organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1,1'-{2,2'-[1,4-Phenylenebis(methylene)]-bis(oxy)bis(2,1-phenylene)}diethanone

Nassir N. N. Al-Mohammed, Yatimah Alias, Zanariah Abdullah and Hamid Khaledi*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 10 October 2011; accepted 13 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.035; wR factor = 0.100; data-to-parameter ratio = 15.7.

The asymmetric unit of the title compound, $C_{24}H_{22}O_4$, contains one half-molecule, the other half being generated by a crystallographic center of inversion. The central benzene ring makes a dihedral angle of 72.49 (5)° with the terminal benzene ring. In the crystal, adjacent molecules are linked through $C-H\cdots O$ interactions, forming a sheet structure parallel to the bc plane. The sheets are stacked along the a axis $via \ \pi-\pi$ interactions formed between the terminal benzene rings [centroid–centroid separation = 3.7276 (6) Å].

Related literature

For related structures, see: Hu (2010); Tang et al. (2008).

Experimental

Crystal data

 $\begin{array}{cccc} {\rm C_{24}H_{22}O_4} & & a = 6.8490 \ (1) \ {\rm \mathring{A}} \\ M_r = 374.42 & & b = 15.0815 \ (2) \ {\rm \mathring{A}} \\ {\rm Orthorhombic}, Pbca & c = 17.8519 \ (3) \ {\rm \mathring{A}} \end{array}$

V = 1843.98 (5) Å³ $\mu = 0.09 \text{ mm}^{-1}$ Z = 4 T = 100 KMo $K\alpha$ radiation $0.35 \times 0.21 \times 0.16 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer 2013 independent reflections Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.969, \ T_{\max} = 0.986$ 15454 measured reflections 2013 independent reflections 1728 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.035 & 128 \ {\rm parameters} \\ WR(F^2) = 0.100 & {\rm H-atom\ parameters\ constrained} \\ S = 1.06 & \Delta\rho_{\rm max} = 0.30\ {\rm e\ \mathring{A}}^{-3} \\ 2013\ {\rm reflections} & \Delta\rho_{\rm min} = -0.21\ {\rm e\ \mathring{A}}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$		
C7—H7···O1 ⁱ	0.95	2.56	3.4649 (14)	158		
Symmetry code: (i) $-x$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.						

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2792).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,

Hu, T. (2010). Acta Cryst. E66, o995.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tang, K.-Z., Tang, Y., Li, Y.-F., Liu, W.-S. & Tan, M.-Y. (2008). Chin. J. Struct. Chem. 27, 451–454.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3016 [doi:10.1107/S1600536811042528]

1,1'-{2,2'-[1,4-Phenylenebis(methylene)]bis(oxy)bis(2,1-phenylene)}diethanone

Nassir N. N. Al-Mohammed, Yatimah Alias, Zanariah Abdullah and Hamid Khaledi

S1. Comment

The title compound was obtained through the condensation of α,α' -dibromo-p-xylene with two equivalents of 2'-hydroxy-acetophenone. The compound has a centrosymmetric molecular structure, the centroid of the central aromatic ring being located on an inversion center. The central aromatic ring makes a dihedral angle of 72.49 (5)° with the terminal rings. This value is comparable to those observed in similar structures (Hu, 2010; Tang et~al., 2008). In the crystal, the adjacent molecules are linked through C—H···O interactions (Table 1) to form a sheet parallel to the bc plane (Fig. 2). The sheets are connected into a three-dimensional network $via~\pi$ - π interactions formed between the terminal rings in the a direction [centroid-centroid separation = 3.7276 (6) Å].

S2. Experimental

To a suspension of α , α' -dibromo-p-xylene (1 g, 3.8 mmol) and potassium carbonate (1.05 g, 7.6 mmol) in dry acetone (25 ml), 2'-hydroxyacetophenone (1.03 g, 7.6 mmol) was added portionwise and the mixture was refluxed for 48 hr. The solvent was then evaporated under reduced pressure and the crude material was extracted by dichloromethane (3 × 25 ml). The combined organic layers was washed with water and brine and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the formed amorphous solid was re-crystallized from chloroform to obtain off-white crystals of the title compound (m.p. = 435–437 K).

S3. Refinement

Hydrogen atoms were placed at calculated positions and refined as riding atoms, with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and with $U_{iso}(H)$ set to 1.2 (1.5 for methyl) $U_{eq}(C)$.

