organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(RS)-2-Oxo-4-(1-phenylethylamino)-1,2dihydroguinoline-3-carboxylic acid

Svitlana V. Shishkina,^a* Igor V. Ukrainets^b and Elena V. **Mospanova**^b

^aSTC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina avenue, Kharkiv 61001, Ukraine, and ^bNational University of Pharmacy, 4 Blyukhera avenue, Kharkiv 61002, Ukraine Correspondence e-mail: sveta@xray.isc.kharkov.com

Received 14 September 2011; accepted 19 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.033; data-to-parameter ratio = 11.5.

The molecular structure of the title compound, $C_{18}H_{16}N_2O_3$, does not differ in the crystals of the racemic mixture, (I), and the pure enantiomer, (II). In their crystal structures, inversion dimers occur in (I) via $N-H \cdots O$ hydrogen bonds and infinite chains in (II) also via N−H···O hydrogen bonds.

Related literature

For the S and R enantiomers, see: Ukrainets et al. (2010). For bond lengths in related structures, see: Bürgi & Dunitz (1994).

Experimental

Crystal data

$C_{18}H_{16}N_2O_3$	V = 1470.0 (3) Å ³
$M_r = 308.33$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.612 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 5.9750 (6) Å	T = 293 K
c = 18.014 (2) Å	$0.30 \times 0.10 \times 0.05 \text{ mm}$
$\beta = 110.814 \ (14)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur 3
diffractometer
10943 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$ wR(F ²) = 0.033	H atoms treated by a mixture of independent and constrained
S = 0.66	refinement
2541 reflections	$\Delta \rho_{\rm max} = 0.10 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$

2541 independent reflections

 $R_{\rm int} = 0.068$

1174 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	H···A	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO1^{i}$ $N2-H2N\cdotsO2$ $O3-H3O\cdotsO1$	1.038 (17)	1.794 (17)	2.8291 (15)	174.5 (14)
	0.926 (14)	1.738 (14)	2.5849 (17)	150.4 (12)
	0.943 (19)	1.59 (2)	2.4712 (15)	154.1 (18)

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2005); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2104).

References

Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.

Oxford Diffraction (2005). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Ukrainets, I. V., Mospanova, E. V., Davidenko, A. A. & Shishkina, S. V. (2010). Khim. Geterotsikl. Soedin. pp. 1690-1701.

supporting information

Acta Cryst. (2011). E67, o3054 [doi:10.1107/S1600536811043297]

(RS)-2-Oxo-4-(1-phenylethylamino)-1,2-dihydroquinoline-3-carboxylic acid

Svitlana V. Shishkina, Igor V. Ukrainets and Elena V. Mospanova

S1. Comment

In the title compound, (I), the racemate of 2-oxo-4-(1-phenylethylamino)-1,2- dihydroquinoline-3-carboxylic acid reveals high analgesic activity. Compared to its pure S and R enantiomers, they are completely inactive (Ukrainets et al., 2010). In this paper we compare the molecular and crystal structure of the racemate (I) with a previously studied structure of the pure enantiomer (II). In the title compound (Fig. 1) the formation of two strong N2-H···O2 and O3-H···O1 intramolecular hydrogen bonds (Table 1) contributes to the coplanarity of the heterocycle, carboxyl, carbonyl groups and N2 atom all to be within 0.02 Å. As a result a significant redistribution of the electron density occurs in the quinolone fragment: the O3-C10 and C8-C9 bonds are shortened (Table 1) as compared with their mean values of 1.362 Å and 1.455 Å (Bürgi & Dunitz, 1994). The O1-C9, O2-C10, and C7-C8 bonds are elongated (mean values are 1.210 Å for a $Csp^2 = O$ bond and 1.418 Å for a $Csp^2 = Csp^2$ bond). The substituent at the amino group has a sp- conformation. The C6 -C7 bond (C11/N2/C7/C6 torsion angle = -1.6 (2)%A) is twisted slightly allowing the methyl group to be *ap*- oriented relative to the C7—N2 bond (C7/N2/C11/C12 torsion angle = 171.3 (1)%A). The phenyl substituent is in a -scconformation relative to the C7-N2 bond and is twisted toward the N2-C11 bond (C7/N2/C11/C13 and N2/C11/C13/C18 torsion angles = -67.3 (2) %A and 36.3 (2) %A, respectively). The crystal structure of (I), therefore, differs significantly from that of (II). In the pure enantiomer (II) infinite chains (Fig. 2) result from the formation of an N1—H···O2 intermolecular hydrogen bond (Ukrainets et al., 2010). In the racemte, (I), centrosymmetric dimers (Fig. 3) are formed by a N1—H1N···O1 intermolecular hydrogen bond (Table 2). This allows for Cg1—Cg1 π — π stacking interactions to be observed [centroid–centroid distance = 3.894(1)Åⁱ; i = 1-x, 2-y, -z; Cg1 = N1/C1/C6-C9].

