Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(2-aminopyridinium) hexachloridoindate(III)

Xu-Dong Jin,* Li-Cai Sun, Hai-Bo Wang and Chun-Hua Ge

College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: jinxudong@yahoo.com

Received 16 September 2011; accepted 19 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.036; wR factor = 0.100; data-to-parameter ratio = 15.8.

The Schiff base (*E*)-4-chloro-2-[(pyridin-2-ylimino)methyl]phenol was reacted with InCl₃·4H₂O, generating the title molecular salt, $(C_5H_7N_2)_3$ [InCl₆]. The octahedral hexachloridoindate(III) anion is located on an inversion centre, and one half of the anion and two crystallographically independent cations form the asymmetric unit. One of the cations is located on a twofold rotation axis and its intra-ring C and N atoms simulate this symmetry by exchanging their positions in statistical disorder. In the crystal, weak N-H···Cl hydrogen bonds and two types of π - π interactions with centroid–centroid separations of 4.047 (3) and 4.202 (3) Å are observed.

Related literature

For the synthesis of 2-aminopyridine and salicylaldehyde Schiff bases, see: Burlova *et al.*(2008).

Experimental

Crystal data (C₅H₇N₂)₃[InCl₆] $M_r = 612.90$ Monoclinic, C2/c a = 18.6491 (17) Å b = 16.2454 (14) Å c = 8.4004 (5) Å $\beta = 112.214$ (1)°

V = 2356.1 (3) Å³ Z = 4Mo K α radiation $\mu = 1.70 \text{ mm}^{-1}$ T = 298 K $0.46 \times 0.43 \times 0.05 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.509, \ T_{\max} = 0.925$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	130 parameters
$wR(F^2) = 0.100$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}$
2053 reflections	$\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$

5734 measured reflections

 $R_{\rm int} = 0.030$

2053 independent reflections

1672 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

In1-Cl1	2.5121 (11)	In1-Cl3	2.5120 (12)
In1-Cl2	2.5406 (11)		. ,

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Cl2 ⁱ	0.86	2.43	3.242	158
$N2-H2A\cdots Cl2^{i}$	0.86	2.58	3.354	150
$N2-H2B\cdots Cl1^{ii}$	0.86	2.75	3.558	157
$N2-H2B\cdots Cl3^{ii}$	0.86	2.82	3.359	122
N3-H3a···Cl3 ⁱⁱⁱ	0.86	2.70	3.549	169
N3-H3a···Cl2 ⁱⁱⁱ	0.86	2.91	3.337	112
$N4-H4A\cdots Cl1$	0.86	2.56	3.358	154

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

This work was financially supported by the Foundation of Liaoning Educational Committee (grant No. 2008T065), the Science and Technology Foundation of Liaoning Province (grant No. 20071027) and the Scientific Research Foundation for Returned Overseas Chinese Scholars (grant No. 2005546).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2354).

References

- Burlova, A. S., Uraeva, A. I. & Ikorskiib, V. N. (2008). Russ. J. Gen. Chem. 7, 1230–1235.
- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2011). E67, m1602 [doi:10.1107/S1600536811043285]

Tris(2-aminopyridinium) hexachloridoindate(III)

Xu-Dong Jin, Li-Cai Sun, Hai-Bo Wang and Chun-Hua Ge

S1. Comment

Instead of an expected formation of a Schiff base indium complex, the reaction of the Schiff base with $InCl_3.4H_2O$ in anhydrous alcohol leads to the title compound (Fig. 1). It could be reasonably explained that the Schiff base molecule decomposed in presence of water when a reactant $InCl_3.4H_2O$ in alcohol was heated at 333 K.