Acta Cryst. (2011). E67, o3016 Sup-1

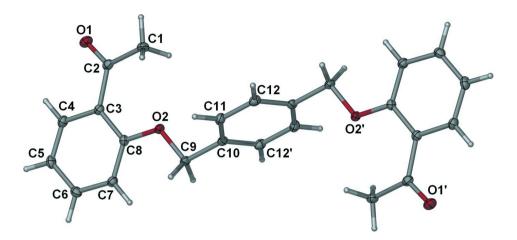


Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry code: ' = -x, -y, -z.]

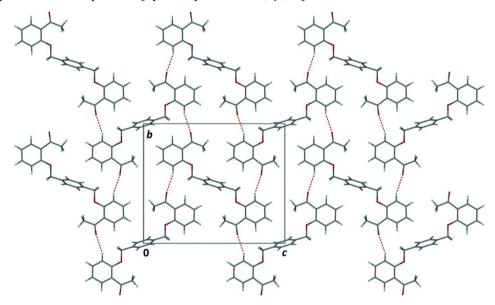


Figure 2

The two-dimensional network in the bc plane formed by C—H···O interactions (dashed lines).

1-(2-{4-[(2-Acetylphenoxy)methyl]benzyloxy}phenyl)ethanone

Crystal data

 $C_{24}H_{22}O_4$ $M_r = 374.42$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 6.8490 (1) Å b = 15.0815 (2) Å c = 17.8519 (3) Å V = 1843.98 (5) Å³ Z = 4

F(000) = 792 $D_x = 1.349 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4755 reflections $\theta = 2.7-30.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.35 \times 0.21 \times 0.16 \text{ mm}$

Acta Cryst. (2011). E67, o3016 sup-2

Data collection

Bruker APEXII CCD

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 φ and ω scans

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

 $T_{\min} = 0.969, T_{\max} = 0.986$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$

 $wR(F^2) = 0.100$

S = 1.06

2013 reflections

128 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

15454 measured reflections 2013 independent reflections 1728 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.029$

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$

 $h = -8 \rightarrow 8$

 $k = -19 \rightarrow 19$

 $l = -22 \rightarrow 22$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0539P)^2 + 0.5451P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} \leq 0.001$

 $\Delta \rho_{\rm max} = 0.30 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.21 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.04377 (13)	0.42646 (5)	0.16533 (5)	0.0229 (2)
O2	0.04118 (12)	0.15272 (5)	0.15468 (4)	0.0159 (2)
C1	0.07382 (18)	0.31010 (8)	0.07811 (6)	0.0203 (3)
H1A	-0.0462	0.2780	0.0654	0.031*
H1B	0.1854	0.2696	0.0751	0.031*
H1C	0.0925	0.3591	0.0428	0.031*
C2	0.05802 (16)	0.34623 (7)	0.15636 (6)	0.0165 (3)
C3	0.05993 (16)	0.28692 (7)	0.22360 (6)	0.0146 (2)
C4	0.06897 (16)	0.32882 (8)	0.29338 (6)	0.0171 (3)
H4	0.0753	0.3917	0.2950	0.020*
C5	0.06905 (17)	0.28253 (8)	0.35995 (7)	0.0187 (3)
H5	0.0761	0.3130	0.4065	0.022*
C6	0.05866 (16)	0.19058 (8)	0.35781 (6)	0.0177 (3)
H6	0.0586	0.1579	0.4033	0.021*
C7	0.04836 (16)	0.14611 (7)	0.29006 (6)	0.0160 (2)
H7	0.0401	0.0832	0.2893	0.019*

