C7—C5—C6—C1	179.2 (3)	C13—C8—C9—C10	0.1 (5)
C9—C8—C13—C12	1.3 (5)	Se1-C8-C9-C10	175.9 (3)
Se1-C8-C13-C12	-174.6 (2)	C9—C10—C11—O3	-179.1 (3)
C2-C3-C4-O1	-178.4 (3)	C9—C10—C11—C12	1.1 (6)
C2—C3—C4—C5	0.7 (5)	C13—C12—C11—O3	-179.5 (3)
C6-C5-C4-O1	179.2 (3)	C14—C12—C11—O3	-0.7 (5)
C7—C5—C4—O1	-0.8 (5)	C13—C12—C11—C10	0.2 (5)
C6—C5—C4—C3	0.1 (4)	C14—C12—C11—C10	179.0 (3)
C7—C5—C4—C3	-179.9 (3)	C11—C12—C14—O4	1.6 (5)
C8—C13—C12—C11	-1.4 (5)	C13—C12—C14—O4	-179.5 (3)
<i>Hydrogen-bond geometry (Å, °)</i> Cg is the centroid of the C8-C13 ring.			

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
01—H1…O2	0.82	1.90	2.621 (4)	146

O3-H3A···O4 0.82 1.95 2.660 (4) 145 C10-H10···Cgⁱ 0.93 2.89 3.763 (3) 158

Symmetry code: (i) -x+2, -y+1, -z+1.