metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(acetato- κO)[4-(1*H*-pyrazol-3-yl)pyridine- κN^1]zinc]- μ -acetato- $\kappa^2 O$:O']

Zheng-De Tan,^a* Feng-Jiao Tan,^b Bo Tan^b and Zhi-Wen Yi^a

^aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and ^bThe People's Hospital of Xiangtan County, Xiangtan 411104, People's Republic of China Correspondence e-mail: tzd0517@163.com

Received 20 August 2011; accepted 29 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.056; wR factor = 0.131; data-to-parameter ratio = 13.7.

In the title compound, $[Zn(CH_3CO_2)_2(C_8H_7N_3)]_n$, the Zn^{II} atom is coordinated by one N atom from a 4-(1*H*-pyrazol-3-yl)pyridine ligand and three O atoms from two bridging and one terminal acetate ligands, forming a distorted tetrahedral geometry. The bridging acetate ligands link the Zn atoms into a chain along [001]. N-H···O hydrogen bonds and π - π interactions between the pyridine and pyrazole rings [centroid–centroid distance = 3.927 (3) Å] connect the chains into a layer parallel to (011).

Related literature

For background to complexes of 4-(1H-pyrazol-3-yl)pyridine, see: Davies *et al.* (2005). For the synthesis of the ligand, see: Davies *et al.* (2003).

Experimental

Crystal data [Zn(C₂H₃O₂)₂(C₈H₇N₃)]

```
M_r = 322.58
```

Monoclinic, $P2_1/c$ a = 16.371 (3) Å b = 8.8526 (18) Å c = 9.5041 (19) Å $\beta = 94.18$ (3)° V = 1373.7 (5) Å³

Data collection

Rigaku SCXmini CCD	11822 measured reflections
diffractometer	2479 independent reflections
Absorption correction: multi-scan	1957 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.068$
$T_{\min} = 0.632, \ T_{\max} = 0.726$	

Z = 4

Mo $K\alpha$ radiation

 $0.28 \times 0.23 \times 0.19 \text{ mm}$

 $\mu = 1.80 \text{ mm}^{-1}$

T = 293 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	181 parameters
$wR(F^2) = 0.131$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
2479 reflections	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Zn1-N1	2.026 (4)	Zn1-O3	1.958 (3)
Zn1-O1	1.942 (4)	$Zn1-O4^{i}$	1.984 (3)
	 . 3 . 1		

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···O2 ⁱⁱ	0.86	1.93	2.769 (6)	163

Symmetry code: (ii) -x, -y + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Education Department of Hunan Province [Xiang Norimichi (2010).243] for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2465).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485–m487.
Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550–1553.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Shaldrick, G. M. (2008). Acta Cryst. A64, 112, 122

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1512 [doi:10.1107/S1600536811040190]

catena-Poly[[(acetato- κO)[4-(1*H*-pyrazol-3-yl)pyridine- κN^1]zinc]- μ -acetato- $\kappa^2 O$:O']

Zheng-De Tan, Feng-Jiao Tan, Bo Tan and Zhi-Wen Yi

S1. Comment

Pyridine derivatives are an important class of ligands for constructing metal–organic frameworks. 4-(1*H*-Pyrazol-3yl)pyridine can be used as pyridine ligand in building coordination compounds (Davies *et al.*, 2005). In the present paper, we report the synthesis and structure of the title compound.

As shown in Fig. 1, the Zn^{II} atom exhibits a distorted tetrahedral coordination geometry, defined by one N atom from a 4-(1*H*-pyrazol-3-yl)pyridine ligand and three O atoms from two types of acetate ligands (Table 1). One acetate anion coordinates the Zn atom as a monodentate terminal ligand. The other acetate anion links the Zn atoms *via* two O atoms, forming a one-dimensional chain along [0 0 1] (Fig. 2). N—H···O hydrogen bonds (Table 2) and π - π interactions between the pyridine and pyrazole rings [centroid–centroid distance = 3.927 (3) Å] connect the chains into a layer parallel to (0 1 1) (Fig. 3).

S2. Experimental

4-(1*H*-Pyrazol-3-yl)pyridine was prepared according to the published method of Davies *et al.* (2003). An aqueous solution (20 ml) containing zinc acetate (0.1 mmol, 22 mg) and 4-(1*H*-pyrazol-3-yl)pyridine (0.2 mmol, 29 mg) was stirred for a few minutes in air. Colorless crystals were obtained by allowing the solution to stand at room temperature for a few weeks.

