organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Carboxy-2-(2-cyclopropylamino-4methylpyridinium-3-ylamino)pyridinium dinitrate dihydrate

Qiong Dong,^a Shouwen Jin,^b* Kai Tong,^a Haidong He^a and YuanQi Yu^a

^aFaculty of Science ZheJiang A & F University, Lin'An 311300, People's Republic of China, and ^bTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China

Correspondence e-mail: JINSWw@yahoo.cn

Received 28 August 2011; accepted 30 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.084; *wR* factor = 0.295; data-to-parameter ratio = 12.6.

The two benzene rings in the cation of the title compound, $C_{15}H_{18}N_4O_2^{2+}\cdot 2NO_3^{-}\cdot 2H_2O$, are almost perpendicular [dihedral angle = 91.6 (2)°]. In the crystal, the components are linked by $O-H\cdots O$, $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Related literature

For general background to hydrogen-bonding interactions, see: Lam & Mak (2000); Desiraju (2002); Liu *et al.* (2008); Biswas *et al.* (2009); Jin *et al.* (2010).

Experimental

Crystal data $C_{15}H_{18}N_4O_2^{2+}\cdot 2NO_3^{-}\cdot 2H_2O$ $M_r = 446.39$ Orthorhombic, *Pbca* a = 7.4463 (6) Å b = 15.0032 (14) Å c = 35.975 (2) Å

V = 4019.0 (6) Å³ Z = 8Mo K α radiation $\mu = 0.13$ mm⁻¹ T = 298 K $0.44 \times 0.36 \times 0.34$ mm

Data collection

Bruker SMART CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.947, T_{max} = 0.958$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.084 \\ wR(F^2) &= 0.295 \\ S &= 1.04 \\ 3540 \text{ reflections} \end{split} \qquad \begin{array}{l} 281 \text{ parameters} \\ H\text{-atom parameters constrained} \\ \Delta\rho_{\text{max}} &= 1.01 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.56 \text{ e } \text{ Å}^{-3} \\ \end{array}$$

18931 measured reflections

 $R_{\rm int} = 0.062$

3540 independent reflections

1964 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O10-H10D\cdots O8^{i}$	0.85	2.10	2.942 (8)	171
$O10-H10C \cdot \cdot \cdot O4^{ii}$	0.85	2.19	3.037 (7)	172
$O9 - H9D \cdots O5^{iii}$	0.85	2.55	3.089 (7)	123
$O9-H9D\cdots O4^{iii}$	0.85	2.07	2.916 (6)	174
$O9-H9C\cdots O1^{iv}$	0.85	1.96	2.809 (5)	173
$O2-H2A\cdots O9^{v}$	0.82	1.73	2.535 (5)	168
$N4-H4\cdots O7^{vi}$	0.86	1.94	2.787 (6)	166
N3-H3···O6	0.86	2.01	2.746 (6)	143
$N2-H2\cdots O3$	0.86	1.98	2.810 (5)	163
$N1 - H1 \cdots O10$	0.86	2.22	2.900 (6)	136
$N1 - H1 \cdots O1$	0.86	2.05	2.697 (4)	131
$C4-H4A\cdots O5^{vii}$	0.93	2.34	3.162 (7)	147
C6-H6···O3 ^{iv}	0.93	2.26	3.161 (6)	162
$C11-H11\cdots O8^{vi}$	0.93	2.57	3.252 (8)	131
$C15-H15A\cdots O3^{ii}$	0.96	2.58	3.533 (7)	174

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, z$; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) $x - \frac{1}{2}, y, -z + \frac{3}{2}$; (vii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge financial support by the Education Office Foundation of ZheJiang Province (project No. Y201017321) and the Innovation Project of ZheJiang A & F University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2324).

References

- Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). *Eur. J. Inorg. Chem.* pp. 2238–2246.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
- Jin, S. W., Zhang, W. B., Liu, L., Gao, H. F., Wang, D. Q., Chen, R. P. & Xu, X. L. (2010). J. Mol. Struct. 975, 128–136.
- Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.
- Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Zhong, F., Shi, Q. Z. & Peng, S. M. (2008). *Inorg. Chim. Acta*, **361**, 173–182.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2864 [doi:10.1107/S1600536811040323]

3-Carboxy-2-(2-cyclopropylamino-4-methylpyridinium-3-ylamino)pyridinium dinitrate dihydrate

Qiong Dong, Shouwen Jin, Kai Tong, Haidong He and YuanQi Yu

S1. Comment

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). Hydrogen bonding is one of the most important noncovalent interactions that determines and controls the assembly of molecules and ions (Desiraju, 2002, Liu *et al.*, 2008, Biswas *et al.*, 2009).