S2. Experimental

2-Oxo-4-(1-phenylethylamino)-1,2-dihydroquinoline-3-carboxylic acid was synthesized using the published method (Ukrainets *et al.*, 2010). Yield 75%. *M*.p. 225–227° C.

S3. Refinement

H1N, H2N and H3O were located from by a Fourier map and refined isotropically. All of the remaining hydrogen atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH₃) times U_{eq} of the parent atom.

Figure 1

View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The packing of the pure enantiomer (II) in crystal phase. Hydrogen bonds are shown by dashed lines.

Figure 3

The packing of the title racemate (I) in crystal phase. Hydrogen bonds are shown by dashed lines.

(RS)-2-Oxo-4-(1-phenylethylamino)-1,2-dihydroquinoline-3-carboxylic acid

Crystal data	
$C_{18}H_{16}N_2O_3$	F(000) = 648
$M_r = 308.33$	$D_{\rm x} = 1.393 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point = $498-500$ K
Hall symbol: -P 2yn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 14.612 (2) Å	Cell parameters from 1534 reflections
b = 5.9750 (6) Å	$\theta = 3.0 - 32.0^{\circ}$
c = 18.014 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 110.814 (14)^{\circ}$	T = 293 K
V = 1470.0 (3) Å ³	Needle, colourless
Z = 4	$0.30 \times 0.10 \times 0.05 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur 3	2541 independent reflections
diffractometer	1174 reflections with $I > 2\sigma(I)$
Radiation source: Enhance (Mo) X-ray Source	$R_{int} = 0.068$
Graphite monochromator	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$
Detector resolution: 16.1827 pixels mm ⁻¹	$h = -17 \rightarrow 17$
ω scans	$k = -7 \rightarrow 7$
10943 measured reflections	$l = -20 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.033$	H atoms treated by a mixture of independent
S = 0.66	and constrained refinement
2541 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0067P)^2]$
221 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.10$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.10$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.54636 (9)	0.7456 (2)	-0.03766 (8)	0.0393 (3)	
H1N	0.4891 (13)	0.631 (2)	-0.0545 (9)	0.116 (7)*	
N2	0.77647 (10)	1.19200 (19)	0.02901 (9)	0.0456 (4)	
H2N	0.8164 (9)	1.153 (2)	0.0800 (9)	0.058 (5)*	
01	0.61318 (7)	0.55549 (16)	0.07595 (6)	0.0498 (3)	
O2	0.84379 (7)	0.97876 (16)	0.16236 (6)	0.0615 (3)	
03	0.76182 (8)	0.6926 (2)	0.18244 (7)	0.0613 (4)	
H3O	0.7056 (15)	0.610 (3)	0.1530 (12)	0.138 (9)*	
C1	0.54064 (10)	0.9229 (2)	-0.08811 (8)	0.0350 (4)	
C2	0.45947 (10)	0.9355 (2)	-0.15744 (9)	0.0447 (4)	
H2	0.4131	0.8214	-0.1703	0.054*	
C3	0.44735 (11)	1.1146 (2)	-0.20685 (9)	0.0485 (4)	
H3	0.3921	1.1251	-0.2527	0.058*	
C4	0.51788 (11)	1.2804 (2)	-0.18817 (9)	0.0490 (4)	
H4	0.5097	1.4034	-0.2216	0.059*	
C5	0.59936 (10)	1.2656 (2)	-0.12129 (9)	0.0448 (4)	
H5	0.6463	1.3781	-0.1104	0.054*	

