

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris[(1,4,7,10,13,16-hexaoxacyclooctadecane)rubidium] heptaantimonideammonia (1/4)

Fabian Mutzbauer and Nikolaus Korber*

Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany

Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

Received 3 August 2011; accepted 6 October 2011

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.010 Å; R factor = 0.036; wR factor = 0.083; data-to-parameter ratio = 19.7.

The crystal structure of the title compound, $[Rb(C_{12}H_{24}O_6)]_3$ - $[Sb_7]\cdot4NH_3$, fills the gap between the already known Zintl anion ammoniates $\{[Cs(18\text{-}crown-6)]_3Sb_7\}_2\cdot9NH_3$ [Wiesler (2007). Dissertation, Universität Regensburg, Germany] and $[K(18\text{-}crown-6)]_3Sb_7\cdot4NH_3$ [Hanauer (2007). Dissertation, Universität Regensburg, Germany]. As in the two known compounds, the antimony cage anion in this crystal structure is coordinated by three alkali cations. The coordination spheres of each of the cations are saturated by 18-crown-6 molecules. The ammonia molecules of crystallization are situated between the crown ethers. The neutral, molecular $[Rb(18\text{-}crown-6)]_3Sb_7$ units are interconnected by multiple dipole– dipole interactions between ammonia and 18-crown-6.

Related literature

 Rb_3Sb_7 can be obtained by a high-temperature solid-state reaction (Hirschle & Röhr, 2000*a*) like the homologous Cs_3Sb_7 phase (Hirschle & Röhr, 2000*b*). By dissolving these solids in solvents like ethylenediamine or liquid ammonia in the presence of chelating ligands like crown ether or cryptand molecules, new solvent-rich compounds can be crystallized from the mother liquor, see: Critchlow & Corbett (1984); Adolphson *et al.* (1976); Kummer *et al.* (1976); Hanauer (2007); Wiesler (2007). For the isotypic structure [K(18-crown-6)]₃Sb₇·4NH₃, see: Hanauer (2007). For the specification of nortricyclane analogue cluster anions, see: Hönle & von Schnering (1978); Somer *et al.* (1989).

Experimental

Crystal data

 $[Rb(C_{12}H_{24}O_6)]_3[Sb_7] \cdot 4NH_3$ $M_r = 1969.73$ Monoclinic, $P2_1/n$ a = 15.000 (3) Å b = 17.484 (4) Å c = 25.158 (5) Å $\beta = 90.98$ (3)° V = 6597 (2) Å³ Z = 4Mo K α radiation $\mu = 5.08 \text{ mm}^{-1}$ T = 123 K $0.3 \times 0.2 \times 0.1 \text{ mm}$

88182 measured reflections

 $R_{\rm int} = 0.090$

12127 independent reflections

9417 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS1 diffractometer Absorption correction: numerical (X-RED/X-SHAPE in X-AREA;Stoe & Cie, 2005) $T_{\min} = 0.453, T_{\max} = 0.648$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 617 parameters $wR(F^2) = 0.083$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 1.66 \text{ e } \text{\AA}^{-3}$ 12127 reflections $\Delta \rho_{min} = -0.74 \text{ e } \text{\AA}^{-3}$

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2013).

References

Adolphson, D. G., Corbett, J. D. & Merryman, D. J. (1976). J. Am. Chem. Soc. 98, 7234–7239.

Brandenburg, K. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Critchlow, S. C. & Corbett, J. D. (1984). *Inorg. Chem.* 23, 770–774.

Hanauer, T. (2007). Dissertation, Universität Regensburg, Germany.

Hirschle, Ch. & Röhr, C. (2000a). Z. Kristallogr. 17, 164.

Hirschle, Ch. & Röhr, C. (2000b). Z. Anorg. Allg. Chem. 626, 1992-1998.

Hönle, W. & von Schnering, H. G. (1978). Z. Anorg. Allg. Chem. 440, 171-182.

