metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[bis(1*H*-pyrazol-1-yl)methane- $\kappa^2 N^2$, $N^{2'}$](formato- $\kappa^2 O$,O')copper(II) perchlorate

Cai-Juan Zhao and Rui-Feng Zhang*

School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China Correspondence e-mail: sxsdzrf@yahoo.com.cn

Received 29 August 2011; accepted 27 September 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.052; wR factor = 0.165; data-to-parameter ratio = 10.8.

In the crystal structure of the title compound, $[Cu(HCO_2)-(C_7H_8N_4)_2]ClO_4$, the Cu^{II} ion is octahedrally coordinated by one bidentate formate ion and two bidentate bis(1*H*-pyrazol-1-yl)methane ligands. There are C-H···O hydrogen bonds and π - π interactions [centroid–centroid distance = 3.487 (3) Å] in the crystal structure. The perchlorate anion is disordered over two positions with an occupancy ratio of 0.628 (9):0.372 (9).

Related literature

For applications of coordination polymers, see: Kitagawa *et al.* (2004); Robson (2000). For synthesis of the bis(pyrazol-1-yl)-methane ligand, see: Elguero *et al.* (1982).

b = 14.816 (3) Å

c = 12.273 (2) Å

 $\beta = 99.031 (3)^{\circ}$ V = 1983.6 (6) Å³

Experimental

m1486

Crystal data	
$[Cu(CHO_2)(C_7H_8N_4)_2]ClO_4$ M = 504.36	
$M_r = 504.50$ Monoclinic, $P2_1/n$	
a = 11.0458 (19) Å	

Z = 4Mo $K\alpha$ radiation $\mu = 1.29 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.768, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.165$ S = 1.023439 reflections 318 parameters

H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.07 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.62 \text{ e } \text{\AA}^{-3}$

T = 294 K

 $R_{\rm int} = 0.037$

122 restraints

 $0.22 \times 0.20 \times 0.16 \text{ mm}$

9920 measured reflections3439 independent reflections

2334 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13\cdots O2^{i}$	0.93	2.66	3.424 (7)	140
$C4-H4B\cdots O4^{ii}$	0.97	2.37	3.343 (14)	176
$C4-H4B\cdots O4'^{ii}$	0.97	2.66	3.580 (12)	159
$C11-H11B\cdots O5^{iii}$	0.97	2.60	3.525 (17)	161
$C11 - H11B \cdots O5'^{iii}$	0.97	2.32	3.286 (9)	176
C12−H12···O3 ⁱⁱⁱ	0.93	2.49	3.220 (14)	136
C12−H12···O3′ ⁱⁱⁱ	0.93	2.30	3.195 (10)	161
Symmetry codes: (i)	-x + 1, -y,	-z + 1; (ii)	-x + 1, -y + 2	1, -z; (iii)

-x + 1, -y + 1, -z + 1.

Data collection: *SMART-NT* (Bruker, 1998); cell refinement: *SAINT-NT* (Bruker, 1998); data reduction: *SAINT-NT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the Natural Science Foundation of Shanxi Normal University (ZR1012) and the Research Fund for the Doctoral Program of Shanxi Normal University (No. 833114).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2326).

References

Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.

Elguero, J., Ochoa, C., Julia, S., Sala, P., Mazo, J. & Sancho, M. (1982). J. Heterocycl. Chem. 19, 1141–1145.

Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.