C6	0.61435 (10)	1.0856 (2)	-0.06863 (8)	0.0340 (4)
C7	0.69759 (10)	1.0588 (2)	0.00556 (8)	0.0344 (4)
C8	0.69570 (10)	0.8825 (2)	0.05766 (9)	0.0351 (4)
C9	0.61762 (11)	0.7222 (2)	0.03378 (10)	0.0378 (4)
C10	0.77197 (12)	0.8569 (3)	0.13643 (10)	0.0472 (4)
C11	0.80766 (10)	1.3854 (2)	-0.00571 (9)	0.0424 (4)
H11	0.7558	1.4987	-0.0191	0.051*
C12	0.89830 (10)	1.4790 (2)	0.05891 (8)	0.0595 (5)
H12C	0.9503	1.3712	0.0714	0.089*
H12B	0.8833	1.5102	0.1056	0.089*
H12A	0.9183	1.6145	0.0404	0.089*
C13	0.83092 (10)	1.3343 (2)	-0.07889 (9)	0.0379 (4)
C14	0.81570 (10)	1.4954 (2)	-0.13665 (10)	0.0498 (4)
H14	0.7851	1.6288	-0.1324	0.060*
C15	0.84497 (12)	1.4625 (3)	-0.20070 (10)	0.0609 (5)
H15	0.8341	1.5733	-0.2392	0.073*
C16	0.88995 (12)	1.2670 (3)	-0.20764 (11)	0.0664 (5)
H16	0.9103	1.2443	-0.2504	0.080*
C17	0.90463 (12)	1.1050 (3)	-0.15065 (12)	0.0642 (5)
H17	0.9351	0.9718	-0.1552	0.077*
C18	0.87513 (11)	1.1362 (2)	-0.08708 (10)	0.0513 (4)
H18	0.8849	1.0236	-0.0494	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0343 (8)	0.0428 (8)	0.0359 (10)	-0.0088 (7)	0.0063 (7)	0.0011 (6)
N2	0.0365 (9)	0.0539 (9)	0.0423 (11)	-0.0131 (7)	0.0091 (8)	0.0010 (7)
01	0.0443 (7)	0.0459 (6)	0.0516 (8)	-0.0080(5)	0.0075 (6)	0.0116 (6)
O2	0.0469 (8)	0.0690 (7)	0.0517 (8)	-0.0163 (6)	-0.0031 (6)	0.0055 (6)
O3	0.0458 (8)	0.0709 (8)	0.0538 (10)	-0.0083 (7)	0.0011 (7)	0.0206 (7)
C1	0.0342 (10)	0.0403 (10)	0.0311 (11)	-0.0008 (8)	0.0122 (8)	-0.0026 (8)
C2	0.0367 (11)	0.0486 (10)	0.0443 (12)	-0.0072 (7)	0.0090 (9)	-0.0016 (8)
C3	0.0385 (10)	0.0665 (11)	0.0356 (12)	-0.0035 (9)	0.0071 (8)	0.0007 (9)
C4	0.0402 (10)	0.0580 (11)	0.0468 (13)	0.0002 (9)	0.0133 (9)	0.0142 (8)
C5	0.0330 (10)	0.0503 (10)	0.0497 (13)	-0.0089 (8)	0.0132 (9)	0.0036 (8)
C6	0.0306 (9)	0.0414 (10)	0.0305 (11)	-0.0022 (8)	0.0113 (8)	-0.0044 (7)
C7	0.0276 (10)	0.0399 (9)	0.0373 (11)	-0.0021 (8)	0.0135 (8)	-0.0065 (8)
C8	0.0259 (9)	0.0428 (10)	0.0334 (11)	-0.0028 (7)	0.0066 (8)	-0.0019 (8)
C9	0.0356 (10)	0.0367 (10)	0.0415 (12)	0.0008 (8)	0.0143 (9)	-0.0011 (8)
C10	0.0426 (12)	0.0479 (12)	0.0490 (13)	-0.0006 (9)	0.0137 (10)	0.0017 (9)
C11	0.0357 (10)	0.0423 (9)	0.0499 (12)	-0.0100 (8)	0.0163 (9)	-0.0049 (8)
C12	0.0563 (11)	0.0621 (11)	0.0569 (13)	-0.0238 (9)	0.0161 (9)	-0.0139 (9)
C13	0.0334 (10)	0.0371 (10)	0.0440 (12)	-0.0090 (7)	0.0145 (8)	-0.0046 (8)
C14	0.0458 (11)	0.0454 (11)	0.0590 (13)	-0.0042 (7)	0.0195 (10)	-0.0003 (9)
C15	0.0609 (13)	0.0689 (13)	0.0548 (14)	-0.0091 (10)	0.0230 (10)	0.0084 (10)
C16	0.0680 (14)	0.0798 (15)	0.0593 (14)	-0.0109 (11)	0.0323 (11)	-0.0136 (11)
C17	0.0672 (13)	0.0517 (11)	0.0828 (16)	0.0006 (9)	0.0377 (12)	-0.0127 (11)