S3. Refinement

H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, 3/2-y, 1/2+z.]

Figure 2

A view of the one-dimensional structure of the title compound along [0 0 1].

Figure 3

A view of the layer network. Hydrogen bonds are shown as dashed lines.

catena-Poly[[(acetato- κO)[4-(1H-pyrazol-3- yl)pyridine- κN^1]zinc]- μ -acetato- $\kappa^2 O$:O']

F(000) = 648

 $\theta = 3.2 - 27.6^{\circ}$

 $\mu = 1.80 \text{ mm}^{-1}$

Block, colourless

 $0.28\times0.23\times0.19~mm$

T = 293 K

 $D_x = 1.560 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11614 reflections

Crystal data

 $[Zn(C_2H_3O_2)_2(C_8H_7N_3)]$ $M_r = 322.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.371(3) Å b = 8.8526 (18) Å c = 9.5041 (19) Å $\beta = 94.18 (3)^{\circ}$ V = 1373.7 (5) Å³ Z = 4

Data collection

Rigaku SCXmini CCD	11822 measured reflections
diffractometer	2479 independent reflections
Radiation source: fine-focus sealed tube	1957 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.068$
ω scans	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(CrystalClear; Rigaku, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.632, \ T_{\max} = 0.726$	$l = -11 \rightarrow 11$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
2479 reflections	$w = 1/[\sigma^2(F_o^2) + (0.063P)^2 + 1.9274P]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.34131 (3)	0.68665 (6)	1.02084 (6)	0.0343 (2)	
N1	0.2233 (2)	0.7526 (5)	0.9820 (4)	0.0348 (9)	
C3	0.0573 (3)	0.8142 (5)	0.9123 (5)	0.0325 (11)	
C4	0.0820 (3)	0.6924 (5)	0.9969 (5)	0.0362 (11)	
H4	0.0430	0.6294	1.0325	0.043*	
C5	0.1635 (3)	0.6647 (6)	1.0280 (5)	0.0372 (12)	
Н5	0.1784	0.5813	1.0836	0.045*	
C1	0.1992 (3)	0.8734 (6)	0.9045 (5)	0.0403 (12)	
H1	0.2393	0.9371	0.8736	0.048*	
C2	0.1192 (3)	0.9082 (5)	0.8682 (5)	0.0365 (12)	
H2	0.1059	0.9938	0.8146	0.044*	
N3	-0.1561 (3)	0.7919 (5)	0.8372 (5)	0.0491 (12)	
Н3	-0.2025	0.7466	0.8393	0.059*	

