## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## (4,4',6,6'-Tetra-*tert*-butyl-2,2'-{[2-(dimethylamino)ethyl]nitrilobis(methylene)}diphenolato)dioxidomolybdenum(VI) chloroform monosolvate

#### Xiangyang Lei\* and Nagasree Chelamalla

Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA

Correspondence e-mail: xlei@lamar.edu

Received 12 August 2011; accepted 4 October 2011

Key indicators: single-crystal X-ray study; T = 110 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.031; wR factor = 0.078; data-to-parameter ratio = 13.2.

In the title compound,  $[Mo(C_{34}H_{54}N_2O_2)O_2]$ ·CHCl<sub>3</sub>, the molybdenum(VI) ion exhibits a *cis*-dioxide distorted octahedral geometry. Two anionic phenolate O-atom donors and two neutral N-atom donors of the ligand are *trans* and *cis*, respectively. The Mo $\equiv$ O bond lengths and the O $\equiv$ Mo $\equiv$ O bond angle are typical for six-coordinated dioxomolybdenum(VI) complexes. The Mo=N bond lengths are longer than 2.30 Å, as expected for a *trans* O $\equiv$ Mo=N structure.

#### **Related literature**

For molybdenum coordination complexes as catalysts, see: Wong *et al.* (2010); Rappe & Goddard (1982). For the synthesis of the ligand, see: Tshuva *et al.* (2001). For incorporation of the molybdenum center into redox enzymes, see: Tucci *et al.* (1998); Schultz *et al.* (1993). For spectroscopic and NMR data, see: Lehtonen *et al.* (2006). For related structures, see: Hinshaw *et al.* (1989); Lehtonen & Sillanpää (2005).



#### Experimental

Crystal data [Mo(C<sub>34</sub>H<sub>54</sub>N<sub>2</sub>O<sub>2</sub>)O<sub>2</sub>]·CHCl<sub>3</sub>

 $M_r = 770.10$ 

Orthorhombic,  $Pna2_1$  a = 24.3475 (10) Å b = 13.9748 (6) Å c = 11.0267 (4) Å V = 3751.9 (3) Å<sup>3</sup>

#### Data collection

| Bruker MWPC area-detector                  |
|--------------------------------------------|
| diffractometer                             |
| Absorption correction: multi-scan          |
| (SADABS; Bruker, 2008)                     |
| $T_{\rm min} = 0.184, T_{\rm max} = 0.904$ |
|                                            |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.031 \\ wR(F^2) &= 0.078 \\ S &= 1.00 \\ 5548 \text{ reflections} \\ 421 \text{ parameters} \\ 1 \text{ restraint} \end{split}$$

Z = 4Cu K\alpha radiation  $\mu = 5.12 \text{ mm}^{-1}$ T = 110 K0.50 \times 0.20 \times 0.02 mm

79926 measured reflections 5548 independent reflections 5061 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.081$  $\theta_{\text{max}} = 60.0^{\circ}$ 

H-atom parameters constrained  $\Delta \rho_{max} = 0.81 \text{ e} \text{ Å}^{-3}$   $\Delta \rho_{min} = -0.51 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2649 Friedel pairs Flack parameter: 0.000 (9)

Data collection: *FRAMBO* (Bruker, 1999); cell refinement: *FRAMBO*; data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Welch Foundation (V-004) for financial support. We are very grateful to Dr Joseph Reibenspies at Texas A & M University for the X-ray crystallographic analysis. The X-ray diffractometers, small angle scattering instrumentation and crystallographic computing systems in the X-ray Diffraction Laboratory at the Department of Chemistry, Texas A & M University were purchased with funds provided by the National Science Foundation (CHE-9807975, CHE-0079822 and CHE-0215838).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2100).

#### References

- Bruker (1999). FRAMBO. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hinshaw, C. J., Peng, G., Singh, R., Spence, J. T., Enemark, J. H., Bruck, M., Kristofzski, J., Merbs, S. L., Ortega, R. B. & Wexler, P. A. (1989). *Inorg. Chem.* 28, 4483–4491.
- Lehtonen, A. & Sillanpää, R. (2005). Polyhedron, 24, 257-265.
- Lehtonen, A., Wasberg, M. & Sillanpää, R. (2006). Polyhedron, 25, 767-775.
- Rappe, A. K. & Goddard, W. A. (1982). J. Am. Chem. Soc. 104, 448-456.
- Schultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 2714–2722.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tshuva, E., Goldberg, I. & Kol, M. (2001). Organometallics, 20, 3017-3028.
- Tucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem. 37, 1602–1608.
- Wong, Y. L., Tong, L. H., Dilworth, J. R., Ng, D. K. P. & Lee, H. K. (2010). Dalton Trans. 39, 4602–4611.

# supporting information

Acta Cryst. (2011). E67, m1510 [doi:10.1107/S160053681104092X]

## (4,4',6,6'-Tetra-*tert*-butyl-2,2'-{[2-(dimethylamino)ethyl]nitrilobis(methylene)}diphenolato)dioxidomolybdenum(VI) chloroform monosolvate

## Xiangyang Lei and Nagasree Chelamalla

## S1. Comment

Molybdenum coordination complexes have attracted considerable attention because they can catalyze a variety of chemical reactions such as olefin epoxidation (Wong *et al.* 2010) and olefin metathesis (Rappe & Goddard, 1982) reactions. In addition, molybdenum is also a necessary element in diverse biological systems whereby the molybdenum center is incorporated into various redox enzymes such as DMSO reductase (Tucci *et al.* 1998) and xanthine oxidase (Schultz *et al.* 1993). A number of related dioxomolybdenum(VI) complexes with tetradentate ligands have been reported (Hinshaw *et al.* 1989; Lehtonen & Sillanpää, 2005).

