organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(Dodecyloxy)benzonitrile

Huey Chong Kwong, Mohamad Zaki Ab. Rahman, Mohamed Ibrahim Mohamed Tahir and Sidik Silong*

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Correspondence e-mail: sidik@science.upm.edu.my

Received 14 September 2011; accepted 10 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.046; *wR* factor = 0.127; data-to-parameter ratio = 16.9.

In the title compound, $C_{19}H_{29}NO$, the C–C and C–N bond distances of the benzonitrile group are 1.445 (2) and 1.157 (2) Å, respectively. The aliphatic fragment adopts a bent zigzag arangement which differs from the planar zigzag arrangement normally observed in *n*-alkanes or long-chain alkylbenzenes. In the crystal, inversion dimers linked by pairs of C–H···O hydrogen bonds occur. A C–H···N interaction also occurs. In the crystal, molecules are packed with the nitrile and aliphatic groups oriented in a head-to-tail fashion involving, forming a ripple-like motif along the *a* axis.

Related literature

For standard bond lengths, see Allen *et al.* (1987). For related structures, see: Merz (2002); Britton *et al.* (2004); Kwong *et al.* (2011); Boese *et al.* (1999). The title compound was synthesised by reacting hydroxybenzonitrile with bromoalkane, see Rahman *et al.* (2009).

Experimental

Crystal data $C_{19}H_{29}NO$ $M_r = 287.45$ Monoclinic, $P2_1/n$ a = 5.7080 (6) Å b = 7.3644 (8) Å c = 40.642 (5) Å $\beta = 90^{\circ}$

 $V = 1708.4 (3) Å^{3}$ Z = 4Cu K\alpha radiation $\mu = 0.52 \text{ mm}^{-1}$ T = 100 K0.17 \times 0.14 \times 0.09 mm

Data collection

Oxford Diffraction Gemini E	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis PRO; Oxford	
Diffraction, 2006)	
$T_{\min} = 0.930, \ T_{\max} = 0.955$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	190 parameters
$wR(F^2) = 0.127$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
3202 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

9444 measured reflections

 $R_{\rm int} = 0.020$

3214 independent reflections 2575 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C10-H102\cdots N7^{i}\\ C3-H31\cdots O1^{ii}\end{array}$	0.98	2.67	3.468 (2)	139
	0.94	2.67	3.569 (5)	159

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *Gemini* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *CRYS-TALS*.

The authors would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for funding (Research Grant Nos. 04–01–04-SF0144 and 05–02–10–0934RU).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2353).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Boese, R., Weiss, H.-C. & Blaeser, D. (1999). Angew. Chem. Int. Ed. 38, 988–992.
- Britton, D., Sowa, J. R. & Mann, K. R. (2004). Acta Cryst. C60, 0418-0420.
- Kwong, H. C., Rahman, M. Z. A., Mohamed Tahir, M. I. & Silong, S. (2011). Acta Cryst. E67, 0612.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Merz, K. (2002). Acta Cryst. E58, 0450-0451.
- Oxford Diffraction (2006). CrysAlis PRO, CrysAlis RED and Gemini. Oxford Diffraction Ltd, Abingdon, England.
- Rahman, M. Z. A., Salisu, A. A., Silong, S., Luffor, M. R. & Ayub, M. B. A. (2009). Asian J. Appl. Sci. 2, 177–183.

supporting information

Acta Cryst. (2011). E67, o3000 [doi:10.1107/S1600536811041602]

4-(Dodecyloxy)benzonitrile

Huey Chong Kwong, Mohamad Zaki Ab. Rahman, Mohamed Ibrahim Mohamed Tahir and Sidik Silong

S1. Comment

The titled compound (I), 4-(dodecyloxy)benzonitrile (Fig. 1) was synthesised by reacting hydroxybenzonitrile with bromoalkane (Rahman *et al.*, 2009). Bond distance and angles of (I) are in normal range (Allen *et al.* 1987). Bond distance of the benzonitrile group C5—C6 and C6—N7 are 1.445 (2) Å and 1.157 (2) Å, respectively and these bond lengths are comparable with those in *p*-decylbenzonitrile of 1.446 (3) Å and 1.153 (3) Å, respectively (Britton *et al.*, 2004).