Kummer, D., Diehl, L., Khodadadeh, K. & Strähle, J. (1976). Chem. Ber. 109, 3404–3418.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Somer, M., Hönle, W. & von Schnering, H. G. (1989). Z. Naturforsch. Teil B, 44, 296–306.

Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Wiesler, K. (2007). Dissertation, Universität Regensburg, Germany.

supporting information

Acta Cryst. (2011). E67, m1551 [doi:10.1107/S1600536811041237]

Tris[(1,4,7,10,13,16-hexaoxacyclooctadecane)rubidium] heptaantimonide– ammonia (1/4)

Fabian Mutzbauer and Nikolaus Korber

S1. Comment

The compound Rb_3Sb_7 can be obtained by a high temperature solid state reaction (Hirschle & Röhr, 2000a) like the homologous Cs₃Sb₇ phase (Hirschle & Röhr, 2000b). By dissolving these solids in solvents like ethylenediamine or liquid ammonia in the presence of chelating ligands like crown ether or cryptand molecules, new solvent rich compounds can be crystallized from the mother liquor (Critchlow & Corbett, 1984; Adolphson et al., 1976; Kummer et al., 1976; Hanauer, 2007; Wiesler, 2007). There is a line of crystal structures documented showing a distinct progression from the pure solid crystal to a solvent rich crystal. In the pure solid phase, the anion is coordinated directly by cations. The solvent rich crystal structures contain cations which are coordinated by chelating ligands and/or solvent molecules. This yields anionic cluster molecules which only feature weak ion-dipole interactions. The here presented [Rb(18crown-6)]₃Sb₇.4NH₃ compound is isostructural to the crystal structure of [K(18-crown-6)]₃Sb₇.4NH₃ (Hanauer, 2007). Each rubidium cation binds exclusively to one crytallographically independent Sb₇ cage in an n^4 -like fashion. To complete a coordination number of ten for each metal atom, it is saturated by one 18-crown-6 molecule (Fig. 1). Four ammonia molecules are localized between the three crown ether ligands of each unit. These solvent molecules interact by hydrogen bonding with crown ether molecules and ammonia molecules of adjacent $[Rb(18-crown-6)]_3Sb_7 \times 4NH_3$ units. Therefore, the structure can be described as a packing of isolated $[Rb(18-crown-6)]_3Sb_7$ units. This packing and the orientation of these units is shown in Figure 2. The nortricyclane analogue cluster anions were specified by von Schnering *et al.* They defined the cluster by its height H and the quotient O between H and the average of the three bonding distances between the three atoms of the triangular base area (Hönle & von Schnering, 1978; Somer et al., 1989). The presented Sb₇ anion shows characteristic values for this kind of cage of H = 3.8653 (5) Å and Q = 1.33.

S2. Experimental

All preparations were carried out in an atmosphere of dryed argon (99.9996%). 173 mg Rb₃Sb₇ (0.156 mmol), 41 mg 18crown-6 (0.156 mmol) and 100 mg $[Ni(CO)_2(PPh_3)_2]$ (0.156 mmol) were placed in a baked out reaction vessel inside a glove box. Afterwards ammonia (99.99990%) was condensed onto the solids until a filling level of about 15 ml solvent was achieved. A light brown suspension resulted. After 3 month of storage at 233 K a dark brown solution could be obtained and dark brown crystals could be isolated.

S3. Refinement

The hydrogen atoms of the crown ether and the ammonia molecules were generated using the HFIX instruction.

Figure 1

Asymmetric unit of the compound [Rb(18-crown-6)]₃Sb₇.4NH₃. Ellipsoids of all non-hydrogen atoms are given with a probability factor of 70%.

Figure 2

Packing of the $[Rb(18\text{-}crown-6)]_3Sb_7$ units in each crystallographic direction. Crown ethers and ammonia molecules are omitted. The probability factor of the mapped atoms is 70%.