Robson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735-3744.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1486 [doi:10.1107/S1600536811039675]

Bis[bis(1*H*-pyrazol-1-yl)methane- $\kappa^2 N^2$, N^2 '](formato- $\kappa^2 O$, O')copper(II) perchlorate

Cai-Juan Zhao and Rui-Feng Zhang

S1. Comment

Coordination polymers have received significant attention in recent years, primarily due to their potential applications in many areas such as catalysis, molecular adsorption, magnetism properties and non-linear optics (Kitagawa *et al.*, 2004; Robson, 2000). We report herein the structure of the title compound, namely $[Cu(L_1)_2(HCO_2)]ClO_4$ ($L_1 = bis(pyrazol-1-yl)methane$). The title compound crystallizes in monoclinic space group P2₁/n. The asymmetrical unit of the unit cell contains one Cu^{II} ion, one formic acid and two ligand L_1 (as shown in Fig. 1). The Cu ion is octahedrally coordinated to two oxygen atoms from one formate ion and four nitrogen atoms from two L_1 ligands. In the crystal structure, intermolecular C—H…O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2), and π - π interactions between two pyrazole rings (centroid-centroid distance is 3.487 Å) consolidate the crystal packing.

S2. Experimental

The ligand L_1 was synthesized according to literature (Elguero *et al.*, 1982). The title compound was prepared by adding 5 ml methanol solution of copper(II) perchlorate (0.3 mmol) to 10 ml aqueous solution of L_1 (0.5 mmol) and formic acid (0.3 mmol). The mixture was stirred for half an hour and filtered. The filtrate was slowly evaporated at room temperature to yield blue cubic crystals suitable for X-ray analysis. Analysis calculated for C₁₅H₁₇ClCuN₈: C 35.69, H 3.37, N 22.21%; found: C 33.21, H 3.09, N 24.03%.

S3. Refinement

Hydrogen atoms were included in calculated positions and refined with fixed thermal parameters riding on their parent atoms with C—H distances in the range of 0.93–0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. (Hydrogen atoms and the perchlorate ion are omitted for clarity.)

Figure 2

The packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Bis[bis(1*H*-pyrazol-1-yl)methane- $\kappa^2 N^2$, N^2](formato- $\kappa^2 O$, O')copper(II) perchlorate

Crystal data

[Cu(CHO₂)(C₇H₈N₄)₂]ClO₄ $M_r = 504.36$ Monoclinic, $P2_1/n$ a = 11.0458 (19) Åb = 14.816(3) Å c = 12.273 (2) Å $\beta = 99.031 (3)^{\circ}$ V = 1983.6 (6) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.768, \ T_{\rm max} = 1.000$

Refinement

Refinement on F² Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.052$ H-atom parameters constrained $wR(F^2) = 0.165$ $w = 1/[\sigma^2(F_0^2) + (0.099P)^2 + 1.4485P]$ S = 1.02where $P = (F_0^2 + 2F_c^2)/3$ 3439 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$ 318 parameters 122 restraints $\Delta \rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0099 (12) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $\theta = 2.2 - 25.4^{\circ}$ $\mu = 1.29 \text{ mm}^{-1}$ T = 294 KCubic, blue $0.22 \times 0.20 \times 0.16 \text{ mm}$ 9920 measured reflections 3439 independent reflections 2334 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.037$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3002 reflections