In this molecule, the plane formed by benzonitrile ring and O1 was almost planar, the largest deviation from the least-squares plane is 0.0187 (12) Å at O1. The benzene ring and the alkane carbon skeleton (C9—C2—O1—C10) form the torsion angle of 1.62 (2)°. In this structure the alkane carbon skeleton has a bended zigzag arrangement; this arrangement is in agreement with previously reported alkoxy benzenen [4-hexyloxybenzamide, Kwong *et al.*, 2011] However, the mean C(H3)—C(H2) and C(H2)—C(H2) distances, and C(H3)—C(H2)—C and C(H2)—C angles, are in accordance of those determined for n-alkanes and long-chain alkylbenzene, 1.521 (1) Å and 112.8 (1)–113.5 (1)°, respectively. (Boese *et al.*, 1999; Merz, 2002; Britton *et al.*, 2004).

In the crystal packing, the centrosymmetric hydrogen bond C3—H31···O1 is formed generating a hydrogen bonded ring (Table 1 and Fig. 2). Packing of the titled compound shows a ripple-like motif (Fig. 2) with nitrile and aliphatic groups oriented head-to-tail. The stacking interaction between the aromatic rings with the separation distances of their centres of gravity Cg1···Cg1ⁱ (-x,1-y,1-z) of 3.573 (1) and Cg1···Cg1ⁱⁱ(-x,2-y,1-z) of 3.808 (1) Å and slipage of 1.395 and 1.865 Å, respectively, were observed.

S2. Experimental

The titled compound (I) was synthesised by reacting hydroxybenzonitrile with bromoalkane with conventional heating (Rahman *et al.*, 2009). Crystals of (I) were grown from hexane using a slow evaporation.

S3. Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.90 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

Molecular structure of (I) with atom numbering and displacement ellipsoids at 50% probability level.

Figure 2

The packing diagram of (I) showing a ripple-like motif viewing along a axis; hydrogen bonds were shown as dashed lines [b axis green; c axis blue].

4-(Dodecyloxy)benzonitrile

Crystal data C₁₉H₂₉NO $M_r = 287.45$ Monoclinic, $P2_1/n$ a = 5.7080 (6) Å b = 7.3644 (8) Å c = 40.642 (5) Å $\beta = 90^{\circ}$ V = 1708.4 (3) Å³ Z = 4

Data collection

Oxford Diffraction Gemini E diffractometer Radiation source: sealed x-ray tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006) $T_{\min} = 0.930, T_{\max} = 0.955$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.127$ S = 0.983202 reflections 190 parameters F(000) = 632 $D_x = 1.117 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54180 \text{ Å}$ Cell parameters from 3853 reflections $\theta = 3-71^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$ T = 100 KPlate-like, colourless $0.17 \times 0.14 \times 0.09 \text{ mm}$

9444 measured reflections 3214 independent reflections 2575 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 71.6^\circ, \theta_{min} = 4.4^\circ$ $h = -6 \rightarrow 6$ $k = -8 \rightarrow 9$ $l = -37 \rightarrow 49$

0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: difference Fourier map H-atom parameters constrained

Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) +$	$(\Delta/\sigma)_{\rm max} = 0.007$
$(0.05P)^2 + 1.35P$],	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
where $P = [\max(F_o^2, 0) + 2F_c^2]/3$	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement. For this compound, 9444 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 3214 reflection left. 12 more reflections were filtered, as σ cutoff was set as 3 and (sin?/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 3202.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
01	0 33735 (19)	0.61108.(16)	0 45325 (3)	0.0243	
C2	0.1734 (3)	0.6793 (2)	0.47454(4)	0.0214	
C3	0.2277(3)	0.6631(2)	0.50786 (4)	0.0221	
C4	0.0719(3)	0.7247(2)	0.53150 (4)	0.0228	
C5	-0.1403(3)	0.8033(2)	0.52206 (4)	0.0219	
C6	-0.3025(3)	0.8685(2)	0.54668 (4)	0.0234	
N7	-0.4333 (3)	0.9209 (2)	0.56623 (4)	0.0295	
C8	-0.1922(3)	0.8209 (2)	0.48877 (4)	0.0221	
C9	-0.0351 (3)	0.7606 (2)	0.46502 (4)	0.0220	
C10	0.2944 (3)	0.6284 (2)	0.41859 (4)	0.0242	
C11	0.5019 (3)	0.5506 (2)	0.40024 (4)	0.0252	
C12	0.4902 (3)	0.5918 (2)	0.36351 (4)	0.0246	
C13	0.6978 (3)	0.5162 (2)	0.34403 (4)	0.0257	
C14	0.7033 (3)	0.5790 (2)	0.30831 (4)	0.0251	
C15	0.9124 (3)	0.5066 (2)	0.28868 (4)	0.0258	
C16	0.9230 (3)	0.5776 (2)	0.25349 (4)	0.0257	
C17	1.1323 (3)	0.5068 (2)	0.23378 (4)	0.0257	
C18	1.1450 (3)	0.5806 (2)	0.19882 (4)	0.0258	
C19	1.3543 (3)	0.5106 (2)	0.17902 (4)	0.0259	
C20	1.3684 (3)	0.5847 (3)	0.14407 (4)	0.0282	
C21	1.5784 (3)	0.5133 (3)	0.12487 (4)	0.0322	
H31	0.3704	0.6093	0.5144	0.0260*	
H41	0.1098	0.7150	0.5546	0.0259*	
H81	-0.3353	0.8725	0.4821	0.0251*	
H91	-0.0710	0.7743	0.4422	0.0250*	
H102	0.2751	0.7577	0.4131	0.0287*	
H101	0.1498	0.5632	0.4128	0.0284*	
H111	0.6426	0.6050	0.4091	0.0296*	
H112	0.5060	0.4186	0.4040	0.0302*	
H122	0.4875	0.7226	0.3605	0.0291*	
H121	0.3473	0.5416	0.3544	0.0290*	
H131	0.8392	0.5561	0.3546	0.0305*	
H132	0.6919	0.3834	0.3445	0.0313*	
H142	0.7085	0.7111	0.3080	0.0303*	
H141	0.5615	0.5402	0.2974	0.0293*	