-0.0297 (3)	0.8401 (5)	0.8676 (5)	0.0331 (11)	
-0.0849 (3)	0.7342 (5)	0.8937 (5)	0.0454 (11)	
-0.0660(3)	0.9619 (6)	0.7937 (5)	0.0438 (13)	
-0.0402	1.0480	0.7624	0.053*	
-0.1469 (3)	0.9277 (7)	0.7774 (6)	0.0495 (14)	
-0.1880	0.9870	0.7333	0.059*	
0.4195 (2)	0.8246 (4)	0.9418 (3)	0.0453 (9)	
0.3590 (2)	0.4837 (4)	0.9518 (4)	0.0500 (10)	
0.2878 (2)	0.3956 (4)	1.1226 (4)	0.0501 (10)	
0.3292 (3)	0.3761 (6)	1.0208 (6)	0.0405 (12)	
0.3494 (5)	0.2163 (7)	0.9709 (8)	0.072 (2)	
0.4183 (3)	0.8446 (5)	0.8100 (5)	0.0334 (11)	
0.4840 (3)	0.9438 (7)	0.7551 (6)	0.0578 (17)	
0.3643 (2)	0.7841 (4)	0.7269 (3)	0.0373 (8)	
	$\begin{array}{c} -0.0297 \ (3) \\ -0.0849 \ (3) \\ -0.0660 \ (3) \\ -0.0402 \\ -0.1469 \ (3) \\ -0.1880 \\ 0.4195 \ (2) \\ 0.3590 \ (2) \\ 0.2878 \ (2) \\ 0.3292 \ (3) \\ 0.3494 \ (5) \\ 0.4183 \ (3) \\ 0.4840 \ (3) \\ 0.3643 \ (2) \end{array}$	-0.0297(3) $0.8401(5)$ $-0.0849(3)$ $0.7342(5)$ $-0.0660(3)$ $0.9619(6)$ -0.0402 1.0480 $-0.1469(3)$ $0.9277(7)$ -0.1880 0.9870 $0.4195(2)$ $0.8246(4)$ $0.3590(2)$ $0.4837(4)$ $0.2878(2)$ $0.3956(4)$ $0.3292(3)$ $0.3761(6)$ $0.3494(5)$ $0.2163(7)$ $0.4183(3)$ $0.8446(5)$ $0.4840(3)$ $0.9438(7)$ $0.3643(2)$ $0.7841(4)$	-0.0297 (3) $0.8401 (5)$ $0.8676 (5)$ $-0.0849 (3)$ $0.7342 (5)$ $0.8937 (5)$ $-0.0660 (3)$ $0.9619 (6)$ $0.7937 (5)$ -0.0402 1.0480 0.7624 $-0.1469 (3)$ $0.9277 (7)$ $0.7774 (6)$ -0.1880 0.9870 0.7333 $0.4195 (2)$ $0.8246 (4)$ $0.9418 (3)$ $0.3590 (2)$ $0.4837 (4)$ $0.9518 (4)$ $0.2878 (2)$ $0.3956 (4)$ $1.1226 (4)$ $0.3494 (5)$ $0.2163 (7)$ $0.9709 (8)$ $0.4183 (3)$ $0.8446 (5)$ $0.8100 (5)$ $0.4840 (3)$ $0.9438 (7)$ $0.7551 (6)$ $0.3643 (2)$ $0.7841 (4)$ $0.7269 (3)$	$-0.0297 (3)$ $0.8401 (5)$ $0.8676 (5)$ $0.0331 (11)$ $-0.0849 (3)$ $0.7342 (5)$ $0.8937 (5)$ $0.0454 (11)$ $-0.0660 (3)$ $0.9619 (6)$ $0.7937 (5)$ $0.0438 (13)$ -0.0402 1.0480 0.7624 0.053^* $-0.1469 (3)$ $0.9277 (7)$ $0.7774 (6)$ $0.0495 (14)$ -0.1880 0.9870 0.7333 0.059^* $0.4195 (2)$ $0.8246 (4)$ $0.9418 (3)$ $0.0453 (9)$ $0.3590 (2)$ $0.4837 (4)$ $0.9518 (4)$ $0.0500 (10)$ $0.2878 (2)$ $0.3956 (4)$ $1.1226 (4)$ $0.0501 (10)$ $0.3292 (3)$ $0.3761 (6)$ $1.0208 (6)$ $0.072 (2)$ $0.4183 (3)$ $0.8446 (5)$ $0.8100 (5)$ $0.0334 (11)$ $0.4840 (3)$ $0.9438 (7)$ $0.7551 (6)$ $0.0578 (17)$ $0.3643 (2)$ $0.7841 (4)$ $0.7269 (3)$ $0.0373 (8)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0330 (3)	0.0415 (4)	0.0283 (3)	-0.0030 (3)	0.0026 (2)	-0.0012 (3)
N1	0.035 (2)	0.039 (2)	0.030 (2)	-0.004 (2)	0.0011 (18)	-0.0030 (19)
C3	0.034 (3)	0.034 (3)	0.030 (3)	0.003 (2)	0.005 (2)	-0.005 (2)
C4	0.039 (3)	0.034 (3)	0.036 (3)	-0.004 (2)	0.007 (2)	0.008 (2)
C5	0.040 (3)	0.041 (3)	0.030 (3)	0.003 (2)	0.003 (2)	0.006 (2)
C1	0.040 (3)	0.041 (3)	0.040 (3)	-0.010 (2)	0.004 (2)	0.003 (2)
C2	0.042 (3)	0.032 (3)	0.036 (3)	0.001 (2)	0.005 (2)	0.007 (2)
N3	0.032 (2)	0.053 (3)	0.061 (3)	-0.001 (2)	-0.002 (2)	0.007 (2)
C6	0.037 (3)	0.031 (3)	0.031 (3)	0.000 (2)	0.004 (2)	0.000 (2)
N2	0.034 (3)	0.039 (3)	0.063 (3)	-0.004 (2)	0.003 (2)	0.008 (2)
C7	0.045 (3)	0.043 (3)	0.043 (3)	-0.002 (3)	0.000 (2)	0.010 (3)
C8	0.042 (3)	0.054 (4)	0.052 (3)	0.009 (3)	-0.001 (3)	0.010 (3)
O3	0.048 (2)	0.061 (2)	0.0267 (19)	-0.0171 (18)	0.0011 (15)	0.0038 (17)
01	0.068 (3)	0.038 (2)	0.046 (2)	-0.0065 (19)	0.0162 (19)	-0.0039 (17)
O2	0.044 (2)	0.046 (2)	0.062 (3)	-0.0055 (18)	0.0122 (19)	0.0023 (19)
C9	0.036 (3)	0.042 (3)	0.042 (3)	-0.004 (2)	-0.008(2)	-0.001 (3)
C10	0.094 (5)	0.037 (4)	0.086 (5)	0.005 (3)	0.006 (4)	-0.013 (3)
C11	0.036 (3)	0.035 (3)	0.030 (3)	0.002 (2)	0.004 (2)	0.001 (2)
C12	0.047 (3)	0.075 (4)	0.052 (4)	-0.023 (3)	0.005 (3)	0.015 (3)
O4	0.042 (2)	0.044 (2)	0.0258 (17)	-0.0044 (16)	0.0040 (15)	-0.0009 (15)