C18	0.0563 (12)	0.0433 (11)	0.0597 (13)	-0.0006 (9)	0.0273 (10)	0.0019 (9)
Geome	tric parameters (Å	,)				
N1—C	9	1.3444 (17)	С7—С8		1.4177 (16)
N1—C	1	1.3788 (16)	C8—C9		1.4334 (17)
N1—H	[1N	1.038 (1	7)	C8—C10		1.4679 (18)
N2—C	27	1.3395 (15)	C11—C13		1.5051 (17)
N2—C	11	1.4619 (16)	C11—C12		1.5251 (16)
N2—H	2N	0.926 (1	4)	C11—H11		0.9800
01—C	9	1.2684 (15)	C12—H12C		0.9600
O2—C	210	1.2252 (15)	C12—H12B		0.9600
03—С	10	1.3268 (17)	C12—H12A		0.9600
03—Н	130	0.943 (1	9)	C13—C14		1.3760 (16)
C1—C	2	1.3854 (16)	C13—C18		1.3812 (16)
C1—C	6	1.4000 (15)	C14—C15		1.3796 (19)
С2—С	3	1.3626 (16)	C14—H14		0.9300
С2—Н	2	0.9300	,	C15—C16		1.3675 (19)
С3—С	4	1.3825 (17)	С15—Н15		0.9300
С3—Н	3	0.9300	,	C16—C17		1.3712 (19)
C4—C	5	1.3629 (19)	C16—H16		0.9300
С4—Н	4	0.9300	,	C17—C18		1.3721 (19)
С5—С	6	1.3986 (17)	С17—Н17		0.9300
С5—Н	5	0.9300	,	C18—H18		0.9300
С6—С	7	1.4614 (17)			
C9—N	1—C1	123.76 (14)	O2—C10—O3		118.18 (16)
C9—N	1—H1N	118.7 (9)	O2—C10—C8		124.05 (15)
C1—N	1—H1N	117.3 (8)	O3—C10—C8		117.77 (14)
C7—N	2—C11	134.34 (14)	N2-C11-C13		114.59 (12)
C7—N	2—H2N	109.4 (8)	N2-C11-C12		106.35 (12)
C11—1	N2—H2N	116.2 (8)	C13—C11—C12		109.74 (12)
C10—	03—H3O	107.6 (1	2)	N2-C11-H11		108.7
N1—C	21—C2	117.90 (14)	C13-C11-H11		108.7
N1—C	1—C6	120.48 (14)	C12-C11-H11		108.7
С2—С	1—C6	121.61 (14)	C11—C12—H12C		109.5
С3—С	2—C1	120.16 (14)	C11—C12—H12B		109.5
С3—С	2—Н2	119.9		H12C-C12-H12B		109.5
C1—C	2—H2	119.9		C11—C12—H12A		109.5
С2—С	3—C4	119.44 (15)	H12C-C12-H12A		109.5
С2—С	3—Н3	120.3		H12B—C12—H12A		109.5
C4—C	3—Н3	120.3		C14—C13—C18		118.34 (14)
С5—С	4—C3	120.65 (14)	C14—C13—C11		119.62 (14)
С5—С	4—H4	119.7		C18—C13—C11		121.81 (14)
С3—С	4—H4	119.7		C13—C14—C15		121.19 (15)
C4—C	5—C6	121.79 (14)	C13—C14—H14		119.4
С4—С	5—H5	119.1		C15—C14—H14		119.4
С6—С	5—Н5	119.1		C16-C15-C14		120.00 (16)