F(000) = 1028

 $h = -8 \rightarrow 13$ $k = -17 \rightarrow 16$

 $l = -14 \rightarrow 14$

 $D_{\rm x} = 1.689 {\rm Mg m^{-3}}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.51417 (5)	0.18886 (4)	0.24183 (4)	0.0406 (3)	
O1	0.4358 (5)	0.0590 (4)	0.1916 (4)	0.0968 (16)	
O2	0.5977 (5)	0.0465 (4)	0.2919 (4)	0.0984 (16)	
N1	0.6033 (4)	0.1867 (3)	0.1089 (3)	0.0448 (9)	
N2	0.5865 (3)	0.2511 (3)	0.0313 (3)	0.0431 (9)	
N3	0.4141 (3)	0.3339 (2)	0.0709 (3)	0.0410 (9)	
N4	0.3848 (3)	0.2847 (3)	0.1554 (3)	0.0451 (10)	
N5	0.6403 (3)	0.2826 (3)	0.3261 (3)	0.0427 (9)	
N6	0.6134 (3)	0.3316 (2)	0.4117 (3)	0.0388 (9)	
N7	0.4428 (3)	0.2470 (2)	0.4540 (3)	0.0405 (9)	
N8	0.4262 (4)	0.1837 (2)	0.3739 (3)	0.0457 (9)	
C1	0.6507 (5)	0.1161 (3)	0.0628 (4)	0.0550 (13)	
H1	0.6716	0.0613	0.0978	0.066*	
C2	0.6644 (5)	0.1366 (4)	-0.0450 (4)	0.0559 (13)	
H2	0.6959	0.0993	-0.0946	0.067*	
C3	0.6224 (4)	0.2217 (4)	-0.0628(4)	0.0504 (12)	
Н3	0.6188	0.2543	-0.1281	0.060*	
C4	0.5405 (4)	0.3388 (3)	0.0552 (4)	0.0435 (11)	
H4A	0.5896	0.3628	0.1213	0.052*	
H4B	0.5478	0.3796	-0.0053	0.052*	
C5	0.3162 (5)	0.3769 (3)	0.0150 (4)	0.0504 (12)	
Н5	0.3156	0.4142	-0.0460	0.061*	
C6	0.2190 (5)	0.3555 (4)	0.0647 (5)	0.0593 (14)	
H6	0.1385	0.3750	0.0451	0.071*	
C7	0.2642 (4)	0.2986 (4)	0.1508 (4)	0.0532 (13)	
H7	0.2170	0.2732	0.1993	0.064*	
C8	0.7606 (5)	0.2959 (3)	0.3287 (4)	0.0518 (13)	
H8	0.8065	0.2702	0.2793	0.062*	
C9	0.8077 (5)	0.3525 (4)	0.4143 (5)	0.0570 (13)	
Н9	0.8884	0.3718	0.4326	0.068*	
C10	0.7118 (4)	0.3739 (3)	0.4658 (4)	0.0496 (12)	
H10	0.7140	0.4109	0.5272	0.059*	
C11	0.4874 (4)	0.3361 (3)	0.4292 (4)	0.0417 (10)	
H11A	0.4371	0.3598	0.3635	0.050*	
H11B	0.4808	0.3767	0.4899	0.050*	
C12	0.4066 (4)	0.2174 (4)	0.5466 (4)	0.0522 (13)	
H12	0.4091	0.2498	0.6118	0.063*	
C13	0.3656 (5)	0.1318 (4)	0.5284 (4)	0.0574 (14)	
H13	0.3350	0.0940	0.5781	0.069*	
C14	0.3787 (5)	0.1122 (3)	0.4204 (4)	0.0513 (12)	
H14	0.3577	0.0576	0.3851	0.062*	
C15	0.5126 (7)	0.0079 (4)	0.2389 (5)	0.0663 (18)	
H15	0.5063	-0.0547	0.2345	0.080*	
C11	0.48695 (14)	0.56011 (9)	0.25933 (10)	0.0592 (4)	
O3	0.4395 (14)	0.6517 (6)	0.2731 (10)	0.094 (5)	0.372 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