supporting information

H151	1.0537	0.5428	0.3000	0.0304*
H152	0.9037	0.3730	0.2881	0.0309*
H162	0.9305	0.7093	0.2541	0.0313*
H161	0.7809	0.5426	0.2420	0.0302*
H172	1.2745	0.5408	0.2450	0.0312*
H171	1.1235	0.3737	0.2328	0.0314*
H181	1.1543	0.7134	0.1998	0.0308*
H182	1.0027	0.5487	0.1872	0.0310*
H192	1.4972	0.5440	0.1907	0.0307*
H191	1.3442	0.3777	0.1780	0.0315*
H201	1.3788	0.7175	0.1451	0.0338*
H202	1.2254	0.5535	0.1326	0.0335*
H212	1.5813	0.5587	0.1021	0.0465*
H211	1.7246	0.5486	0.1352	0.0467*
H213	1.5746	0.3804	0.1239	0.0474*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0228 (6)	0.0292 (7)	0.0208 (6)	0.0029 (5)	-0.0019 (5)	-0.0005 (5)
C2	0.0216 (8)	0.0179 (8)	0.0247 (8)	-0.0037 (7)	-0.0010 (6)	-0.0006 (7)
C3	0.0195 (8)	0.0198 (8)	0.0269 (9)	-0.0008 (7)	-0.0045 (6)	0.0010 (7)
C4	0.0238 (9)	0.0212 (9)	0.0235 (8)	-0.0035 (7)	-0.0044 (7)	0.0001 (7)
C5	0.0208 (8)	0.0199 (8)	0.0251 (8)	-0.0043 (7)	0.0002 (6)	0.0002 (7)
C6	0.0224 (9)	0.0215 (8)	0.0261 (9)	-0.0022 (7)	-0.0055 (7)	0.0019 (7)
N7	0.0269 (8)	0.0338 (9)	0.0279 (8)	0.0001 (7)	-0.0017 (6)	-0.0015 (7)
C8	0.0173 (8)	0.0207 (9)	0.0283 (9)	-0.0022 (6)	-0.0044 (6)	0.0016 (7)
C9	0.0223 (8)	0.0211 (9)	0.0224 (8)	-0.0037 (7)	-0.0039 (6)	0.0016 (6)
C10	0.0231 (9)	0.0274 (9)	0.0221 (8)	-0.0011 (7)	-0.0031 (7)	0.0000 (7)
C11	0.0227 (9)	0.0283 (9)	0.0247 (9)	0.0004 (7)	-0.0018 (7)	-0.0009 (7)
C12	0.0226 (8)	0.0264 (9)	0.0249 (9)	-0.0001 (7)	-0.0024 (7)	0.0007 (7)
C13	0.0257 (9)	0.0274 (9)	0.0240 (9)	0.0034 (7)	-0.0025 (7)	-0.0012 (7)
C14	0.0228 (9)	0.0282 (9)	0.0244 (9)	0.0010 (7)	-0.0026 (7)	-0.0001 (7)
C15	0.0249 (9)	0.0277 (9)	0.0249 (9)	0.0026 (7)	-0.0036 (7)	-0.0016 (7)
C16	0.0251 (9)	0.0277 (9)	0.0242 (9)	0.0011 (7)	-0.0032 (7)	0.0001 (7)
C17	0.0254 (9)	0.0283 (9)	0.0234 (9)	0.0010 (7)	-0.0041 (7)	-0.0013 (7)
C18	0.0239 (9)	0.0284 (9)	0.0251 (9)	0.0009 (7)	-0.0034 (7)	0.0008 (7)
C19	0.0255 (9)	0.0281 (9)	0.0240 (9)	0.0003 (7)	-0.0040 (7)	-0.0016 (7)
C20	0.0270 (9)	0.0313 (10)	0.0264 (9)	0.0000 (8)	-0.0026 (7)	0.0006 (7)
C21	0.0308 (10)	0.0387 (11)	0.0269 (9)	-0.0008 (8)	-0.0012 (8)	-0.0007 (8)

Geometric parameters (Å, °)

O1—C2	1.3698 (19)	C13—H132	0.979	
O1—C10	1.4355 (19)	C14—C15	1.531 (2)	
С2—С3	1.394 (2)	C14—H142	0.973	
С2—С9	1.387 (2)	C14—H141	0.966	
C3—C4	1.385 (2)	C15—C16	1.524 (2)	