supporting information

C5—C6—C1	116.28 (13)	C16—C15—H15	120.0
C5—C6—C7	125.69 (14)	C14—C15—H15	120.0
C1—C6—C7	117.98 (13)	C15—C16—C17	119.13 (17)
N2—C7—C8	116.72 (13)	C15—C16—H16	120.4
N2—C7—C6	124.51 (14)	C17—C16—H16	120.4
C8—C7—C6	118.77 (13)	C16—C17—C18	121.14 (16)
C7—C8—C9	119.89 (14)	C16—C17—H17	119.4
C7—C8—C10	122.05 (14)	C18—C17—H17	119.4
C9—C8—C10	118.06 (14)	C17—C18—C13	120.19 (14)
O1C9N1	117.89 (13)	C17—C18—H18	119.9
O1—C9—C8	123.34 (15)	C13—C18—H18	119.9
N1—C9—C8	118.75 (15)		
C9—N1—C1—C2	-175.26 (14)	C1—N1—C9—C8	-3.8 (2)
C9—N1—C1—C6	3.8 (2)	C7—C8—C9—O1	177.18 (13)
N1—C1—C2—C3	175.92 (13)	C10—C8—C9—O1	-2.7 (2)
C6-C1-C2-C3	-3.2 (2)	C7—C8—C9—N1	-1.2 (2)
C1—C2—C3—C4	1.6 (2)	C10-C8-C9-N1	178.91 (13)
C2—C3—C4—C5	0.4 (2)	C7—C8—C10—O2	-2.3 (2)
C3—C4—C5—C6	-0.9 (2)	C9—C8—C10—O2	177.57 (14)
C4—C5—C6—C1	-0.5 (2)	C7—C8—C10—O3	177.13 (13)
C4—C5—C6—C7	-177.97 (14)	C9—C8—C10—O3	-3.0 (2)
N1-C1-C6-C5	-176.49 (13)	C7—N2—C11—C13	-67.3 (2)
C2-C1-C6-C5	2.57 (19)	C7—N2—C11—C12	171.26 (14)
N1-C1-C6-C7	1.15 (19)	N2-C11-C13-C14	149.27 (13)
C2-C1-C6-C7	-179.79 (13)	C12—C11—C13—C14	-91.19 (15)
C11—N2—C7—C8	179.24 (15)	N2-C11-C13-C18	-36.34 (18)
C11—N2—C7—C6	-1.6(2)	C12—C11—C13—C18	83.21 (15)
C5—C6—C7—N2	-7.6 (2)	C18—C13—C14—C15	-1.0 (2)
C1-C6-C7-N2	175.04 (13)	C11—C13—C14—C15	173.62 (14)
C5—C6—C7—C8	171.59 (13)	C13—C14—C15—C16	0.0 (2)
C1—C6—C7—C8	-5.81 (18)	C14—C15—C16—C17	0.5 (2)
N2—C7—C8—C9	-174.91 (12)	C15—C16—C17—C18	-0.1 (3)
C6—C7—C8—C9	5.87 (19)	C16-C17-C18-C13	-0.8 (3)
N2-C7-C8-C10	4.98 (19)	C14—C13—C18—C17	1.4 (2)
C6—C7—C8—C10	-174.23 (13)	C11-C13-C18-C17	-173.10 (15)
C1—N1—C9—O1	177.72 (12)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1N····O1 ⁱ	1.038 (17)	1.794 (17)	2.8291 (15)	174.5 (14)
N2—H2 <i>N</i> ···O2	0.926 (14)	1.738 (14)	2.5849 (17)	150.4 (12)
O3—H3 <i>O</i> …O1	0.943 (19)	1.59 (2)	2.4712 (15)	154.1 (18)

Symmetry code: (i) -x+1, -y+1, -z.