Acta Cryst. (2011). E67, o3016 Sup-3

supporting information

C8	0.05005 (15)	0.19348 (7)	0.22261 (6)	0.0140(2)	
C9	0.02559 (17)	0.05749 (7)	0.15472 (6)	0.0162(2)	
H9A	-0.0921	0.0387	0.1828	0.019*	
H9B	0.1417	0.0308	0.1789	0.019*	
C10	0.01168 (16)	0.02795 (7)	0.07449 (6)	0.0152(2)	
C11	0.17455 (17)	0.03233 (7)	0.02807 (6)	0.0177 (3)	
H11	0.2946	0.0543	0.0472	0.021*	
C12	0.16313 (17)	0.00478 (7)	-0.04609(6)	0.0172 (3)	
H12	0.2750	0.0083	-0.0774	0.021*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0305 (5)	0.0127 (4)	0.0254 (4)	0.0002(3)	-0.0012 (4)	0.0010(3)
O2	0.0239 (4)	0.0099(4)	0.0138 (4)	-0.0011(3)	-0.0001(3)	-0.0015(3)
C1	0.0278 (6)	0.0157 (5)	0.0176 (6)	-0.0019(4)	-0.0012(5)	0.0030(4)
C2	0.0145 (5)	0.0141 (5)	0.0210(6)	-0.0010(4)	-0.0013(4)	0.0016 (4)
C3	0.0131 (5)	0.0136 (5)	0.0171 (6)	0.0001 (4)	-0.0001(4)	-0.0005(4)
C4	0.0172 (5)	0.0133 (5)	0.0207 (6)	0.0000 (4)	-0.0002(4)	-0.0032(4)
C5	0.0186 (6)	0.0213 (6)	0.0162 (6)	-0.0008(4)	-0.0001(4)	-0.0056(4)
C6	0.0174 (5)	0.0208 (6)	0.0150(6)	-0.0007(4)	0.0002 (4)	0.0019 (4)
7	0.0165 (5)	0.0134 (5)	0.0182 (6)	-0.0001(4)	-0.0005(4)	0.0000 (4)
28	0.0127 (5)	0.0147 (5)	0.0147 (5)	0.0003 (4)	-0.0004(4)	-0.0022(4)
29	0.0229(6)	0.0097 (5)	0.0159 (5)	0.0000 (4)	-0.0001(4)	-0.0002(4)
C10	0.0220(6)	0.0082 (5)	0.0153 (5)	0.0018 (4)	-0.0010(4)	-0.0005(4)
C11	0.0177 (6)	0.0150 (5)	0.0204 (6)	-0.0019(4)	-0.0020(4)	-0.0019(4)
C12	0.0191 (6)	0.0134 (5)	0.0193 (6)	-0.0001(4)	0.0028 (4)	-0.0008(4)

Geometric parameters (Å, °)

1			
O1—C2	1.2246 (13)	C6—C7	1.3846 (15)
O2—C8	1.3609 (13)	С6—Н6	0.9500
O2—C9	1.4401 (12)	C7—C8	1.4002 (15)
C1—C2	1.5033 (15)	C7—H7	0.9500
C1—H1A	0.9800	C9—C10	1.5029 (15)
C1—H1B	0.9800	C9—H9A	0.9900
C1—H1C	0.9800	С9—Н9В	0.9900
C2—C3	1.4970 (15)	C10—C12 ⁱ	1.3907 (16)
C3—C4	1.3982 (15)	C10—C11	1.3912 (16)
C3—C8	1.4109 (15)	C11—C12	1.3897 (16)
C4—C5	1.3783 (16)	C11—H11	0.9500
C4—H4	0.9500	C12—C10 ⁱ	1.3908 (16)
C5—C6	1.3892 (16)	C12—H12	0.9500
C5—H5	0.9500		
C8—O2—C9	116.96 (8)	C6—C7—C8	120.24 (10)
C2—C1—H1A	109.5	C6—C7—H7	119.9
C2—C1—H1B	109.5	C8—C7—H7	119.9

Acta Cryst. (2011). E67, o3016 sup-4

supporting information

H1A—C1—H1B	109.5	O2—C8—C7	122.38 (9)
C2—C1—H1C	109.5	O2—C8—C3	117.68 (9)
H1A—C1—H1C	109.5	C7—C8—C3	119.95 (9)
H1B—C1—H1C	109.5	O2—C9—C10	107.45 (8)
O1—C2—C3	119.09 (10)	O2—C9—H9A	110.2
O1—C2—C1	119.05 (10)	C10—C9—H9A	110.2
C3—C2—C1	121.86 (9)	O2—C9—H9B	110.2
C4—C3—C8	117.69 (10)	C10—C9—H9B	110.2
C4—C3—C2	116.40 (10)	H9A—C9—H9B	108.5
C8—C3—C2	125.90 (10)	C12 ⁱ —C10—C11	119.34 (10)
C5—C4—C3	122.64 (10)	C12 ⁱ —C10—C9	120.48 (10)
C5—C4—H4	118.7	C11—C10—C9	120.18 (10)
C3—C4—H4	118.7	C12—C11—C10	120.54 (11)
C4—C5—C6	118.80 (10)	C12—C11—H11	119.7
C4—C5—H5	120.6	C10—C11—H11	119.7
C6—C5—H5	120.6	C11—C12—C10 ⁱ	120.12 (11)
C7—C6—C5	120.68 (10)	C11—C12—H12	119.9
C7—C6—H6	119.7	C10 ⁱ —C12—H12	119.9
C5—C6—H6	119.7		

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

H···A	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C7—H7···O1 ⁱⁱ	0.95	2.56	3.4649 (14)	158

Symmetry code: (ii) -x, y-1/2, -z+1/2.

Acta Cryst. (2011). E67, o3016 sup-5