C2 1121	0.042	C15 H151	0.07
	0.943		0.967
C4—C5	1.396 (2)	С15—Н152	0.985
C4—H41	0.965	C16—C17	1.530 (2)
C5—C6	1.445 (2)	C16—H162	0.972
C5—C8	1.391 (2)	C16—H161	0.970
C6—N7	1.157 (2)	C17—C18	1.523 (2)
C8—C9	1.390 (2)	C17—H172	0.963
C8—H81	0.941	C17—H171	0.982
С9—Н91	0.954	C18—C19	1.530 (2)
C10—C11	1.512 (2)	C18—H181	0.980
C10—H102	0.984	C18—H182	0.968
C10—H101	0.984	C19—C20	1.524 (2)
C11—C12	1.525 (2)	С19—Н192	0.976
C11—H111	0.967	C19—H191	0.981
C11—H112	0.984	C20—C21	1.524 (2)
C12—C13	1.530 (2)	C20—H201	0.981
С12—Н122	0.971	C20—H202	0.967
C12—H121	0.969	$C_{21} = H_{212}$	0.985
C13 - C14	1 524 (2)	C21—H211	0.969
C13H131	0.961	C21_H213	0.980
015-11151	0.901	021-11215	0.900
C2-01-C10	118.08 (12)	C15—C14—H142	108.6
01-C2-C3	115.50(12)	C13 - C14 - H141	109.3
01 - 02 - 03	124.62(14)	C_{15} C_{14} H_{141}	109.5
C_{3} C_{2} C_{9}	119 89 (15)	H_{142} C_{14} H_{141}	108.1
$C_2 = C_2 = C_3$	119.09(15)	$C_{14} C_{15} C_{16}$	100.4
$C_2 = C_3 = C_4$	120.20 (15)	$C_{14} = C_{15} = C_{10}$	107.9
$C_2 = C_3 = H_3 I$	120.0	C16 C15 H151	107.8
C4 - C3 - H31	119.8	C14 C15 H152	108.7
$C_3 = C_4 = C_5$	120.14 (15)	C14—C15—H152	108.7
C3—C4—H41	120.4	C16—C15—H152	108.8
C5—C4—H41	119.4	H151—C15—H152	109.2
C4—C5—C6	120.23 (15)	C15—C16—C17	113.93 (14)
C4—C5—C8	119.37 (15)	C15—C16—H162	108.6
C6—C5—C8	120.40 (15)	C17—C16—H162	108.6
C5—C6—N7	179.56 (17)	C15—C16—H161	109.0
C5—C8—C9	120.54 (15)	C17—C16—H161	108.1
C5—C8—H81	120.1	H162—C16—H161	108.3
С9—С8—Н81	119.4	C16—C17—C18	113.81 (14)
C8—C9—C2	119.85 (15)	C16—C17—H172	108.8
С8—С9—Н91	120.1	C18—C17—H172	107.9
С2—С9—Н91	120.0	C16—C17—H171	108.7
O1-C10-C11	108.46 (13)	C18—C17—H171	108.8
O1—C10—H102	109.2	H172—C17—H171	108.7
C11—C10—H102	110.0	C17—C18—C19	114.02 (14)
O1-C10-H101	109.5	C17—C18—H181	108.6
C11—C10—H101	110.8	C19—C18—H181	108.4
H102-C10-H101	108.9	C17—C18—H182	109.1
C10-C11-C12	111 90 (14)	C19-C18-H182	108 5
010-011-012	111.90 (14)	017-010-11102	100.5

	100.0	11101 C10 11100	100.0
C10—C11—H111	108.0	H181—C18—H182	108.0
C12—C11—H111	108.6	C18—C19—C20	114.25 (14)
C10-C11-H112	108.4	C18—C19—H192	108.1
C12—C11—H112	110.4	C20—C19—H192	108.7
H111—C11—H112	109.4	C18—C19—H191	108.2
C11—C12—C13	113.60 (14)	С20—С19—Н191	108.8
C11—C12—H122	108.7	H192—C19—H191	108.7
C13—C12—H122	108.0	C19—C20—C21	113.30 (15)
C11—C12—H121	109.5	C19—C20—H201	108.7
C13—C12—H121	108.5	C21—C20—H201	108.5
H122—C12—H121	108.5	С19—С20—Н202	108.7
C12—C13—C14	113.50 (14)	C21—C20—H202	109.5
C12—C13—H131	107.9	H201—C20—H202	108.0
C14—C13—H131	108.5	C20—C21—H212	112.2
C12—C13—H132	109.1	C20—C21—H211	111.4
C14—C13—H132	108.8	H212—C21—H211	107.5
H131—C13—H132	109.0	C20—C21—H213	110.4
C13—C14—C15	114.01 (14)	H212—C21—H213	107.5
C13—C14—H142	108.3	H211—C21—H213	107.7

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C10—H102…N7 ⁱ	0.98	2.67	3.468 (2)	139
C3—H31…O1 ⁱⁱ	0.94	2.67	3.569 (5)	159

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.