~ (a 			
04	0.4250 (15)	0.5272 (9)	0.1570 (8)	0.110 (6)	0.372 (9)
05	0.4583 (17)	0.5091 (9)	0.3505 (10)	0.145 (7)	0.372 (9)
O6	0.6157 (8)	0.5647 (14)	0.2589 (18)	0.267 (14)	0.372 (9)
O3′	0.5275 (10)	0.6523 (5)	0.2451 (7)	0.125 (4)	0.628 (9)
O4′	0.5199 (12)	0.5081 (7)	0.1726 (8)	0.147 (4)	0.628 (9)
O5′	0.5488 (9)	0.5305 (5)	0.3645 (5)	0.094 (3)	0.628 (9)
O6′	0.3574 (7)	0.5562 (10)	0.2584 (13)	0.259 (9)	0.628 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cu1	0.0503 (4)	0.0379 (4)	0.0332 (4)	-0.0003 (2)	0.0051 (2)	0.0002 (2)
01	0.109 (4)	0.118 (4)	0.067 (3)	-0.004 (3)	0.023 (3)	-0.008 (3)
O2	0.108 (4)	0.127 (5)	0.063 (3)	-0.003 (3)	0.021 (3)	0.007 (3)
N1	0.053 (2)	0.044 (2)	0.037 (2)	0.0068 (18)	0.0069 (18)	0.0010 (18)
N2	0.044 (2)	0.048 (2)	0.038 (2)	0.0015 (17)	0.0081 (17)	0.0010 (18)
N3	0.042 (2)	0.039 (2)	0.040(2)	0.0013 (16)	0.0004 (17)	-0.0036 (17)
N4	0.044 (2)	0.055 (2)	0.036 (2)	-0.0080 (18)	0.0048 (18)	0.0002 (18)
N5	0.044 (2)	0.046 (2)	0.038 (2)	0.0073 (17)	0.0067 (17)	0.0045 (17)
N6	0.041 (2)	0.039 (2)	0.0358 (19)	-0.0028 (16)	0.0023 (17)	-0.0004 (16)
N7	0.041 (2)	0.042 (2)	0.040(2)	-0.0030 (16)	0.0080 (17)	-0.0003 (17)
N8	0.052 (2)	0.041 (2)	0.044 (2)	-0.0103 (18)	0.0100 (18)	0.0011 (18)
C1	0.057 (3)	0.050 (3)	0.060 (3)	0.008 (2)	0.014 (3)	-0.005 (2)
C2	0.052 (3)	0.066 (4)	0.052 (3)	-0.004 (3)	0.016 (2)	-0.016 (3)
C3	0.051 (3)	0.064 (3)	0.038 (2)	-0.002 (2)	0.011 (2)	-0.002(2)
C4	0.047 (3)	0.040 (3)	0.043 (2)	-0.001 (2)	0.004 (2)	0.005 (2)
C5	0.056 (3)	0.042 (3)	0.049 (3)	0.006 (2)	-0.006 (2)	-0.003 (2)
C6	0.040 (3)	0.057 (3)	0.075 (4)	0.011 (2)	-0.008 (3)	-0.016 (3)
C7	0.041 (3)	0.064 (3)	0.056 (3)	-0.003 (2)	0.009 (2)	-0.015 (3)
C8	0.048 (3)	0.055 (3)	0.055 (3)	0.005 (2)	0.014 (2)	0.016 (2)
C9	0.043 (3)	0.057 (3)	0.068 (3)	-0.009(2)	-0.003 (3)	0.018 (3)
C10	0.051 (3)	0.039 (3)	0.055 (3)	-0.008(2)	-0.005 (2)	0.003 (2)
C11	0.042 (2)	0.040 (3)	0.043 (2)	0.0008 (19)	0.007 (2)	-0.004(2)
C12	0.045 (3)	0.074 (4)	0.039 (3)	0.001 (2)	0.012 (2)	0.004 (2)
C13	0.054 (3)	0.070 (4)	0.052 (3)	0.002 (3)	0.017 (3)	0.018 (3)
C14	0.056 (3)	0.043 (3)	0.057 (3)	-0.007(2)	0.015 (2)	0.002 (2)
C15	0.111 (6)	0.027 (3)	0.067 (4)	-0.004 (3)	0.032 (4)	-0.001 (3)
Cl1	0.0867 (10)	0.0433 (8)	0.0434 (7)	0.0043 (6)	-0.0028 (7)	-0.0003 (5)
O3	0.114 (9)	0.069 (7)	0.095 (8)	0.029 (6)	0.004 (7)	-0.013 (6)
O4	0.136 (10)	0.099 (8)	0.087 (8)	-0.010 (7)	-0.006 (7)	-0.005 (7)
05	0.145 (7)	0.145 (7)	0.144 (7)	-0.0001 (11)	0.0230 (16)	0.0005 (11)
O6	0.267 (14)	0.267 (14)	0.267 (14)	0.0001 (11)	0.042 (2)	0.0000 (11)
O3′	0.156 (8)	0.089 (6)	0.121 (7)	-0.025 (5)	-0.004 (6)	0.010 (5)
O4′	0.167 (8)	0.148 (8)	0.137 (7)	-0.020 (6)	0.057 (6)	-0.036 (6)
O5′	0.130 (6)	0.074 (5)	0.070 (4)	-0.004 (4)	-0.011 (4)	0.026 (4)
O6′	0.216 (11)	0.289 (13)	0.272 (13)	0.000 (9)	0.038 (9)	-0.026 (9)