A single-crystal analysis reveals that the asymmetric unit of the complex comprises a half of a hexachloro-indium anion and two 2-amino pyridinium cations. The indium (III) ion is located at the inversion centre (the special position 1/4, 1/4, 1/2 in the space group C2/c) surrounded by six Cl atoms in the octahedral coordination (Table 1, Fig. 2). The three crystallographically independent In—Cl bond lengths [2.5120 (12), 2.5121 (11) and 2.5406 (11) Å] (Table 1, Fig. 2) characterise the coordination. One of pyridinium cations involves the two C atoms (C6 and C9) located at the twofold axis whereas the atoms C8, C7 and N3 are in general position (Fig. 2). However, C7 and N3 (pp = 1/2) are in statistical disorder to simulate the twofold symmetry. The N1—C5 cation is in general position. The pyridinium cations (one in general position and one in a special position - totally three cations per structural unit) balance the charge of InCl₆³. An interplanar angle between two pyridine rings of N1/C1–C5 and N3/C6–C9 is 67.37°. A pair of weak π – π stacking interactions are found between the almost parallel pyridine rings, N1/C1–C5 and its symmetry related moiety (symmetry code: -*x* + 1, *y*, -*z* + 3/2) with the centroid separation of 4.047 (3) Å, perpendicular distance of 3.647 (2) Å and an angle of 9°. In addition, another pair of π – π stacking interactions (with amino groups in staggered arrangement in stacked rings) is observed in the crystal packing between the antiparallel aromatic rings, N3/C6–C9 and its symmetry related ring (symmetry code: -*x* + 1, -*y* + 1, -*z* + 1), with the interplanar spacing of 3.847 (3) Å, slippage of 1.690 Å and the centroid separation of 4.202 (3) Å. In the crystal packing, looking down the *c* axis, a cavity can be seen (Fig. 3).

S2. Experimental

In this work, the Schiff base was prepared according to the similar method (Burlova *et al.*, 2008). A mixture of 5-chlorosalicylaldehyde (0.470 g, 3.0 mmol) and 2-aminopyridine (0.285 g, 3.0 mmol) in 12 ml anhydrous alcohol was stirred at 333 K for 2 h, a yellow Schiff base precipitate was filtered and dried. Then a solution of Schiff base (0.235 g, 1.0 mmol) in 10 ml anhydrous alcohol was added to another solution of InCl₃.4H₂O (0.293 g, 1.0 mmol) in 3 ml of anhydrous alcohol. The mixture was stirred at 333 K for *ca* 2.5 h, concentrated and left to stand at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow solvent evaporation in 10 d.

S3. Refinement

H atoms attached to N atoms were located in a difference Fourier synthesis and allowed to refine with a fixed isotropic displacement parameter of Uiso(H) = 1.2Ueq(N), distance restraint of N—H = 0.86 Å. All other H atoms were constrained to idealized geometries (C—H = 0.98 Å) and were assigned isotropic displacement parameters of Uiso(H) = 1.2Ueq(C).

Figure 1

The chemical reaction scheme.

Figure 2

ORTEP drawing of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are drawn as small spheres of arbitrary radii. The atoms C7/N3 are statistically disordered exchanging location (50:50) to simulate the twofold rotation symmetry.

Figure 3

A view of a packing section of the title compound, stacking along the c axis. Dashed lines indicate intramolecular hydrogen bonds.

Tris(2-aminopyridinium) hexachloridoindate(III)

Crystal data	
$(C_{5}H_{7}N_{2})_{3}[InCl_{6}]$	F(000) = 1216
$M_r = 612.90$	$D_{\rm x} = 1.728 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Melting point: 465.0 K
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 18.6491 (17) Å	Cell parameters from 3465 reflections
b = 16.2454 (14) Å	$\theta = 2.5 - 28.3^{\circ}$
c = 8.4004 (5) Å	$\mu = 1.70 \text{ mm}^{-1}$
$\beta = 112.214 \ (1)^{\circ}$	T = 298 K
V = 2356.1 (3) Å ³	Plate, yellow
Z = 4	$0.46 \times 0.43 \times 0.05 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.509, T_{\max} = 0.925$
Graphite monochromator	5734 measured reflections
φ and ω scans	2053 independent reflections