Organic salts based on hydrogen bonding are also a research field receiving great attention in recent years. As an extension of our study concentrating on hydrogen bonded assembly of organic acid and organic base (Jin *et al.*, 2010), herein we report the crystal structure of 2-(2-(cyclopropylamino)-4-methylpyridinium-3-ylamino) nicotinic acid dinitrate dihydrate.

The crystal of the title compound of the formula $C_{15}H_{22}N_6O_{10}$ was obtained by recrystallization of 2-(2-(cyclopropyl-amino)-4-methylpyridin-3-ylamino) nicotinic acid from aqueous solution of HNO₃.

The asymmetric unit of the compound consists of one dication, two nitrate anions, and two free water molecules (Fig. 1), respectively.

The compound is an organic salt. At every cation there are bound two nitrate anions through the N—H···O hydrogen bond. And the two water molecules were connected with carbonyl and OH of the carboxyl group of the cation rspectively *via* the O—H···O hydrogen bond. Under these interactions the cation, the anions, and the water molecules form a pentacomponent adduct. Such kind of adducts were connected together by the N—H···O, O—H···O, O-pi, and CH₂—O interactions to form a one-dimensional chain running along the *a* axis direction. Two such chains were joined together *via* the CH—O, and CH₂—O interactions to form double chain structure (Fig. 2). The double chains were linked together *via* the water molecule that is bound with the carboxyl group to form two-dimensional sheet extending along the *ac* plane. The two-dimensional sheets further stacked along the *b* axis direction through the nitrate group to form three-dimensional layer network structure.

S2. Experimental

A solution of 2-(2-(cyclopropylamino)-4-methylpyridin-3-ylamino) nicotinic acid (28.4 mg, 0.1 mmol) was dissolved in 5 ml of water and 1 ml of conc. HNO₃ under continuous stirring. The solution was stirred for about 1 h at room temperature, then the solution was filtered into a test tube. The solution was left standing at room temperature for several days, colorless block crystals were isolated after slow evaporation of the solution in air at ambient temperature. The crystals were collected and dried in air to give the title compound.

S3. Refinement

Hydrogen atoms attached to the C atoms were placed in calculated positions with d(C-H) = 0.93-0.97 Å. Positions of the hydrogen atoms at the NH, OH, and COOH groups were located from the Fourier difference syntheses and refined independently. All U_{iso} values were restrained on U_{eq} values of the parent atoms.

Figure 1

The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The one-dimensional doublechain formed through CH—O, and CH₂—O interactions running along the *a* axis direction.

3-Carboxy-2-(2-cyclopropylamino-4-methylpyridinium-3-ylamino)pyridinium dinitrate dihydrate

Crystal data

 $C_{15}H_{18}N_4O_2^{2+}\cdot 2NO_3^{-}\cdot 2H_2O$ $M_r = 446.39$ Orthorhombic, *Pbca* a = 7.4463 (6) Å b = 15.0032 (14) Å c = 35.975 (2) Å V = 4019.0 (6) Å³ Z = 8F(000) = 1872

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.947, T_{\max} = 0.958$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.295$ S = 1.043540 reflections $D_x = 1.475 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 887 reflections $\theta = 2.7-20.4^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.44 \times 0.36 \times 0.34 \text{ mm}$

18931 measured reflections 3540 independent reflections 1964 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -17 \rightarrow 17$ $l = -33 \rightarrow 42$