Geometric parameters (Å, °)

Cu1—N8	2.018 (4)	C4—H4A	0.9700
Cu1—N1	2.034 (4)	C4—H4B	0.9700
Cu1—N5	2.119 (4)	C5—C6	1.353 (7)
Cu1—O1	2.160 (5)	С5—Н5	0.9300
Cu1—N4	2.169 (4)	C6—C7	1.383 (8)
Cu1—O2	2.345 (6)	С6—Н6	0.9300
O1—C15	1.215 (7)	С7—Н7	0.9300
O2—C15	1.201 (7)	C8—C9	1.380 (8)
N1—C1	1.334 (6)	C8—H8	0.9300
N1—N2	1.340 (5)	C9—C10	1.354 (8)
N2—C3	1.350 (6)	С9—Н9	0.9300
N2—C4	1.443 (6)	C10—H10	0.9300
N3—C5	1.346 (6)	C11—H11A	0.9700
N3—N4	1.347 (5)	C11—H11B	0.9700
N3—C4	1.441 (6)	C12—C13	1.353 (8)
N4—C7	1.340 (6)	C12—H12	0.9300
N5—C8	1.339 (6)	C13—C14	1.388 (7)
N5—N6	1.347 (5)	C13—H13	0.9300
N6—C10	1.338 (6)	C14—H14	0.9300
N6—C11	1.442 (6)	C15—H15	0.9300
N7—C12	1.338 (6)	Cl1—O4′	1.408 (6)
N7—N8	1.350 (5)	Cl1—O4	1.419 (7)
N7—C11	1.458 (6)	Cl1—O6	1.425 (8)
N8—C14	1.347 (6)	Cl1—O5	1.427 (8)
C1—C2	1.388 (7)	Cl1—O6′	1.431 (7)
C1—H1	0.9300	Cl1—O5′	1.432 (5)
C2—C3	1.351 (7)	Cl1—O3′	1.456 (6)
С2—Н2	0.9300	Cl1—O3	1.473 (7)
С3—Н3	0.9300		
N8—Cu1—N1	176.90 (16)	С5—С6—Н6	127.2
N8—Cu1—N5	89.75 (15)	С7—С6—Н6	127.2
N1—Cu1—N5	92.19 (15)	N4—C7—C6	111.3 (5)
N8—Cu1—O1	88.46 (16)	N4—C7—H7	124.4
N1—Cu1—O1	88.83 (17)	С6—С7—Н7	124.4
N5—Cu1—O1	157.97 (19)	N5—C8—C9	111.2 (5)
N8—Cu1—N4	93.12 (15)	N5—C8—H8	124.4
N1—Cu1—N4	89.00 (15)	С9—С8—Н8	124.4
N5—Cu1—N4	98.13 (16)	C10—C9—C8	105.6 (4)
O1—Cu1—N4	103.89 (19)	С10—С9—Н9	127.2
N8—Cu1—O2	88.52 (16)	С8—С9—Н9	127.2
N1—Cu1—O2	88.64 (16)	N6—C10—C9	107.0 (5)
N5—Cu1—O2	105.09 (18)	N6—C10—H10	126.5
O1—Cu1—O2	52.9 (2)	C9—C10—H10	126.5
N4—Cu1—O2	156.73 (18)	N6—C11—N7	110.8 (3)
C15—O1—Cu1	101.5 (4)	N6—C11—H11A	109.5