While the X-ray structure of the title compound is described here, its synthesis, IR, and <sup>1</sup>H & <sup>13</sup>C NMR data have been reported (Lehtonen *et al.* 2006). The title complex contains one crystallographically unique molybdenum ion in a *cis*-dioxo distorted octahedral geometry. The aminobis(phenolate) moiety is coordinated to the  $MoO_2^{2+}$  unit as a tripodal tetradentate ligand though two anionic phenolate oxygen donors (*trans* to each other) and two neutral nitrogen donors (*cis* to each other). The Mo=O bond lengths (1.702 (2) and 1.702 (3) Å for Mo=O3 and Mo=O4, respectively) and the O=Mo=O bond angle (108.33 (13)°) are typical for six-coordinated dioxomolybdenum(VI) complexes. The bond lengths of Mo—N1 and Mo—N2 are 2.392 (3) and 2.422 (3) Å, respectively, both of which are > 2.30 Å as expected for the *trans* O=Mo—N structure as well as a distorted octahedral geometry.

## S2. Experimental

To a solution of 0.52 g (1.00 mmol) of 6,6'-(2-(dimethylamino)ethylazanediyl)bis(methylene)bis(2,4-di-*tert*-butylphenol) (Tshuva *et al.* 2001) in 10 ml of  $CH_2Cl_2$  and 10 ml of  $CH_3OH$  was added 0.33 g (1.06 mmol) of  $MoO_2(acac)_2$ . The resulting orange solution was stirred overnight at room temperature. The yellow solid (0.61 g) was collected by filtration and washed with cold methanol. Single crystals suitable for X-ray diffraction were obtained by recrystallization from  $CHCl_3$ /hexanes.

## S3. Refinement

All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms bound to carbon atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C-H) = 0.95-1.00 Å,  $U_{iso}(H) = 1.2U_{eq}(C)$ . The number of Friedel pairs used for absolute structure refinement is 2649.



## Figure 1

A view of the molecular structure. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms were omitted for clarity.

## (4,4',6,6'-Tetra-tert-butyl-2,2'-{[2-

### (dimethylamino)ethyl]nitrilobis(methylene)}diphenolato)dioxidomolybdenum(VI) chloroform monosolvate

Crystal data  $[Mo(C_{34}H_{54}N_2O_2)O_2]$ ·CHCl<sub>3</sub>  $M_r = 770.10$ Orthorhombic,  $Pna2_1$ Hall symbol: P 2c -2n *a* = 24.3475 (10) Å *b* = 13.9748 (6) Å c = 11.0267 (4) Å V = 3751.9 (3) Å<sup>3</sup> Z = 4Data collection Bruker MWPC area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2008)

 $T_{\rm min} = 0.184, \ T_{\rm max} = 0.904$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.078$ S = 1.00 F(000) = 1616  $D_x = 1.363 \text{ Mg m}^{-3}$ Cu *Ka* radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9879 reflections  $\theta = 3.6-62.7^{\circ}$   $\mu = 5.12 \text{ mm}^{-1}$  T = 110 KPlate, yellow  $0.50 \times 0.20 \times 0.02 \text{ mm}$ 

79926 measured reflections 5548 independent reflections 5061 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.081$  $\theta_{max} = 60.0^{\circ}, \theta_{min} = 4.8^{\circ}$  $h = -27 \rightarrow 27$  $k = -15 \rightarrow 15$  $l = -12 \rightarrow 12$ 

5548 reflections421 parameters1 restraintPrimary atom site location: structure-invariant direct methods

| Secondary atom site location: difference Fourier | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|--------------------------------------------------|------------------------------------------------------------|
| map                                              | $\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$  |
| Hydrogen site location: inferred from            | $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ |
| neighbouring sites                               | Absolute structure: Flack (1983), 2649 Friedel             |
| H-atom parameters constrained                    | pairs                                                      |
| $w = 1/[\sigma^2(F_o^2) + (0.054P)^2]$           | Absolute structure parameter: 0.000 (9)                    |
| where $P = (F_o^2 + 2F_c^2)/3$                   |                                                            |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x             | у             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|---------------|---------------|---------------|-----------------------------|
| Mo1  | 0.426810 (10) | 0.838846 (17) | -0.50398 (3)  | 0.01403 (9)                 |
| C11  | 0.59086 (5)   | 0.19093 (10)  | -0.37928 (12) | 0.0456 (3)                  |
| C12  | 0.62313 (6)   | 0.38887 (9)   | -0.37779 (18) | 0.0700 (5)                  |
| C13  | 0.70222 (5)   | 0.24265 (8)   | -0.43262 (11) | 0.0380 (3)                  |
| O1   | 0.37192 (9)   | 0.93850 (17)  | -0.4855 (3)   | 0.0161 (6)                  |
| O2   | 0.48994 (10)  | 0.76272 (18)  | -0.4523 (3)   | 0.0198 (6)                  |
| O3   | 0.38528 (10)  | 0.74922 (18)  | -0.5542 (2)   | 0.0195 (6)                  |
| O4   | 0.45879 (11)  | 0.8885 (2)    | -0.6260 (2)   | 0.0223 (6)                  |
| N1   | 0.47151 (12)  | 0.9508 (2)    | -0.3729 (3)   | 0.0135 (7)                  |
| N2   | 0.39503 (13)  | 0.8003 (2)    | -0.3016 (3)   | 0.0171 (7)                  |
| C1   | 0.42256 (14)  | 1.0851 (3)    | -0.4926 (5)   | 0.0205 (9)                  |
| C2   | 0.37556 (14)  | 1.0319 (2)    | -0.5192 (4)   | 0.0176 (9)                  |
| C3   | 0.33115 (15)  | 1.0736 (3)    | -0.5830 (3)   | 0.0159 (9)                  |
| C4   | 0.33686 (16)  | 1.1685 (3)    | -0.6165 (4)   | 0.0188 (9)                  |
| H4   | 0.3075        | 1.1973        | -0.6600       | 0.023*                      |
| C5   | 0.38261 (16)  | 1.2249 (3)    | -0.5909 (4)   | 0.0198 (9)                  |
| C6   | 0.42495 (15)  | 1.1812 (3)    | -0.5263 (4)   | 0.0202 (11)                 |
| H6   | 0.4563        | 1.2179        | -0.5047       | 0.024*                      |
| C7   | 0.47454 (16)  | 1.0452 (3)    | -0.4337 (4)   | 0.0199 (9)                  |
| H7A  | 0.5032        | 1.0411        | -0.4972       | 0.024*                      |
| H7B  | 0.4873        | 1.0924        | -0.3731       | 0.024*                      |
| C8   | 0.27985 (16)  | 1.0155 (3)    | -0.6168 (4)   | 0.0184 (9)                  |
| C9   | 0.23863 (16)  | 1.0749 (3)    | -0.6897 (4)   | 0.0230 (9)                  |
| H9A  | 0.2064        | 1.0356        | -0.7085       | 0.035*                      |
| H9B  | 0.2558        | 1.0964        | -0.7653       | 0.035*                      |
| H9BC | 0.2273        | 1.1306        | -0.6419       | 0.035*                      |
| C10  | 0.24975 (14)  | 0.9810 (3)    | -0.5024 (5)   | 0.0239 (8)                  |
| H10A | 0.2181        | 0.9419        | -0.5260       | 0.036*                      |
| H10B | 0.2371        | 1.0364        | -0.4557       | 0.036*                      |