281 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_0^2) + (0.1827P)^2]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.4596 (5)	0.5310(2)	0.60657 (9)	0.0449 (9)	
H1	0.3541	0.5202	0.5979	0.054*	
N2	0.3878 (5)	0.6437 (2)	0.66673 (11)	0.0551 (11)	
H2	0.3653	0.6592	0.6442	0.066*	
N3	0.7403 (5)	0.5937 (2)	0.59845 (10)	0.0467 (9)	
Н3	0.7653	0.5784	0.6209	0.056*	
N4	0.4826 (5)	0.5354 (3)	0.70757 (10)	0.0529 (10)	
H4	0.4567	0.5709	0.7256	0.064*	
N5	0.3305 (7)	0.7673 (3)	0.58219 (12)	0.0604 (11)	
N6	0.9273 (8)	0.5859 (4)	0.69535 (14)	0.0758 (14)	
01	0.2512 (4)	0.5323 (2)	0.54524 (9)	0.0611 (10)	
O2	0.3557 (5)	0.6001 (2)	0.49541 (8)	0.0666 (10)	
H2A	0.2583	0.5853	0.4868	0.100*	
03	0.2495 (5)	0.7115 (3)	0.59976 (12)	0.0820 (13)	
O4	0.4801 (6)	0.7916 (3)	0.59228 (13)	0.0889 (13)	
05	0.2641 (9)	0.7961 (4)	0.55453 (15)	0.143 (2)	
06	0.8651 (6)	0.6237 (4)	0.66917 (13)	0.1026 (15)	
07	0.8916 (9)	0.6246 (4)	0.72714 (14)	0.139 (2)	
08	1.0224 (9)	0.5242 (4)	0.69928 (17)	0.128 (2)	
O9	0.9337 (5)	0.4322 (3)	0.53919 (11)	0.0792 (12)	
H9C	1.0258	0.4656	0.5397	0.095*	
H9D	0.9505	0.3895	0.5543	0.095*	
O10	0.0912 (7)	0.4787 (3)	0.62102 (13)	0.1114 (17)	
H10C	0.0673	0.4250	0.6152	0.134*	
H10D	0.0670	0.4862	0.6439	0.134*	
C1	0.3673 (6)	0.5733 (3)	0.52926 (12)	0.0470 (11)	
C2	0.5772 (6)	0.5728 (3)	0.58415 (11)	0.0397 (10)	
C3	0.5404 (6)	0.5972 (3)	0.54734 (11)	0.0417 (10)	
C4	0.6701 (6)	0.6429 (3)	0.52733 (12)	0.0502 (11)	
H4A	0.6464	0.6598	0.5030	0.060*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C5	0.8353 (7)	0.6638 (3)	0.54316 (13)	0.0564 (12)
Н5	0.9221	0.6947	0.5298	0.068*
C6	0.8655 (6)	0.6383 (3)	0.57803 (13)	0.0529 (12)
H6	0.9758	0.6514	0.5889	0.063*
C7	0.4545 (6)	0.5623 (3)	0.67250 (12)	0.0474 (11)
C8	0.4974 (6)	0.5038 (3)	0.64316 (11)	0.0424 (10)
C9	0.5662 (6)	0.4192 (3)	0.65037 (13)	0.0492 (12)
C10	0.5932 (7)	0.3961 (3)	0.68769 (15)	0.0611 (14)
H10	0.6408	0.3405	0.6935	0.073*
C11	0.5509 (7)	0.4537 (4)	0.71544 (14)	0.0612 (14)
H11	0.5688	0.4370	0.7401	0.073*
C12	0.3515 (8)	0.7062 (3)	0.69516 (15)	0.0675 (15)
H12	0.2439	0.6942	0.7100	0.081*
C13	0.4961 (10)	0.7496 (4)	0.7146 (2)	0.0862 (19)
H13A	0.6180	0.7342	0.7076	0.103*
H13B	0.4794	0.7625	0.7408	0.103*
C14	0.3883 (10)	0.7997 (4)	0.6879 (2)	0.091 (2)
H14A	0.3044	0.8434	0.6975	0.110*
H14B	0.4431	0.8151	0.6643	0.110*
C15	0.6116 (8)	0.3554 (4)	0.62113 (16)	0.0719 (16)
H15A	0.5122	0.3158	0.6172	0.108*
H15B	0.7152	0.3216	0.6285	0.108*
H15C	0.6374	0.3869	0.5985	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.042 (2)	0.058 (2)	0.0342 (19)	-0.0082 (18)	-0.0056 (16)	0.0035 (17)
N2	0.067 (3)	0.053 (2)	0.045 (2)	0.005 (2)	-0.0016 (19)	-0.0010 (18)
N3	0.041 (2)	0.053 (2)	0.046 (2)	-0.0064 (17)	-0.0023 (17)	-0.0017 (17)
N4	0.059 (3)	0.065 (3)	0.035 (2)	-0.003 (2)	-0.0017 (18)	0.0049 (19)
N5	0.066 (3)	0.058 (2)	0.058 (3)	-0.004 (2)	-0.005 (2)	0.005 (2)
N6	0.077 (4)	0.097 (4)	0.054 (3)	-0.022 (3)	-0.015 (3)	0.007 (3)
01	0.051 (2)	0.088 (2)	0.0446 (18)	-0.0183 (18)	-0.0130 (16)	0.0122 (17)
02	0.065 (2)	0.097 (3)	0.0374 (19)	-0.0155 (19)	-0.0153 (16)	0.0130 (17)
03	0.072 (3)	0.076 (2)	0.098 (3)	-0.018 (2)	-0.026 (2)	0.032 (2)
O4	0.077 (3)	0.097 (3)	0.092 (3)	-0.028 (2)	-0.005 (2)	-0.003 (2)
05	0.155 (6)	0.173 (5)	0.102 (4)	-0.018 (4)	-0.050 (4)	0.071 (4)
O6	0.100 (4)	0.142 (4)	0.066 (3)	0.002 (3)	-0.023 (3)	0.007 (3)
07	0.174 (6)	0.179 (5)	0.064 (3)	0.041 (5)	-0.020 (3)	-0.015 (3)
08	0.143 (5)	0.115 (4)	0.126 (5)	0.025 (4)	0.030 (4)	0.040 (4)
09	0.076 (3)	0.079 (2)	0.083 (3)	-0.015 (2)	-0.037 (2)	0.016 (2)
O10	0.128 (4)	0.121 (4)	0.085 (3)	-0.014 (3)	0.004 (3)	-0.013 (3)
C1	0.050 (3)	0.057 (3)	0.034 (2)	-0.002 (2)	-0.005 (2)	-0.001 (2)
C2	0.037 (2)	0.044 (2)	0.037 (2)	-0.0040 (19)	-0.0001 (18)	-0.0010 (18)
C3	0.042 (2)	0.046 (2)	0.037 (2)	-0.0034 (19)	-0.0008 (19)	-0.0001 (19)
C4	0.053 (3)	0.059 (3)	0.039 (2)	-0.006 (2)	-0.001 (2)	0.007 (2)
C5	0.049 (3)	0.064 (3)	0.056 (3)	-0.010 (2)	0.006 (2)	0.006 (2)