C15—O2—Cu1	92.5(4)	N7—C11—H11A	109 5
C1 - N1 - N2	1060(4)	N6-C11-H11B	109.5
C1 - N1 - Cu1	128.6 (3)	N7_C11_H11B	109.5
$N_2 = N_1 = C_{11}$	120.0(3)	$H_{11A} = C_{11} = H_{11B}$	109.5
$N_2 - N_1 - C_{u_1}$	121.9(3) 110.7(4)	MT = C12 = C12	107.7(4)
N1 - N2 - C3	110.7 (4)	N/	107.7 (4)
N1 - N2 - C4	120.7 (4)	N = C12 = H12	126.2
$C_3 - N_2 - C_4$	128.6 (4)	C13—C12—H12	126.2
C5—N3—N4	112.2 (4)	C12—C13—C14	105.7 (4)
C5—N3—C4	128.7 (4)	С12—С13—Н13	127.1
N4—N3—C4	119.0 (4)	C14—C13—H13	127.1
C7—N4—N3	104.0 (4)	N8—C14—C13	110.3 (5)
C7—N4—Cu1	134.0 (3)	N8—C14—H14	124.9
N3—N4—Cu1	120.7 (3)	C13—C14—H14	124.9
C8—N5—N6	104.0 (4)	O2—C15—O1	113.0 (6)
C8—N5—Cu1	133.0 (3)	O2—C15—H15	123.5
N6—N5—Cu1	121.7 (3)	O1—C15—H15	123.5
C10—N6—N5	112.2 (4)	O4′—Cl1—O4	44.7 (6)
C10—N6—C11	129.2 (4)	O4′—C11—O6	69.3 (8)
N5—N6—C11	118.5 (4)	04-01-06	110.9 (7)
C12 - N7 - N8	111 5 (4)	04'-C11-05	1148(9)
C12 = N7 = C11	129.0 (4)	04-C11-05	1121(7)
N8_N7_C11	129.0(4) 110.3(3)	06	112.1(7) 111.9(7)
C14 N8 N7	117.3(3) 104.8(4)	00 - 01 - 05	111.9(7)
C14 = 108 = 107	104.0(4)	04 - C11 - 00	(0, 7, (7))
V14 $N7$ $N8$ $C=1$	129.7(3)	04— CII — 06	08.7(7)
N/—N8—Cui	122.0 (3)	06-01-06	1/9.2 (9)
NI—CI—C2	109.9 (5)	05-CII-O6'	68.9 (8)
N1—C1—H1	125.0	04′—C11—O5′	111.8 (6)
C2—C1—H1	125.0	O4—Cl1—O5′	142.0 (7)
C3—C2—C1	105.8 (4)	O6—Cl1—O5′	71.5 (8)
С3—С2—Н2	127.1	O5—Cl1—O5′	42.6 (7)
C1—C2—H2	127.1	O6'—Cl1—O5'	109.3 (6)
N2—C3—C2	107.5 (4)	O4'—Cl1—O3'	107.6 (5)
N2—C3—H3	126.2	O4—Cl1—O3′	109.3 (7)
С2—С3—Н3	126.2	O6—C11—O3′	68.2 (9)
N3—C4—N2	111.2 (4)	O5—Cl1—O3′	134.5 (8)
N3—C4—H4A	109.4	O6'—C11—O3'	111.3 (6)
N2-C4-H4A	109.4	05'—Cl1—O3'	106.4 (4)
N3—C4—H4B	109.4	04'-C11-03	1369(7)
N2 $C4$ H4B	109.4	04 Cl1 03	106.7(6)
	109.4	04 - 01 - 03	100.7(0)
N2 C5 C6	106.0 (5)	05 C11 02	109.2(7)
	106.9 (3)	03-01-03	103.7(0)
N3—C5—H5	126.6	06'-011-03	/0.4 (8)
С6—С5—Н5	126.6	05'	107.8 (6)
C5—C6—C7	105.7 (4)	03'—C11—O3	43.3 (7)
N8—Cu1—O1—C15	-89.2 (4)	C8—N5—N6—C11	176.7 (4)
N1-Cu1-O1-C15	89.3 (4)	Cu1—N5—N6—C11	-14.9 (5)
N5-Cu1-O1-C15	-3.7 (7)	C12—N7—N8—C14	-0.6 (5)