12127 reflections

617 parameters

0 restraints

Tris[(1,4,7,10,13,16-hexaoxacyclooctadecane)rubidium] heptaantimonide- ammonia (1/4)

F(000) = 3760
$D_{\rm x} = 1.983 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 12127 reflections
$\theta = 2.0 - 25.5^{\circ}$
$\mu = 5.08 \text{ mm}^{-1}$
T = 123 K
Block, clear brown
$0.3 \times 0.2 \times 0.1 \text{ mm}$
88182 measured reflections
12127 independent reflections
9417 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.090$
$\theta_{\rm max} = 25.8^\circ, \ \theta_{\rm min} = 2.0^\circ$
$h = -18 \rightarrow 18$
$k = -21 \rightarrow 21$
$l = -30 \rightarrow 30$
S = 0.96

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.083$

sup-3

Primary atom site location: structure-invariant direct methods	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0446P)^2]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} = 0.005$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 1.66 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. crystal mounting in perfluorether (T. Kottke, D. Stalke, J. Appl. Crystallogr. 26, 1993, p. 615), tube power 1.65 kW, collimator size 0.5 mm, detector distance 70 mm, exposure time 600 s, phi increment 0.9° , phi range $0-360^{\circ}$, 2θ range $3.3-52.1^{\circ}$, d(hkl) range 0.809-12.453 Å

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sb1	0.91679 (3)	0.20198 (3)	0.387503 (15)	0.02665 (9)
Sb2	0.66946 (3)	0.33966 (2)	0.362555 (16)	0.02828 (10)
Sb3	0.75841 (3)	0.12411 (2)	0.410855 (16)	0.02666 (9)
Sb4	0.70480 (3)	0.19402 (3)	0.506203 (15)	0.02748 (10)
Sb5	0.71263 (3)	0.34468 (2)	0.474027 (16)	0.02924 (10)
Sb6	0.64158 (3)	0.18833 (3)	0.337947 (15)	0.02665 (9)
Sb7	0.85396 (3)	0.35016 (2)	0.395167 (16)	0.02880 (10)
Rb1	0.46710 (4)	0.21983 (3)	0.44607 (2)	0.02518 (12)
Rb2	0.95927 (4)	0.22994 (3)	0.53318 (2)	0.02658 (12)
Rb3	0.83514 (4)	0.24754 (3)	0.24583 (2)	0.02490 (12)
O1	0.4008 (3)	0.1621 (3)	0.55500 (16)	0.0305 (9)
O2	0.4390 (3)	0.3207 (3)	0.53895 (16)	0.0319 (10)
O3	0.3847 (3)	0.3825 (3)	0.44145 (17)	0.0322 (10)
O4	0.3449 (3)	0.1260 (3)	0.36889 (17)	0.0309 (9)
O5	0.3690 (3)	0.2854 (3)	0.35223 (17)	0.0333 (10)
O6	0.4027 (3)	0.0608 (3)	0.46431 (17)	0.0312 (10)
O7	0.8969 (3)	0.1597 (3)	0.64160 (16)	0.0297 (9)
O8	1.1401 (3)	0.1445 (3)	0.51457 (16)	0.0285 (9)
O9	1.1337 (3)	0.3047 (3)	0.49512 (18)	0.0335 (10)
O10	0.8821 (3)	0.3195 (3)	0.62418 (16)	0.0335 (10)
O11	0.9924 (3)	0.0684 (2)	0.56761 (16)	0.0282 (9)
O12	1.0241 (3)	0.3883 (3)	0.56777 (17)	0.0342 (10)
O13	1.0195 (3)	0.3198 (3)	0.23963 (17)	0.0330 (10)
O14	0.7086 (3)	0.1838 (2)	0.15877 (16)	0.0280 (9)
O15	0.7067 (3)	0.3442 (2)	0.18593 (16)	0.0290 (9)
O16	1.0121 (3)	0.1585 (3)	0.21902 (18)	0.0346 (10)
O17	0.8777 (3)	0.4112 (3)	0.20401 (16)	0.0305 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