supporting information

C6	0.040 (3)	0.064 (3)	0.055 (3)	-0.009 (2)	-0.005 (2)	-0.002 (2)
C7	0.051 (3)	0.051 (3)	0.040 (3)	-0.003 (2)	-0.003 (2)	0.002 (2)
C8	0.040 (2)	0.052 (3)	0.035 (2)	-0.006 (2)	-0.0019 (19)	0.0020 (19)
C9	0.052 (3)	0.050 (3)	0.046 (3)	-0.004 (2)	-0.001 (2)	0.002 (2)
C10	0.064 (3)	0.056 (3)	0.062 (3)	0.009 (2)	-0.008 (3)	0.014 (3)
C11	0.072 (4)	0.070 (3)	0.041 (3)	-0.001 (3)	-0.005 (2)	0.013 (3)
C12	0.069 (4)	0.067 (3)	0.066 (3)	0.001 (3)	0.003 (3)	-0.015 (3)
C13	0.091 (5)	0.074 (4)	0.093 (5)	0.000 (3)	-0.007 (4)	-0.022 (3)
C14	0.113 (6)	0.067 (4)	0.095 (5)	0.019 (4)	-0.011 (4)	-0.018 (3)
C15	0.080 (4)	0.067 (3)	0.069 (4)	0.006 (3)	0.011 (3)	-0.008 (3)

Geometric parameters (Å, °)