| H10C | 0.2748       | 0.9426     | -0.4528     | 0.036*      |
|------|--------------|------------|-------------|-------------|
| C11  | 0.29541 (17) | 0.9285 (3) | -0.6952 (4) | 0.0213 (9)  |
| H11A | 0.2619       | 0.8972     | -0.7245     | 0.032*      |
| H11B | 0.3168       | 0.8831     | -0.6465     | 0.032*      |
| H11C | 0.3174       | 0.9498     | -0.7645     | 0.032*      |
| C12  | 0.38648 (18) | 1.3300 (3) | -0.6294 (4) | 0.0252 (10) |
| C13  | 0.3754 (2)   | 1.3935 (3) | -0.5203 (5) | 0.0456 (14) |
| H13A | 0.3805       | 1.4606     | -0.5432     | 0.068*      |
| H13B | 0.4010       | 1.3771     | -0.4549     | 0.068*      |
| H13C | 0.3376       | 1.3836     | -0.4924     | 0.068*      |
| C14  | 0.3457 (2)   | 1.3543 (3) | -0.7301 (5) | 0.0437 (14) |
| H14A | 0.3502       | 1.4215     | -0.7537     | 0.066*      |
| H14B | 0.3082       | 1.3439     | -0.7008     | 0.066*      |
| H14C | 0.3526       | 1.3131     | -0.8004     | 0.066*      |
| C15  | 0.4439 (2)   | 1.3524 (3) | -0.6790 (5) | 0.0355 (12) |
| H15A | 0.4457       | 1.4198     | -0.7031     | 0.053*      |
| H15B | 0.4513       | 1.3118     | -0.7496     | 0.053*      |
| H15C | 0.4714       | 1.3399     | -0.6161     | 0.053*      |
| C16  | 0.52969 (15) | 0.9236 (3) | -0.3376 (4) | 0.0192 (9)  |
| H16A | 0.5495       | 0.9822     | -0.3125     | 0.023*      |
| H16B | 0.5281       | 0.8804     | -0.2665     | 0.023*      |
| C17  | 0.56204 (14) | 0.8750 (3) | -0.4370 (4) | 0.0170 (9)  |
| C18  | 0.54237 (14) | 0.7891 (3) | -0.4836 (4) | 0.0178 (9)  |
| C19  | 0.57446 (15) | 0.7309 (3) | -0.5608 (4) | 0.0190 (9)  |
| C20  | 0.62607 (15) | 0.7660 (3) | -0.5902 (4) | 0.0176 (9)  |
| H20  | 0.6489       | 0.7279     | -0.6407     | 0.021*      |
| C21  | 0.64651 (16) | 0.8541 (3) | -0.5501 (4) | 0.0174 (9)  |
| C22  | 0.61418 (15) | 0.9075 (3) | -0.4715 (3) | 0.0182 (10) |
| H22  | 0.6275       | 0.9666     | -0.4409     | 0.022*      |
| C23  | 0.55331 (17) | 0.6345 (3) | -0.6097 (4) | 0.0217 (9)  |
| C24  | 0.5097 (2)   | 0.6521 (3) | -0.7063 (5) | 0.0348 (12) |
| H24A | 0.4975       | 0.5908     | -0.7399     | 0.052*      |
| H24B | 0.5252       | 0.6916     | -0.7713     | 0.052*      |
| H24C | 0.4783       | 0.6853     | -0.6699     | 0.052*      |
| C25  | 0.52917 (19) | 0.5717 (3) | -0.5084 (6) | 0.0384 (10) |
| H25A | 0.5227       | 0.5070     | -0.5395     | 0.058*      |
| H25B | 0.4944       | 0.5992     | -0.4806     | 0.058*      |
| H25C | 0.5550       | 0.5688     | -0.4404     | 0.058*      |
| C26  | 0.59983 (19) | 0.5767 (3) | -0.6685(5)  | 0.0329(12)  |
| H26A | 0.5860       | 0.5136     | -0.6923     | 0.049*      |
| H26B | 0.6300       | 0.5690     | -0.6104     | 0.049*      |
| H26C | 0.6132       | 0.6106     | -0.7405     | 0.049*      |
| C27  | 0.70438 (16) | 0.8849 (3) | -0.5894 (4) | 0.0208 (9)  |
| C28  | 0.70892 (19) | 0.8820 (4) | -0.7288 (4) | 0.0339 (11) |
| H28A | 0.7468       | 0.8962     | -0.7530     | 0.051*      |
| H28B | 0.6841       | 0.9297     | -0.7641     | 0.051*      |
| H28C | 0.6987       | 0.8181     | -0.7579     | 0.051*      |
| C29  | 0.71837 (17) | 0.9870 (3) | -0.5474 (4) | 0.0252 (10) |
|      |              | - (- )     |             | - ( - /     |