1672 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$	$h = -22 \rightarrow 14$ $k = -19 \rightarrow 19$
$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 3.5^\circ$	$l = -9 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
S = 1.08	H-atom parameters constrained
2053 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 6.8482P]$
130 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.79 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
In1	0.2500	0.2500	0.5000	0.03637 (17)	
C11	0.37640 (6)	0.17532 (7)	0.57322 (15)	0.0487 (3)	
C12	0.19049 (7)	0.15088 (7)	0.25064 (15)	0.0490 (3)	
C13	0.20941 (7)	0.15470 (7)	0.68614 (16)	0.0529 (3)	
N1	0.3380 (2)	0.8489 (2)	0.6354 (5)	0.0473 (9)	
H1	0.3042	0.8353	0.6775	0.057*	
N2	0.3012 (3)	0.9833 (3)	0.6428 (7)	0.0728 (14)	
H2A	0.2669	0.9670	0.6813	0.087*	
H2B	0.3061	1.0349	0.6263	0.087*	
N3	0.4384 (3)	0.4542 (3)	0.6425 (7)	0.0632 (13)	0.50
Н3	0.3987	0.4285	0.5728	0.076*	0.50
N4	0.5000	0.3304 (4)	0.7500	0.083 (2)	
H4A	0.4605	0.3039	0.6810	0.099*	
C1	0.3466 (3)	0.9288 (3)	0.6088 (6)	0.0471 (11)	
C2	0.4025 (3)	0.9494 (3)	0.5426 (7)	0.0593 (13)	
H2	0.4109	1.0042	0.5228	0.071*	
C3	0.4442 (3)	0.8897 (4)	0.5076 (7)	0.0645 (15)	
НЗА	0.4812	0.9037	0.4630	0.077*	
C4	0.4331 (3)	0.8075 (4)	0.5366 (7)	0.0653 (15)	
H4	0.4623	0.7665	0.5126	0.078*	
C5	0.3792 (3)	0.7888 (3)	0.6000 (7)	0.0581 (13)	
Н5	0.3702	0.7341	0.6195	0.070*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C6	0.5000	0.4118 (4)	0.7500	0.0477 (16)	
C7	0.4384 (3)	0.4542 (3)	0.6425 (7)	0.0632 (13)	0.50
H7	0.3954	0.4264	0.5671	0.076*	0.50
C8	0.4397 (5)	0.5396 (5)	0.6454 (11)	0.103 (3)	
H8	0.3972	0.5688	0.5719	0.123*	
C9	0.5000	0.5795 (7)	0.7500	0.117 (4)	
H9	0.5000	0.6368	0.7500	0.140*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.0320 (3)	0.0386 (3)	0.0448 (3)	0.00200 (17)	0.02156 (19)	-0.00423 (18)
Cl1	0.0379 (6)	0.0538 (7)	0.0584 (7)	0.0112 (5)	0.0227 (5)	-0.0016 (5)
Cl2	0.0460 (6)	0.0546 (7)	0.0533 (7)	-0.0071 (5)	0.0265 (5)	-0.0144 (5)
Cl3	0.0598 (7)	0.0535 (7)	0.0597 (7)	0.0051 (6)	0.0388 (6)	0.0072 (5)
N1	0.055 (2)	0.049 (2)	0.052 (2)	0.0054 (19)	0.0357 (19)	0.0002 (18)
N2	0.076 (3)	0.047 (2)	0.108 (4)	-0.001 (2)	0.050 (3)	0.006 (3)
N3	0.039 (3)	0.075 (3)	0.069 (3)	-0.005 (2)	0.013 (2)	0.004 (3)
N4	0.054 (4)	0.045 (4)	0.156 (8)	0.000	0.047 (4)	0.000
C1	0.051 (3)	0.046 (3)	0.047 (3)	0.004 (2)	0.021 (2)	0.004 (2)
C2	0.060 (3)	0.056 (3)	0.068 (3)	0.017 (3)	0.031 (3)	0.000 (3)
C3	0.061 (3)	0.079 (4)	0.070 (4)	0.013 (3)	0.043 (3)	0.000 (3)
C4	0.068 (4)	0.068 (4)	0.076 (4)	-0.004 (3)	0.046 (3)	0.009 (3)
C5	0.074 (4)	0.047 (3)	0.069 (3)	-0.003 (3)	0.044 (3)	0.000 (3)
C6	0.043 (4)	0.044 (4)	0.065 (4)	0.000	0.030 (3)	0.000
C7	0.039 (3)	0.075 (3)	0.069 (3)	-0.005 (2)	0.013 (2)	0.004 (3)
C8	0.086 (5)	0.086 (5)	0.120 (6)	0.033 (4)	0.020 (5)	0.042 (5)
С9	0.122 (11)	0.065 (6)	0.155 (12)	0.000	0.043 (9)	0.000

Geometric parameters (Å, °)

In1—Cl1 ⁱ	2.5121 (11)	N4—H4A	0.8600
In1—Cl1	2.5121 (11)	C1—C2	1.395 (7)
In1—Cl2 ⁱ	2.5406 (11)	C2—C3	1.344 (7)
In1—Cl2	2.5406 (11)	C2—H2	0.9300
In1—Cl3 ⁱ	2.5120 (12)	C3—C4	1.386 (8)
In1—Cl3	2.5120 (12)	С3—НЗА	0.9300
N1-C1	1.336 (6)	C4—C5	1.339 (7)
N1—C5	1.344 (6)	C4—H4	0.9300
N1—H1	0.8600	С5—Н5	0.9300
N2—C1	1.330 (6)	C6—C7 ⁱⁱ	1.351 (6)
N2—H2A	0.8600	C6—N3 ⁱⁱ	1.351 (6)
N2—H2B	0.8600	C8—C9	1.307 (10)
N3—C6	1.351 (6)	C8—H8	0.9300
N3—C8	1.387 (9)	C9—C8 ⁱⁱ	1.307 (10)
N3—H3	0.8600	С9—Н9	0.9300
N4—C6	1.322 (9)		