Geometric parameters (Å, °)

Zn1—N1	2.026 (4)	N3—C8	1.344 (7)	
Zn1—O1	1.942 (4)	N3—N2	1.348 (6)	
Zn1—O3	1.958 (3)	N3—H3	0.8600	
Zn1—O4 ⁱ	1.984 (3)	C6—N2	1.338 (6)	
N1-C1	1.341 (6)	C6—C7	1.395 (7)	
N1—C5	1.348 (6)	С7—С8	1.356 (7)	
C3—C4	1.387 (6)	С7—Н7	0.9300	

supporting information

C3—C2	1.398 (7)	С8—Н8	0.9300
C3—C6	1.475 (7)	O3—C11	1.264 (6)
C4—C5	1.368 (7)	O1—C9	1.274 (6)
C4—H4	0.9300	O2—C9	1.233 (6)
С5—Н5	0.9300	C9—C10	1.536 (8)
C1—C2	1.365 (7)	C11—O4	1.261 (5)
C1—H1	0.9300	C11—C12	1.510 (7)
С2—Н2	0.9300		
01—Zn1—O3	109.25 (16)	С3—С2—Н2	120.2
O1—Zn1—O4 ⁱ	115.59 (15)	C8—N3—N2	112.7 (4)
$O3$ — $Zn1$ — $O4^{i}$	102.40 (14)	C8—N3—H3	123.6
O1—Zn1—N1	111.65 (17)	N2—N3—H3	123.6
O3—Zn1—N1	113.05 (16)	N2—C6—C7	111.5 (4)
O4 ⁱ —Zn1—N1	104.60 (15)	N2—C6—C3	119.3 (4)
C1—N1—C5	116.5 (4)	C7—C6—C3	129.2 (4)
C1—N1—Zn1	124.6 (3)	C6—N2—N3	103.7 (4)
C5—N1—Zn1	118.7 (3)	C8—C7—C6	105.1 (5)
C4—C3—C2	116.7 (4)	С8—С7—Н7	127.4
C4—C3—C6	121.4 (4)	С6—С7—Н7	127.4
C2—C3—C6	121.8 (4)	N3—C8—C7	106.9 (5)
C5—C4—C3	120.2 (4)	N3—C8—H8	126.5
С5—С4—Н4	119.9	С7—С8—Н8	126.5
C3—C4—H4	119.9	C11—O3—Zn1	120.3 (3)
N1C5C4	123.1 (5)	C9—O1—Zn1	116.5 (3)
N1—C5—H5	118.4	O2—C9—O1	123.5 (5)
С4—С5—Н5	118.4	O2—C9—C10	121.0 (5)
N1—C1—C2	123.9 (5)	O1—C9—C10	115.5 (5)
N1-C1-H1	118.1	O4—C11—O3	121.4 (4)
C2—C1—H1	118.1	O4—C11—C12	121.0 (4)
C1—C2—C3	119.5 (5)	O3—C11—C12	117.6 (4)
С1—С2—Н2	120.2	C11—O4—Zn1 ⁱⁱ	129.6 (3)

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O2 ⁱⁱⁱ	0.86	1.93	2.769 (6)	163

Symmetry code: (iii) -x, -y+1, -z+2.