| H29A | 0.7545       | 1.0052     | -0.5788     | 0.038*      |
|------|--------------|------------|-------------|-------------|
| H29B | 0.7189       | 0.9892     | -0.4586     | 0.038*      |
| H29C | 0.6906       | 1.0316     | -0.5781     | 0.038*      |
| C30  | 0.74679 (15) | 0.8160 (3) | -0.5365 (4) | 0.0239 (11) |
| H30A | 0.7837       | 0.8361     | -0.5610     | 0.036*      |
| H30B | 0.7397       | 0.7512     | -0.5667     | 0.036*      |
| H30C | 0.7442       | 0.8164     | -0.4478     | 0.036*      |
| C31  | 0.43785 (16) | 0.9580 (3) | -0.2602 (4) | 0.0197 (9)  |
| H31A | 0.4032       | 0.9923     | -0.2783     | 0.024*      |
| H31B | 0.4582       | 0.9952     | -0.1985     | 0.024*      |
| C32  | 0.42489 (17) | 0.8604 (3) | -0.2109 (4) | 0.0196 (9)  |
| H32A | 0.4595       | 0.8281     | -0.1876     | 0.024*      |
| H32B | 0.4020       | 0.8671     | -0.1371     | 0.024*      |
| C33  | 0.33508 (16) | 0.8180 (3) | -0.2903 (4) | 0.0207 (9)  |
| H33A | 0.3218       | 0.7915     | -0.2133     | 0.031*      |
| H33B | 0.3158       | 0.7872     | -0.3578     | 0.031*      |
| H33C | 0.3281       | 0.8871     | -0.2922     | 0.031*      |
| C34  | 0.40419 (19) | 0.6974 (3) | -0.2756 (4) | 0.0273 (10) |
| H34A | 0.3912       | 0.6827     | -0.1936     | 0.041*      |
| H34B | 0.4435       | 0.6830     | -0.2816     | 0.041*      |
| H34C | 0.3839       | 0.6585     | -0.3345     | 0.041*      |
| C35  | 0.64330 (19) | 0.2714 (3) | -0.3474 (4) | 0.0322 (11) |
| H35  | 0.6526       | 0.2663     | -0.2594     | 0.039*      |
|      |              |            |             |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$                 | U <sup>22</sup>          | U <sup>33</sup>          | $U^{12}$     | U <sup>13</sup> | U <sup>23</sup> |
|-----|--------------------------|--------------------------|--------------------------|--------------|-----------------|-----------------|
| Mol | 0.01303 (14)             | 0.01394 (14)             | 0.01511 (14)             | -0.00271(11) | -0.00087(19)    | -0.00026(19)    |
| Cll | 0.01303(14)<br>0.0472(7) | 0.01394(14)<br>0.0482(7) | 0.01311(14)<br>0.0413(8) | -0.0196(6)   | 0.00007 (17)    | -0.0063(6)      |
| Cl2 | 0.0172(7)<br>0.0577(9)   | 0.0102(7)<br>0.0264(7)   | 0.0115(0)<br>0.1258(15)  | 0.0056 (6)   | 0.0070(0)       | 0.0150 (8)      |
| C12 | 0.0377(3)<br>0.0442(7)   | 0.0201(7)<br>0.0329(6)   | 0.0368 (6)               | 0.0000(0)    | 0.0031 (6)      | 0.0034 (6)      |
| 01  | 0.0132(12)               | 0.0329(0)                | 0.0196(17)               | -0.0015(9)   | -0.0039(12)     | 0.0029(13)      |
| 02  | 0.0140(13)               | 0.0168(14)               | 0.0287(15)               | -0.0036(11)  | 0.0027(12)      | -0.0061(12)     |
| 03  | 0.0168(13)               | 0.0163(14)               | 0.0253(14)               | -0.0043(11)  | -0.0024(12)     | -0.0040(12)     |
| 04  | 0.0237 (16)              | 0.0274 (16)              | 0.0160 (14)              | -0.0045(13)  | 0.0041 (13)     | 0.0004 (13)     |
| N1  | 0.0130 (16)              | 0.0124 (16)              | 0.0151 (16)              | -0.0018 (13) | 0.0032 (15)     | -0.0010 (14)    |
| N2  | 0.0199 (18)              | 0.0163 (17)              | 0.0150 (17)              | -0.0020(14)  | 0.0007 (15)     | 0.0021 (15)     |
| C1  | 0.0195 (18)              | 0.0191 (18)              | 0.023 (2)                | 0.0011 (15)  | 0.000 (2)       | 0.004 (2)       |
| C2  | 0.0219 (18)              | 0.0100 (17)              | 0.021 (3)                | -0.0029 (13) | 0.002 (2)       | -0.005 (2)      |
| C3  | 0.012 (2)                | 0.019 (2)                | 0.017 (2)                | 0.0016 (16)  | 0.0024 (17)     | -0.0024 (18)    |
| C4  | 0.017 (2)                | 0.023 (2)                | 0.016 (2)                | 0.0072 (17)  | 0.0020 (18)     | 0.0049 (18)     |
| C5  | 0.026 (2)                | 0.015 (2)                | 0.019 (2)                | 0.0030 (17)  | 0.0015 (19)     | 0.0021 (18)     |
| C6  | 0.0181 (18)              | 0.0177 (19)              | 0.025 (3)                | -0.0039 (15) | -0.0005 (19)    | 0.0019 (19)     |
| C7  | 0.020 (2)                | 0.015 (2)                | 0.024 (2)                | 0.0032 (16)  | 0.002 (2)       | 0.0037 (18)     |
| C8  | 0.020 (2)                | 0.019 (2)                | 0.016 (2)                | -0.0001 (17) | -0.0019 (18)    | -0.0014 (18)    |
| C9  | 0.017 (2)                | 0.026 (2)                | 0.027 (2)                | -0.0010 (18) | -0.0070 (19)    | 0.001 (2)       |
| C10 | 0.0185 (18)              | 0.0254 (19)              | 0.0278 (19)              | 0.0013 (15)  | 0.004 (3)       | 0.004 (3)       |
| C11 | 0.019 (2)                | 0.024 (2)                | 0.021 (2)                | 0.0018 (18)  | -0.0032 (18)    | -0.0062 (19)    |