018	0.8425 (3)	0.0911 (2)	0.20396 (18)	0.0315 (10)
N1	0.4990 (5)	0.3665 (4)	0.2515 (2)	0.0469 (16)
H1C	0.5459	0.3338	0.2490	0.070*
H1D	0.4724	0.3721	0.2189	0.070*
H1E	0.4588	0.3474	0.2747	0.070*
N2	0.6607 (5)	0.3774 (4)	0.6247 (2)	0.0504 (16)
H2C	0.6689	0.4289	0.6269	0.076*
H2D	0.6134	0.3636	0.6447	0.076*
H2E	0.6501	0.3640	0.5902	0.076*
N3	1.1030 (5)	0.3669 (6)	0.3577 (3)	0.068 (2)
H3C	1.0855	0.3494	0.3899	0.102*
H3D	1.0795	0.3366	0.3316	0.102*
H3E	1.0834	0.4158	0.3530	0.102*
N4	0.7473 (6)	0.4847 (5)	0.7235 (3)	0.070 (2)
H4C	0.6910	0.4797	0.7099	0.105*
H4D	0.7602	0.5352	0.7278	0.105*
H4E	0.7510	0.4607	0.7556	0.105*
C1	0.3557 (4)	0.0185 (4)	0.4250 (3)	0.0319 (14)
H1A	0.2908	0.0224	0.4308	0.038*
H1B	0.3728	-0.0361	0.4271	0.038*
C2	0.9556 (4)	0.0390 (4)	0.6156 (2)	0.0318 (14)
H2A	1.0001	0.0435	0.6449	0.038*
H2B	0.9410	-0.0158	0.6109	0.038*
C3	0.7783 (4)	0.0619 (4)	0.1680 (2)	0.0294 (13)
H3A	0.7679	0.0070	0.1751	0.035*
H3B	0.7991	0.0674	0.1311	0.035*
C4	1.0808 (4)	0.1947 (4)	0.2498 (3)	0.0343 (14)
H4A	1.1366	0.1647	0.2476	0.041*
H4B	1.0633	0.1972	0.2875	0.041*
C5	0.6926 (4)	0.1067 (4)	0.1752 (3)	0.0292 (13)
H5A	0.6439	0.0839	0.1535	0.035*
H5B	0.6750	0.1056	0.2130	0.035*
C6	0.8218 (4)	0.2046 (4)	0.6591 (2)	0.0332 (14)
H6A	0.7955	0.1808	0.6909	0.040*
H6B	0.7754	0.2066	0.6306	0.040*
C7	0.3157 (5)	0.2378 (4)	0.3193 (2)	0.0374 (16)
H7A	0.3121	0.2596	0.2830	0.045*
H7B	0.2546	0.2352	0.3334	0.045*
C8	1.0744 (4)	0.0331 (4)	0.5527 (3)	0.0300 (14)
H8A	1.0641	-0.0221	0.5464	0.036*
H8B	1.1186	0.0383	0.5821	0.036*
C9	0.8724 (4)	0.0825 (4)	0.6298 (2)	0.0318 (14)
H9A	0.8291	0.0812	0.5997	0.038*
H9B	0.8442	0.0587	0.6610	0.038*
C10	1.2111 (4)	0.2592 (4)	0.4849 (3)	0.0339 (14)
H10A	1.2498	0.2571	0.5172	0.041*
H10B	1.2456	0.2824	0.4559	0.041*
C11	0.7288 (4)	0.4210 (4)	0.1731 (3)	0.0321 (14)