Cl3 ⁱ —In1—Cl3	180.00 (4)	N2—C1—C2	123.9 (5)
Cl3 ⁱ —In1—Cl1 ⁱ	91.47 (4)	N1—C1—C2	117.1 (5)
Cl3—In1—Cl1 ⁱ	88.53 (4)	C3—C2—C1	119.6 (5)
Cl3 ⁱ —In1—Cl1	88.53 (4)	C3—C2—H2	120.2
Cl3—In1—Cl1	91.47 (4)	C1—C2—H2	120.2
Cl1 ⁱ —In1—Cl1	180.0	C2—C3—C4	121.3 (5)
Cl3 ⁱ —In1—Cl2 ⁱ	88.97 (4)	С2—С3—НЗА	119.3
Cl3—In1—Cl2 ⁱ	91.03 (4)	C4—C3—H3A	119.3
$Cl1^{i}$ —In1— $Cl2^{i}$	88.44 (4)	C5—C4—C3	118.3 (6)
Cl1—In1—Cl2 ⁱ	91.56 (4)	C5—C4—H4	120.9
Cl3 ⁱ —In1—Cl2	91.03 (4)	C3—C4—H4	120.9
Cl3—In1—Cl2	88.97 (4)	C4—C5—N1	120.1 (5)
Cl1 ⁱ —In1—Cl2	91.56 (4)	C4—C5—H5	120.0
Cl1—In1—Cl2	88.44 (4)	N1—C5—H5	120.0
Cl2 ⁱ —In1—Cl2	180.00 (4)	N4C6C7 ⁱⁱ	120.7 (3)
C1—N1—C5	123.6 (4)	N4C6N3 ⁱⁱ	120.7 (3)
C1—N1—H1	118.2	C7 ⁱⁱ —C6—N3 ⁱⁱ	0.0 (7)
C5—N1—H1	118.2	N4—C6—N3	120.7 (3)
C1—N2—H2A	120.0	C7 ⁱⁱ —C6—N3	118.7 (6)
C1—N2—H2B	120.0	N3 ⁱⁱ —C6—N3	118.7 (6)
H2A—N2—H2B	120.0	C9—C8—N3	120.9 (7)
C6—N3—C8	119.6 (5)	С9—С8—Н8	119.6
C6—N3—H3	120.2	N3—C8—H8	119.6
C8—N3—H3	120.2	C8—C9—C8 ⁱⁱ	120.5 (11)
C6—N4—H4A	120.0	С8—С9—Н9	119.8
N2-C1-N1	118.9 (5)	С8 ^{іі} —С9—Н9	119.8
C5—N1—C1—N2	177.8 (5)	C1—N1—C5—C4	1.0 (8)
C5—N1—C1—C2	-0.9 (7)	C8—N3—C6—N4	179.8 (5)
N2—C1—C2—C3	-178.1 (5)	C8—N3—C6—C7 ⁱⁱ	-0.2 (5)
N1—C1—C2—C3	0.5 (8)	C8—N3—C6—N3 ⁱⁱ	-0.2 (5)
C1—C2—C3—C4	-0.3 (9)	C6—N3—C8—C9	0.4 (11)
C2—C3—C4—C5	0.3 (9)	N3—C8—C9—C8 ⁱⁱ	-0.2 (5)
C3—C4—C5—N1	-0.6 (9)		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*+1, *y*, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A	
N1—H1····Cl2 ⁱⁱⁱ	0.86	2.43	3.242	158	
N2—H2A····Cl2 ⁱⁱⁱ	0.86	2.58	3.354	150	
N2—H2B····Cl1 ^{iv}	0.86	2.75	3.558	157	
N2—H2 <i>B</i> ····Cl3 ^{iv}	0.86	2.82	3.359	122	
N3—H3a····Cl3 ⁱ	0.86	2.70	3.549	169	
N3—H3a···Cl2 ⁱ	0.86	2.91	3.337	112	
N4—H4A····Cl1	0.86	2.56	3.358	154	

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (iii) x, -y+1, z+1/2; (iv) x, y+1, z.