## supporting information

| C12 | 0.028 (2)   | 0.013 (2)   | 0.034 (2)   | 0.0008 (17)  | 0.000 (2)    | 0.0013 (19)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C13 | 0.078 (4)   | 0.018 (2)   | 0.041 (3)   | 0.012 (2)    | 0.005 (3)    | -0.001 (3)   |
| C14 | 0.054 (3)   | 0.025 (3)   | 0.052 (3)   | -0.006 (2)   | -0.015 (3)   | 0.018 (2)    |
| C15 | 0.036 (3)   | 0.024 (3)   | 0.047 (3)   | -0.002 (2)   | 0.003 (2)    | 0.010 (2)    |
| C16 | 0.016 (2)   | 0.019 (2)   | 0.022 (2)   | -0.0004 (16) | -0.0020 (18) | -0.0059 (18) |
| C17 | 0.0076 (19) | 0.020 (2)   | 0.023 (2)   | 0.0022 (16)  | -0.0013 (17) | -0.0043 (19) |
| C18 | 0.0163 (19) | 0.0179 (19) | 0.019 (3)   | 0.0002 (15)  | -0.0003 (18) | -0.0011 (18) |
| C19 | 0.016 (2)   | 0.022 (2)   | 0.0189 (19) | 0.0057 (17)  | -0.0060 (18) | -0.0044 (18) |
| C20 | 0.016 (2)   | 0.020 (2)   | 0.016 (2)   | 0.0086 (17)  | -0.0001 (17) | -0.0037 (18) |
| C21 | 0.014 (2)   | 0.021 (2)   | 0.0174 (19) | 0.0063 (17)  | -0.0048 (16) | 0.0043 (16)  |
| C22 | 0.0174 (19) | 0.0164 (19) | 0.021 (3)   | 0.0004 (16)  | -0.0033 (16) | -0.0059 (16) |
| C23 | 0.022 (2)   | 0.017 (2)   | 0.026 (2)   | 0.0048 (17)  | -0.008 (2)   | -0.0032 (19) |
| C24 | 0.034 (3)   | 0.033 (3)   | 0.037 (3)   | 0.013 (2)    | -0.016 (2)   | -0.019 (2)   |
| C25 | 0.053 (3)   | 0.019 (2)   | 0.043 (3)   | -0.0036 (18) | 0.003 (4)    | -0.012 (3)   |
| C26 | 0.032 (3)   | 0.020 (2)   | 0.047 (3)   | 0.007 (2)    | -0.010 (2)   | -0.017 (2)   |
| C27 | 0.014 (2)   | 0.028 (2)   | 0.020 (2)   | 0.0030 (17)  | 0.0020 (18)  | 0.0025 (19)  |
| C28 | 0.026 (2)   | 0.052 (3)   | 0.024 (3)   | 0.001 (2)    | 0.007 (2)    | 0.004 (2)    |
| C29 | 0.018 (2)   | 0.026 (2)   | 0.031 (2)   | 0.0006 (17)  | 0.0062 (18)  | 0.0032 (19)  |
| C30 | 0.0125 (19) | 0.028 (2)   | 0.031 (3)   | 0.0056 (16)  | 0.0024 (18)  | -0.0025 (19) |
| C31 | 0.017 (2)   | 0.021 (2)   | 0.021 (2)   | -0.0024 (17) | 0.0019 (18)  | -0.0041 (18) |
| C32 | 0.019 (2)   | 0.025 (2)   | 0.014 (2)   | -0.0050 (18) | 0.0008 (17)  | 0.0066 (18)  |
| C33 | 0.015 (2)   | 0.025 (2)   | 0.022 (2)   | -0.0053 (17) | 0.0033 (18)  | 0.0001 (19)  |
| C34 | 0.037 (3)   | 0.017 (2)   | 0.028 (2)   | 0.001 (2)    | -0.003 (2)   | 0.009 (2)    |
| C35 | 0.050 (3)   | 0.021 (2)   | 0.026 (2)   | -0.005 (2)   | -0.001 (2)   | 0.000 (2)    |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Mo1-03  | 1.702 (2) | C15—H15B | 0.9800    |
|---------|-----------|----------|-----------|
| Mo1—O4  | 1.702 (3) | C15—H15C | 0.9800    |
| Mo1-01  | 1.941 (2) | C16—C17  | 1.512 (5) |
| Mo1—O2  | 1.954 (3) | C16—H16A | 0.9900    |
| Mo1—N1  | 2.392 (3) | C16—H16B | 0.9900    |
| Mo1—N2  | 2.422 (3) | C17—C18  | 1.391 (5) |
| Cl1—C35 | 1.737 (4) | C17—C22  | 1.401 (5) |
| Cl2—C35 | 1.746 (4) | C18—C19  | 1.413 (6) |
| Cl3—C35 | 1.761 (5) | C19—C20  | 1.387 (5) |
| O1—C2   | 1.360 (4) | C19—C23  | 1.540 (6) |
| O2—C18  | 1.373 (4) | C20—C21  | 1.400 (5) |
| N1—C7   | 1.482 (5) | C20—H20  | 0.9500    |
| N1-C31  | 1.492 (5) | C21—C22  | 1.388 (5) |
| N1-C16  | 1.517 (5) | C21—C27  | 1.536 (5) |
| N2-C34  | 1.483 (5) | C22—H22  | 0.9500    |
| N2—C33  | 1.486 (5) | C23—C24  | 1.525 (6) |
| N2-C32  | 1.495 (5) | C23—C26  | 1.535 (6) |
| C1—C6   | 1.395 (5) | C23—C25  | 1.538 (7) |
| C1—C2   | 1.396 (5) | C24—H24A | 0.9800    |
| C1—C7   | 1.528 (6) | C24—H24B | 0.9800    |
| C2—C3   | 1.416 (5) | C24—H24C | 0.9800    |
|         |           |          |           |