H11A	0.6744	0.4530	0.1733	0.039*
H11B	0.7540	0.4230	0.1370	0.039*
C12	0.3992 (5)	0.4089 (4)	0.3878 (3)	0.0345 (14)
H12A	0.4626	0.4022	0.3784	0.041*
H12B	0.3841	0.4639	0.3847	0.041*
C13	1.0959 (4)	0.2742 (4)	0.2288 (3)	0.0364 (15)
H13A	1.1494	0.2968	0.2462	0.044*
H13B	1.1057	0.2723	0.1900	0.044*
C14	0.4142 (4)	0.2886 (4)	0.5899 (2)	0.0338 (14)
H14A	0.3486	0.2900	0.5935	0.041*
H14B	0.4412	0.3191	0.6192	0.041*
C15	0.4357 (4)	0.4255 (4)	0.4782 (2)	0.0309 (13)
H15A	0.4215	0.4805	0.4745	0.037*
H15B	0.5000	0.4183	0.4716	0.037*
C16	0.8531 (4)	0.2836 (4)	0.6720(2)	0.0339 (15)
H16A	0.8039	0.3134	0.6876	0.041*
H16B	0.9029	0.2814	0.6983	0.041*
C17	0.3543 (4)	0.1593 (4)	0.3171 (2)	0.0342 (15)
H17A	0.3222	0.1282	0.2900	0.041*
H17B	0.4180	0.1618	0.3076	0.041*
C18	0.3778 (5)	0.0499 (4)	0.3712 (3)	0.0361 (15)
H18A	0.4431	0.0494	0.3662	0.043*
H18B	0.3495	0.0184	0.3429	0.043*
C19	0.3411 (5)	0.3630 (4)	0.3518 (3)	0.0399 (16)
H19A	0.2786	0.3664	0.3635	0.048*
H19B	0.3441	0.3836	0.3152	0.048*
C20	0.9467 (5)	0.4410 (4)	0.2360 (3)	0.0373 (15)
H20A	0.9324	0.4347	0.2740	0.045*
H20B	0.9545	0.4962	0.2287	0.045*
C21	1.0715 (5)	0.4229 (4)	0.5247 (3)	0.0350 (15)
H21A	1.0862	0.4766	0.5336	0.042*
H21B	1.0336	0.4227	0.4920	0.042*
C22	1.1822 (4)	0.1807 (4)	0.4696 (3)	0.0364 (15)
H22A	1.1397	0.1833	0.4392	0.044*
H22B	1.2345	0.1503	0.4587	0.044*
C23	1.1561 (5)	0.3783 (4)	0.5152 (3)	0.0356 (15)
H23A	1.1935	0.4057	0.4893	0.043*
H23B	1.1906	0.3731	0.5489	0.043*
C24	0.4307 (4)	0.0847 (4)	0.5562 (3)	0.0325 (14)
H24A	0.4230	0.0635	0.5924	0.039*
H24B	0.4950	0.0828	0.5480	0.039*
C25	0.6518 (4)	0.3095 (4)	0.1461 (2)	0.0309 (14)
H25A	0.6835	0.3085	0.1119	0.037*
H25B	0.5963	0.3394	0.1411	0.037*
C26	0.6299 (4)	0.2296 (4)	0.1628 (2)	0.0290 (13)
H26A	0.6088	0.2294	0.1999	0.035*
H26B	0.5819	0.2085	0.1396	0.035*
C27	0.3799 (4)	0.0374 (4)	0.5172 (2)	0.0326 (14)