N1—C2	1.346 (5)	C2—C3	1.401 (6)
N1-C8	1.406 (5)	C3—C4	1.386 (6)
N1—H1	0.8600	C4—C5	1.392 (7)
N2—C7	1.335 (6)	C4—H4A	0.9300
N2-C12	1.414 (6)	C5—C6	1.331 (6)
N2—H2	0.8600	С5—Н5	0.9300
N3—C2	1.356 (5)	С6—Н6	0.9300
N3—C6	1.363 (6)	C7—C8	1.410 (6)
N3—H3	0.8600	C8—C9	1.393 (6)
N4—C7	1.341 (5)	C9—C10	1.401 (7)
N4—C11	1.358 (6)	C9—C15	1.462 (7)
N4—H4	0.8600	C10—C11	1.357 (7)
N5—O5	1.192 (6)	C10—H10	0.9300
N5—O3	1.210 (5)	C11—H11	0.9300
N5—O4	1.227 (6)	C12—C13	1.440 (8)
N6—O8	1.174 (7)	C12—C14	1.452 (8)
N6	1.193 (6)	C12—H12	0.9800
N6—07	1.310(7)	C13—C14	1.460 (9)
01—C1	1.207 (5)	C13—H13A	0.9700
O2—C1	1.285 (5)	C13—H13B	0.9700
O2—H2A	0.8200	C14—H14A	0.9700
О9—Н9С	0.8500	C14—H14B	0.9700
O9—H9D	0.8501	C15—H15A	0.9600
O10—H10C	0.8499	C15—H15B	0.9600
O10—H10D	0.8501	C15—H15C	0.9600
C1—C3	1.488 (6)		
C2—N1—C8	124.4 (4)	N2—C7—N4	118.7 (4)
C2—N1—H1	117.8	N2—C7—C8	122.5 (4)
C8—N1—H1	117.8	N4—C7—C8	118.8 (4)
C7—N2—C12	124.4 (4)	C9—C8—N1	120.8 (4)
C7—N2—H2	117.8	C9—C8—C7	120.7 (4)
C12—N2—H2	117.8	N1—C8—C7	118.4 (4)
C2—N3—C6	121.5 (4)	C8—C9—C10	117.2 (4)
C2—N3—H3	119.3	C8—C9—C15	123.2 (4)

C6—N3—H3	119.3	C10—C9—C15	119.6 (5)
C7—N4—C11	121.8 (4)	C11—C10—C9	120.9 (5)
C7—N4—H4	119.1	C11—C10—H10	119.5
C11—N4—H4	119.1	C9—C10—H10	119.5
O5—N5—O3	118.6 (5)	C10-C11-N4	120.6 (4)
O5—N5—O4	121.1 (5)	C10—C11—H11	119.7
O3—N5—O4	120.3 (5)	N4—C11—H11	119.7
08—N6—06	134.8 (7)	N2—C12—C13	120.6 (5)
08—N6—07	111.5 (6)	N2-C12-C14	118.3 (5)
06—N6—07	113.5 (6)	C_{13} C_{12} C_{14}	60.6 (4)
C1 - O2 - H2A	109 5	N2-C12-H12	115.4
H9C - O9 - H9D	108.2	C_{13} C_{12} H_{12}	115.4
$H_{10C} \cap 0 H_{10D}$	108.6	$C_{12} = C_{12} = H_{12}$	115.4
$\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 0 \\ 1 & 0 \\ \end{array}$	100.0 124.3(4)	$C_{12} = C_{12} = C_{12} = C_{12}$	60 1 <i>(</i> 4)
01 - 01 - 02	124.3(4)	C12 - C13 - C14	117.8
01 - 01 - 03	122.4(4)	C14 $C12$ $U12A$	117.0
02-01-03	115.4 (4)	C12 - C12 - H12D	117.0
N1 - C2 - N3	117.6 (4)	С12—С13—Н13В	117.8
N1 - C2 - C3	124.1 (4)	C14—C13—H13B	117.8
N3-C2-C3	118.3 (4)	H13A—C13—H13B	114.9
C4—C3—C2	118.9 (4)	C12—C14—C13	59.3 (4)
C4—C3—C1	119.7 (4)	C12—C14—H14A	117.8
C2—C3—C1	121.3 (4)	C13—C14—H14A	117.8
C3—C4—C5	121.0 (4)	C12—C14—H14B	117.8
C3—C4—H4A	119.5	C13—C14—H14B	117.8
C5—C4—H4A	119.5	H14A—C14—H14B	115.0
C6—C5—C4	118.1 (4)	C9—C15—H15A	109.5
С6—С5—Н5	121.0	C9—C15—H15B	109.5
C4—C5—H5	121.0	H15A—C15—H15B	109.5
C5—C6—N3	122.3 (4)	С9—С15—Н15С	109.5
С5—С6—Н6	118.9	H15A—C15—H15C	109.5
N3—C6—H6	118.9	H15B—C15—H15C	109.5
C8—N1—C2—N3	-3.2(6)	C11—N4—C7—C8	-0.1(7)
C8—N1—C2—C3	178.0 (4)	C2—N1—C8—C9	-90.6 (5)
C6—N3—C2—N1	-178.0(4)	C2—N1—C8—C7	93.0 (5)
C6—N3—C2—C3	0.9 (6)	N2—C7—C8—C9	-179.7(4)
N1-C2-C3-C4	177 7 (4)	N4-C7-C8-C9	06(7)
$N_3 - C_2 - C_3 - C_4$	-11(6)	N_{2} C_{7} C_{8} N_{1}	-33(6)
$N_1 - C_2 - C_3 - C_1$	-3.7(6)	N4-C7-C8-N1	177.0(4)
$N_3 = C_2 = C_3 = C_1$	1775(4)	N1 - C8 - C9 - C10	-1774(4)
01 $C1$ $C3$ $C4$	177.3(4) 178.8(4)	C7 C8 C9 C10	-11(7)
01 - 01 - 03 - 04	-10(6)	$C_{}C_{-$	1.1(7)
02 - C1 - C3 - C4	1.0(0)	C7 C8 C9 C15	3.1(7)
01 - 01 - 03 - 02	-170.5(4)	$C_{7} = C_{7} = C_{13}$	1 / 7 . 4 (3)
02 - 01 - 03 - 02	1/9.3(4)	$C_0 - C_9 - C_{10} - C_{11}$	1.1(7)
$C_2 - C_3 - C_4 - C_5$	0.3(7)	$C_{13} = C_{9} = C_{10} = C_{11} = C_{11}$	-1/9.5(3)
$C_1 - C_3 - C_4 - C_5$	-1/8.0(4)	$C7 \qquad N4 \qquad C11 \qquad C12$	-0.5(8)
	0.5 (7)	C = N4 - C11 - C10	0.0 (8)
C4-C5-C6-N3	-0.6 (7)	C / - N2 - C12 - C13	/1.3 (7)