| C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.384 (5)                | C25—H25A                   | 0.9800               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|----------------------|
| C3—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.536 (5)                | C25—H25B                   | 0.9800               |
| C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.393 (6)                | С25—Н25С                   | 0.9800               |
| C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9500                   | C26—H26A                   | 0.9800               |
| C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.394 (6)                | C26—H26B                   | 0.9800               |
| C5—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.531 (5)                | C26—H26C                   | 0.9800               |
| С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9500                   | C27—C30                    | 1.528 (5)            |
| C7—H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9900                   | C27—C29                    | 1.537 (6)            |
| C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 9900                   | $C_{27} - C_{28}$          | 1 541 (6)            |
| C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.531 (5)                | C28—H28A                   | 0.9800               |
| C8—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.536 (6)                | C28—H28B                   | 0.9800               |
| C8—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 539 (5)                | C28—H28C                   | 0.9800               |
| C9—H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9800                   | C29—H29A                   | 0.9800               |
| C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9800                   | C29—H29B                   | 0.9800               |
| C9—H9BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800                   | $C_{29}$ H29C              | 0.9800               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                   | $C_{20} = H_{200}$         | 0.9800               |
| C10 H10R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | C30 H30R                   | 0.9800               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                   | C30 H30C                   | 0.9800               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                   | $C_{30}$ $C_{31}$ $C_{32}$ | 1 501 (6)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                   | $C_{21}$ $U_{21}$          | 0.0000               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                   | С31—ПЗІА                   | 0.9900               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9800                   | Сээ нээл                   | 0.9900               |
| C12 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.519 (7)                | C32—H32A                   | 0.9900               |
| C12—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.528 (7)                | С32—Н32В                   | 0.9900               |
| C12—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.534 (7)                | C33—H33A                   | 0.9800               |
| CI3—HI3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | С33—Н33В                   | 0.9800               |
| С13—Н13В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | C33—H33C                   | 0.9800               |
| C13—H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | С34—Н34А                   | 0.9800               |
| C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | С34—Н34В                   | 0.9800               |
| C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | C34—H34C                   | 0.9800               |
| C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   | С35—Н35                    | 1.0000               |
| C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   |                            |                      |
| O3—Mo1—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.33 (13)              | С17—С16—Н16А               | 108.7                |
| $O_3 - M_0 1 - O_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98 81 (11)               | N1—C16—H16A                | 108.7                |
| 04—Mo1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96.06 (12)               | C17—C16—H16B               | 108.7                |
| Mol = 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99 29 (11)               | N1-C16-H16B                | 108.7                |
| 04 - Mo1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95 31 (12)               | H16A—C16—H16B              | 107.6                |
| 01 - Mo1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154.36(12)               | C18 - C17 - C22            | 107.0<br>1104(3)     |
| Mo1 = N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161 44 (12)              | C18 - C17 - C16            | 119.4(3)             |
| 04—Mo1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.18(12)                | $C^{22}$ $C^{17}$ $C^{16}$ | 121.6(3)             |
| $O_1 = MO_1 = N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.33(10)                | $C_{22} = C_{17} = C_{10}$ | 121.0(3)<br>117.2(3) |
| $O_2 M_{21} N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.33 (10)               | 02 - C18 - C19             | 117.3(3)<br>120.7(2) |
| $O_2 = MO_1 = N_1$<br>$O_2 = MO_1 = N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.75 (10)<br>86.01 (12) | 02-018-019                 | 120.7(3)<br>121.0(3) |
| $O_3$ —IVIO1—IN2<br>$O_4$ Mo1 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 164.76(12)               | $C_{1} - C_{10} - C_{19}$  | 121.9(3)             |
| 04 - 1001 - 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.70(12)               | $C_{20} = C_{19} = C_{10}$ | 110.0(4)             |
| $\begin{array}{c} 01 \\ \hline 02 \hline 02$ | 00.90 (11)<br>92.04 (11) | $C_{20} - C_{19} - C_{23}$ | 122.0(3)             |
| $V_2$ — $W_101$ — $N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02.04 (11)<br>74.57 (10) | $C_{10} = C_{19} = C_{23}$ | 122.0(3)             |
| $\frac{1}{10} - \frac{1}{10} = \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /4.5/(10)                | C19 - C20 - C21            | 124.0 (4)            |
| C2—OI—Mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.0 (2)                | C19—C20—H20                | 118.0                |