N4—Cu1—O1—C15	178.0 (4)	C11—N7—N8—C14	-176.6 (4)
O2—Cu1—O1—C15	0.1 (3)	C12—N7—N8—Cu1	-161.4(3)
N8—Cu1—O2—C15	89.1 (4)	C11—N7—N8—Cu1	22.6 (5)
N1—Cu1—O2—C15	-89.7 (4)	N1—Cu1—N8—C14	-10(3)
N5—Cu1—O2—C15	178.4 (3)	N5—Cu1—N8—C14	-139.0(5)
O1—Cu1—O2—C15	-0.1 (3)	O1—Cu1—N8—C14	19.0 (5)
N4—Cu1—O2—C15	-5.4 (6)	N4—Cu1—N8—C14	122.8 (4)
N8—Cu1—N1—C1	-6 (3)	O2—Cu1—N8—C14	-33.9 (5)
N5-Cu1-N1-C1	123.0 (4)	N1—Cu1—N8—N7	145 (3)
O1—Cu1—N1—C1	-35.0 (5)	N5—Cu1—N8—N7	16.5 (4)
N4— $Cu1$ — $N1$ — $C1$	-138.9(4)	O1—Cu1—N8—N7	174.6 (4)
O2— $Cu1$ — $N1$ — $C1$	17.9 (5)	N4—Cu1—N8—N7	-81.6(4)
N8— $Cu1$ — $N1$ — $N2$	150 (3)	Ω^2 —Cu1—N8—N7	121.6 (4)
N5— $Cu1$ — $N1$ — $N2$	-81.0(3)	$N_2 - N_1 - C_1 - C_2$	0.2 (6)
01— $Cu1$ — $N1$ — $N2$	1210(4)	Cu1-N1-C1-C2	159.2(4)
N4— $Cu1$ — $N1$ — $N2$	171(3)	N1-C1-C2-C3	-0.6(6)
Ω^2 — $Cu1$ — $N1$ — $N2$	1740(4)	N1 - N2 - C3 - C2	-0.6(5)
C1 - N1 - N2 - C3	0.2(5)	C4 - N2 - C3 - C2	176.9(4)
Cu1 - N1 - N2 - C3	-1605(3)	C1 - C2 - C3 - N2	0.7(6)
$C1_N1_N2_C4$	-1775(4)	$C_{1} = C_{2} = C_{3} = N_{2}$	-121.3(5)
$C_1 = N_1 = N_2 = C_4$ $C_{11} = N_1 = N_2 = C_4$	21.8 (5)	$N_4 N_3 C_4 N_2$	62.9(5)
$C_{5}N_{3}N_{4}C_{7}$	-0.1(5)	$N_1 = N_2 = C_4 = N_3$	-690(5)
C4 N3 N4 C7	1763(4)	$C_3 N_2 C_4 N_3$	113.8(5)
$C_{1} = N_{2} = N_{1} = C_{1}$	170.3(4) 168 7 (3)	N_{1} N_{2} C_{5} C_{6}	113.8(3)
C4 N3 N4 $Cu1$	-149(5)	C4 - N3 - C5 - C6	-175.9(4)
N8 Cu1 N4 C7	-33.5(4)	$N_{3} C_{5} C_{6} C_{7}$	-0.1(6)
$N_1 = C_{11} = N_1 = C_7$	1443(4)	$N_{3} = C_{3} = C_{0} = C_{7}$	0.1(0)
$N_1 - Cu_1 - N_4 - C_7$	-1237(4)	$\Gamma_{\rm NJ} = \Gamma_{\rm NJ} = C_{\rm NJ} = C_{\rm NJ}$	-166.6(4)
N_{3} Cu_{1} N_{4} C_{7}	123.7(4)	$C_{1} = N_{1} = C_{1} = C_{0}$	100.0(4)
$O_1 = C_{11} = N_1 = C_7$	55.7 (5) 60.1 (6)	$N_{5} = C_{5} = C_{7} = 104$	-0.3(5)