supporting information

C2—N3—C6—C5	0.0 (7)	C7—N2—C12—C14	142.1 (6)
C12—N2—C7—N4	3.0 (7)	N2-C12-C13-C14	107.4 (6)
C12—N2—C7—C8	-176.6 (5)	N2-C12-C14-C13	-111.1 (6)
C11—N4—C7—N2	-179.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
010—H10D····O8 ⁱ	0.85	2.10	2.942 (8)	171
O10—H10 <i>C</i> ···O4 ⁱⁱ	0.85	2.19	3.037 (7)	172
O9—H9 <i>D</i> ···O5 ⁱⁱⁱ	0.85	2.55	3.089 (7)	123
O9—H9 <i>D</i> ···O4 ⁱⁱⁱ	0.85	2.07	2.916 (6)	174
O9—H9 <i>C</i> ···O1 ^{iv}	0.85	1.96	2.809 (5)	173
O2— $H2A$ ···O9 ^v	0.82	1.73	2.535 (5)	168
$N4$ — $H4$ ···O 7^{vi}	0.86	1.94	2.787 (6)	166
N3—H3…O6	0.86	2.01	2.746 (6)	143
N2—H2…O3	0.86	1.98	2.810 (5)	163
N1—H1…O10	0.86	2.22	2.900 (6)	136
N1—H1…O1	0.86	2.05	2.697 (4)	131
C4—H4A····O5 ^{vii}	0.93	2.34	3.162 (7)	147
C6—H6…O3 ^{iv}	0.93	2.26	3.161 (6)	162
C11—H11····O8 ^{vi}	0.93	2.57	3.252 (8)	131
C15—H15A····O3 ⁱⁱ	0.96	2.58	3.533 (7)	174

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1/2, *y*-1/2, *z*; (iii) -*x*+3/2, *y*-1/2, *z*; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*-1/2, *y*, -*z*+3/2; (vii) *x*+1/2, -*y*+3/2, -*z*+1.