| C18—O2—Mo1               | 120.8 (2)            | C21—C20—H20                         | 118.0     |
|--------------------------|----------------------|-------------------------------------|-----------|
| C7—N1—C31                | 110.1 (3)            | C22—C21—C20                         | 117.9 (4) |
| C7—N1—C16                | 107.0 (3)            | C22—C21—C27                         | 123.1 (4) |
| C31—N1—C16               | 108.4 (3)            | C20—C21—C27                         | 118.9 (3) |
| C7—N1—Mo1                | 109.3 (2)            | C21—C22—C17                         | 120.6 (4) |
| C31—N1—Mo1               | 107.3 (2)            | C21—C22—H22                         | 119.7     |
| C16—N1—Mo1               | 114.6 (2)            | C17—C22—H22                         | 119.7     |
| C34—N2—C33               | 107.0 (3)            | C24—C23—C26                         | 107.7 (4) |
| C34—N2—C32               | 110.0 (3)            | C24—C23—C25                         | 109.5 (4) |
| C33—N2—C32               | 109.1 (3)            | C26—C23—C25                         | 106.8 (3) |
| C34—N2—Mo1               | 110.2 (2)            | C24—C23—C19                         | 109.7 (3) |
| C33—N2—Mo1               | 110.8 (2)            | C26—C23—C19                         | 111.2 (3) |
| $C_{32}$ N2 Mol          | 109.6(2)             | $C_{25} = C_{23} = C_{19}$          | 111.2 (0) |
| C6-C1-C2                 | 109.0(2)<br>1194(4)  | C23—C24—H24A                        | 109.5     |
| C6-C1-C7                 | 115.1(1)<br>115.5(3) | $C^{23}$ $C^{24}$ $H^{24B}$         | 109.5     |
| $C_{2}$ $C_{1}$ $C_{7}$  | 115.5(3)             | $H_{24} = C_{24} = H_{24} = H_{24}$ | 109.5     |
| $C_2 = C_1 = C_1$        | 125.0(3)<br>120.5(3) | $C_{23}$ $C_{24}$ $H_{24C}$         | 109.5     |
| 01 - 02 - 01             | 120.3(3)<br>118.8(3) | $H_{24} = 0.24 - 1124C$             | 109.5     |
| $C_1 = C_2 = C_3$        | 110.0(3)<br>120.7(2) | H24R C24 H24C                       | 109.5     |
| C1 = C2 = C3             | 120.7(3)             | $\Pi 24D - C 24 - \Pi 24C$          | 109.5     |
| C4 - C3 - C2             | 110.8(3)             | $C_{23}$ $C_{25}$ $H_{25A}$         | 109.5     |
| C4 - C3 - C8             | 121.0(3)             | C23—C25—H25B                        | 109.5     |
| $C_2 - C_3 - C_8$        | 121.6 (3)            | H25A—C25—H25B                       | 109.5     |
| C3-C4-C5                 | 124.6 (4)            | С23—С25—Н25С                        | 109.5     |
| C3—C4—H4                 | 117.7                | H25A—C25—H25C                       | 109.5     |
| C5—C4—H4                 | 117.7                | H25B—C25—H25C                       | 109.5     |
| C4—C5—C6                 | 116.5 (4)            | C23—C26—H26A                        | 109.5     |
| C4—C5—C12                | 122.4 (4)            | C23—C26—H26B                        | 109.5     |
| C6—C5—C12                | 121.1 (4)            | H26A—C26—H26B                       | 109.5     |
| C5—C6—C1                 | 121.9 (4)            | C23—C26—H26C                        | 109.5     |
| С5—С6—Н6                 | 119.1                | H26A—C26—H26C                       | 109.5     |
| С1—С6—Н6                 | 119.1                | H26B—C26—H26C                       | 109.5     |
| N1—C7—C1                 | 118.5 (3)            | C30—C27—C21                         | 109.6 (3) |
| N1—C7—H7A                | 107.7                | C30—C27—C29                         | 108.7 (3) |
| С1—С7—Н7А                | 107.7                | C21—C27—C29                         | 112.2 (3) |
| N1—C7—H7B                | 107.7                | C30—C27—C28                         | 108.4 (3) |
| C1—C7—H7B                | 107.7                | C21—C27—C28                         | 109.9 (3) |
| H7A—C7—H7B               | 107.1                | C29—C27—C28                         | 108.0 (4) |
| C9—C8—C10                | 106.8 (3)            | C27—C28—H28A                        | 109.5     |
| C9—C8—C3                 | 111.9 (3)            | C27—C28—H28B                        | 109.5     |
| C10—C8—C3                | 110.8 (3)            | H28A—C28—H28B                       | 109.5     |
| C9—C8—C11                | 107.1 (3)            | C27—C28—H28C                        | 109.5     |
| C10-C8-C11               | 109.3(3)             | H28A-C28-H28C                       | 109.5     |
| $C_{3}$ $C_{8}$ $C_{11}$ | 109.3(3)             | H28B-C28-H28C                       | 109.5     |
| С8—С9—Н9А                | 109 5                | C27—C29—H29A                        | 109.5     |
| C8—C9—H9R                | 109.5                | C27-C29-H29B                        | 109.5     |
| HOA_CO_HOR               | 109.5                | $H_{29}A = C_{29} = H_{29}B$        | 109.5     |
| C8_C9_H9RC               | 109.5                | C27 - C29 - H20C                    | 109.5     |
| HOA_CO_HORC              | 109.5                | $H_{29}A = C_{29} = H_{29}C$        | 109.5     |
| $11711 \cup 117DU$       | 107.5                | 1127n - 027 - 11270                 | 102.5     |

| 9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.8 (3)<br>9.5            |
|---------------------------------------------------------------------|
| 9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.8 (3)<br>9.5                   |
| 0.5<br>0.5<br>0.5<br>0.5<br>0.8 (3)<br>0.5                          |
| 9.5<br>9.5<br>9.8 (3)<br>9.5                                        |
| 9.5<br>9.5<br>9.8 (3)<br>9.5                                        |
| 9.5<br>9.8 (3)<br>9.5                                               |
| ).8 (3)<br>).5                                                      |
| 0.5                                                                 |
|                                                                     |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| 3.1                                                                 |
| .7 (3)                                                              |
| 0.3                                                                 |
| ).3                                                                 |
| ).3                                                                 |
| 0.3                                                                 |
| .9                                                                  |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| ).5                                                                 |
| .3 (3)                                                              |
| ).1 (2)                                                             |
| 0.0 (2)                                                             |
| 3.5                                                                 |
| 3.5                                                                 |
| 3.5                                                                 |
|                                                                     |
|                                                                     |
| 2.9 (4)                                                             |
|                                                                     |
| 2 (4)                                                               |
| 2 (4)<br>'.6 (4)                                                    |
| 2 (4)<br>7.6 (4)<br>5.7 (7)                                         |
| 2 (4)<br>7.6 (4)<br>5.7 (7)<br>(5)                                  |
| 2 (4)<br>7.6 (4)<br>5.7 (7)<br>(5)<br>77.7 (4)                      |
| 2 (4)<br>7.6 (4)<br>5.7 (7)<br>(5)<br>77.7 (4)<br>8.6 (4)           |
| 2 (4)<br>7.6 (4)<br>5.7 (7)<br>(5)<br>77.7 (4)<br>.8.6 (4)<br>2 (5) |
|                                                                     |