$N_2 = Cu_1 = N_4 = C_7$	161.7(3)	$\frac{1}{10} - \frac{1}{10} $	-166.8(3)
$N_{1} = C_{11} = N_{1} = N_{1}$	-20.6(3)	N5 C8 C0 C10	100.8(3)
$N_1 - Cu_1 - N_4 - N_3$ N5 Cu ₁ N/4 N3	20.0(3)	$N_{5} = C_{6} = C_{7} = C_{10}$	0.4(0)
$N_{1} = Cu_{1} = N_{1} = N_{2}$	-1001(3)	$N_{3} = N_{0} = C_{10} = C_{9}$	-176.0(4)
$O_1 = Cu_1 = N_4 = N_3$	-109.1(3) -104.8(4)	C11 - N0 - C10 - C9	-170.0(4)
$V_2 = Cu_1 = N_4 = N_5$	-104.8(4) 143.0(4)	C_{0} C_{0} C_{10} C_{10} N_{0} N_{0} C_{10} N_{0} N_{0} C_{10} N_{0} N_{0} C_{10} N_{0}	-0.3(3)
$N_{0} = C_{0} = C_{0}$ $N_{1} = C_{0} = C_{0}$	(4)	N5 N6 C11 N7	120.8(3)
NI = CuI = NS = C8	-33.7(4)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10}$	03.2(3)
VI = CuI = NS = C8	38.0(0)	12 - 10 - 11 - 100	(113.3(3))
N4 - Cul - N5 - C8	-123.0(4)	N8 = N7 = C12 = C12	-69.2(5)
$V_2 = Cu_1 = N_3 = C_8$	33.3(4)	$N_{0} = N_{1} = C_{12} = C_{13}$	0.3(0)
NS-Cul-NS-N6	-20.7(3)	C11 - N / - C12 - C13	1/6.1(4)
NI-CuI-N5-N6	161./(3)	N/-C12-C13-C14	-0.3(6)
UI - UI - N5 - N6	-106.0(5)	$N = N\delta = C14 = C13$	0.4 (b) 150 1 (4)
N4 - U1 - N5 - N6	/2.4 (3)	$C_{12} = C_{12} = C_{14} = C_{13}$	139.1 (4)
02— 01 — $N5$ — $N6$	-109.1(3)	C_{12} $-C_{13}$ $-C_{14}$ $-N_8$	0.0 (6)
$V_{0} = N_{0} = N_{0} = N_{0}$	0.1(5)	Cu1 - 02 - C15 - 01	0.2 (5)
Cu1—N5—N6—C10	168.5 (3)	Cu1—O1—C15—O2	-0.2 (6)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
C13—H13…O2 ⁱ	0.93	2.66	3.424 (7)	140
C4—H4 <i>B</i> ····O4 ⁱⁱ	0.97	2.37	3.343 (14)	176
C4—H4 <i>B</i> ····O4′ ⁱⁱ	0.97	2.66	3.580 (12)	159
C11—H11 <i>B</i> ···O5 ⁱⁱⁱ	0.97	2.60	3.525 (17)	161
C11—H11 <i>B</i> ···O5′ ⁱⁱⁱ	0.97	2.32	3.286 (9)	176
C12—H12···O3 ⁱⁱⁱ	0.93	2.49	3.220 (14)	136
C12—H12…O3′ ⁱⁱⁱ	0.93	2.30	3.195 (10)	161

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+1, -*y*+1, -*z*+1.