| N2—Mo1—O2—C18           | -140.8 (3) | C2—C3—C8—C11                  | -58.3 (5)  |
|-------------------------|------------|-------------------------------|------------|
| O3—Mo1—N1—C7            | -138.1 (3) | C4—C5—C12—C13                 | 102.5 (5)  |
| O4—Mo1—N1—C7            | 37.9 (2)   | C6—C5—C12—C13                 | -76.6 (5)  |
| O1—Mo1—N1—C7            | -58.3 (2)  | C4—C5—C12—C14                 | -18.7 (6)  |
| O2—Mo1—N1—C7            | 133.3 (2)  | C6-C5-C12-C14                 | 162.1 (4)  |
| N2—Mo1—N1—C7            | -142.2 (2) | C4—C5—C12—C15                 | -137.6 (4) |
| O3—Mo1—N1—C31           | -18.7 (5)  | C6-C5-C12-C15                 | 43.3 (6)   |
| O4—Mo1—N1—C31           | 157.3 (2)  | C7—N1—C16—C17                 | -85.1 (4)  |
| O1—Mo1—N1—C31           | 61.2 (2)   | C31—N1—C16—C17                | 156.2 (3)  |
| O2—Mo1—N1—C31           | -107.3(2)  | Mo1—N1—C16—C17                | 36.3 (4)   |
| N2—Mo1—N1—C31           | -22.8(2)   | N1—C16—C17—C18                | -60.3(5)   |
| O3—Mo1—N1—C16           | 101.8 (4)  | N1—C16—C17—C22                | 128.1 (4)  |
| O4—Mo1—N1—C16           | -82.2 (3)  | Mo1—O2—C18—C17                | 64.7 (4)   |
| O1—Mo1—N1—C16           | -178.4 (3) | Mo1-O2-C18-C19                | -114.9(3)  |
| O2—Mo1—N1—C16           | 13.2 (2)   | C22—C17—C18—O2                | -176.6(3)  |
| N2—Mo1—N1—C16           | 97.7 (3)   | C16—C17—C18—O2                | 11.6 (5)   |
| O3—Mo1—N2—C34           | 54.6 (3)   | C22—C17—C18—C19               | 3.0 (6)    |
| O4—Mo1—N2—C34           | -126.1 (5) | C16—C17—C18—C19               | -168.8(4)  |
| O1—Mo1—N2—C34           | 154.0 (3)  | O2—C18—C19—C20                | 177.7 (3)  |
| O2—Mo1—N2—C34           | -45.2 (3)  | C17—C18—C19—C20               | -1.9 (6)   |
| N1—Mo1—N2—C34           | -126.7 (3) | O2—C18—C19—C23                | -2.1(6)    |
| O3—Mo1—N2—C33           | -63.7 (2)  | C17—C18—C19—C23               | 178.4 (4)  |
| O4—Mo1—N2—C33           | 115.6 (5)  | C18—C19—C20—C21               | -1.2 (6)   |
| O1—Mo1—N2—C33           | 35.8 (2)   | C23—C19—C20—C21               | 178.5 (4)  |
| O2—Mo1—N2—C33           | -163.5 (2) | C19—C20—C21—C22               | 3.1 (6)    |
| N1—Mo1—N2—C33           | 115.0 (2)  | C19—C20—C21—C27               | -179.9 (4) |
| O3—Mo1—N2—C32           | 175.9 (3)  | C20-C21-C22-C17               | -2.0 (6)   |
| O4—Mo1—N2—C32           | -4.9 (6)   | C27—C21—C22—C17               | -178.8(4)  |
| O1—Mo1—N2—C32           | -84.7 (2)  | C18—C17—C22—C21               | -1.0 (6)   |
| O2—Mo1—N2—C32           | 76.0 (2)   | C16—C17—C22—C21               | 170.6 (4)  |
| N1—Mo1—N2—C32           | -5.4 (2)   | C20—C19—C23—C24               | -106.9(5)  |
| Mo1-01-C2-C1            | -46.0 (6)  | C18—C19—C23—C24               | 72.9 (5)   |
| Mo1-01-C2-C3            | 133.2 (3)  | C20-C19-C23-C26               | 12.1 (5)   |
| C6-C1-C2-O1             | -179.0(4)  | C18—C19—C23—C26               | -168.2(4)  |
| C7—C1—C2—O1             | 4.5 (7)    | C20-C19-C23-C25               | 131.4 (4)  |
| C6—C1—C2—C3             | 1.9 (7)    | C18—C19—C23—C25               | -48.9(5)   |
| C7—C1—C2—C3             | -174.7 (4) | C22—C21—C27—C30               | 112.4 (4)  |
| O1—C2—C3—C4             | -179.4 (4) | C20-C21-C27-C30               | -64.4(5)   |
| C1—C2—C3—C4             | -0.2 (6)   | C22—C21—C27—C29               | -8.4(5)    |
| 01-C2-C3-C8             | -1.2(6)    | C20—C21—C27—C29               | 174.7 (3)  |
| C1—C2—C3—C8             | 178.0 (4)  | C22—C21—C27—C28               | -128.7(4)  |
| C2-C3-C4-C5             | -0.5(6)    | C20—C21—C27—C28               | 54.5 (5)   |
| C8-C3-C4-C5             | -178.8(4)  | C7-N1-C31-C32                 | 168.7 (3)  |
| C3—C4—C5—C6             | -0.4 (6)   | C16—N1—C31—C32                | -74.5(4)   |
| C3-C4-C5-C12            | -179.5 (4) | Mo1—N1—C31—C32                | 49.8 (3)   |
| C4—C5—C6—C1             | 2.1 (6)    | $C_{34}$ N2 $C_{32}$ $C_{31}$ | 155.2 (3)  |
| C12-C5-C6-C1            | -178.7 (4) | $C_{33}$ N2 $C_{32}$ $C_{31}$ | -87.7(4)   |
| $C_2 - C_1 - C_6 - C_5$ | -2.9(7)    | $M_01-N2-C32-C31$             | 33.8 (4)   |
|                         | ( , )      |                               |            |

# supporting information

| C7—C1—C6—C5  | 174.0 (4) | N1—C31—C32—N2 | -58.0 (4) |
|--------------|-----------|---------------|-----------|
| C31—N1—C7—C1 | -69.4 (5) |               |           |