H27A	0.3947	-0.0173	0.5224	0.039*
H27B	0.3151	0.0441	0.5225	0.039*
C28	0.4461 (5)	0.2083 (4)	0.5933 (2)	0.0349 (15)
H28A	0.5110	0.2067	0.5869	0.042*
H28B	0.4356	0.1879	0.6294	0.042*
C29	0.9235 (5)	0.0484 (4)	0.2023 (3)	0.0363 (15)
H29A	0.9462	0.0478	0.1656	0.044*
H29B	0.9127	-0.0050	0.2134	0.044*
C30	1.0316 (4)	0.3978 (4)	0.2233 (3)	0.0359 (15)
H30A	1.0430	0.4002	0.1847	0.043*
H30B	1.0831	0.4207	0.2426	0.043*
C31	0.7950 (4)	0.4512 (4)	0.2124 (3)	0.0329 (14)
H31A	0.8034	0.5069	0.2073	0.039*
H31B	0.7742	0.4423	0.2491	0.039*
C32	0.4138 (5)	0.3982 (4)	0.5338 (3)	0.0335 (14)
H32A	0.4464	0.4296	0.5605	0.040*
H32B	0.3491	0.4038	0.5399	0.040*
C33	0.9898 (5)	0.0847 (4)	0.2385 (3)	0.0371 (15)
H33A	0.9648	0.0893	0.2746	0.045*
H33B	1.0440	0.0526	0.2410	0.045*
C34	0.9447 (5)	0.4290 (4)	0.5816 (3)	0.0415 (17)
H34A	0.8998	0.4242	0.5525	0.050*
H34B	0.9588	0.4840	0.5862	0.050*
C35	1.1112 (4)	0.0688 (4)	0.5032 (3)	0.0344 (15)
H35A	1.1619	0.0381	0.4904	0.041*
H35B	1.0645	0.0698	0.4749	0.041*
C36	0.9074 (5)	0.3980 (4)	0.6319 (3)	0.0436 (17)
H36A	0.9526	0.4016	0.6609	0.052*
H36B	0.8547	0.4284	0.6422	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.02325 (18)	0.0364 (2)	0.02034 (18)	0.00195 (16)	0.00063 (14)	0.00149 (16)
Sb2	0.0290 (2)	0.0282 (2)	0.02750 (19)	0.00258 (17)	-0.00079 (16)	0.00732 (17)
Sb3	0.0287 (2)	0.0238 (2)	0.02746 (19)	0.00118 (16)	0.00176 (15)	0.00238 (16)
Sb4	0.02578 (19)	0.0377 (2)	0.01891 (18)	-0.00189 (17)	0.00039 (14)	0.00531 (16)
Sb5	0.0313 (2)	0.0302 (2)	0.0263 (2)	-0.00022 (17)	0.00243 (16)	-0.00597 (17)
Sb6	0.02441 (18)	0.0355 (2)	0.02000 (18)	-0.00325 (16)	-0.00027 (14)	-0.00186 (16)
Sb7	0.0291 (2)	0.0292 (2)	0.0282 (2)	-0.00651 (17)	0.00153 (16)	0.00162 (17)
Rb1	0.0266 (3)	0.0286 (3)	0.0204 (2)	-0.0007(2)	0.0009 (2)	0.0003 (2)
Rb2	0.0269 (3)	0.0317 (3)	0.0211 (2)	0.0005 (2)	0.0005 (2)	-0.0007(2)
Rb3	0.0259 (3)	0.0281 (3)	0.0207 (2)	-0.0008(2)	-0.0003 (2)	0.0015 (2)
01	0.032 (2)	0.033 (2)	0.026 (2)	-0.0004 (19)	-0.0033 (18)	0.0000 (18)
02	0.034 (2)	0.038 (3)	0.024 (2)	0.0038 (19)	0.0034 (18)	-0.0030 (18)
03	0.039 (2)	0.031 (2)	0.027 (2)	-0.006 (2)	0.0001 (18)	0.0015 (18)
O4	0.031 (2)	0.034 (2)	0.027 (2)	0.0041 (19)	-0.0035 (18)	-0.0042 (18)
05	0.041 (2)	0.029 (2)	0.030 (2)	0.0026 (19)	-0.0087 (19)	0.0010 (18)

O6	0.037 (2)	0.028 (2)	0.029 (2)	-0.0024 (19)	0.0029 (19)	0.0036 (18)
07	0.029 (2)	0.037 (2)	0.0228 (19)	0.0026 (19)	0.0019 (17)	-0.0038 (18)
08	0.026 (2)	0.033 (2)	0.026 (2)	-0.0021 (18)	0.0019 (17)	-0.0015 (18)
09	0.028 (2)	0.039(3)	0.034 (2)	-0.0061 (19)	-0.0028 (18)	-0.004 (2)
O10	0.044 (3)	0.034 (2)	0.023 (2)	0.001 (2)	0.0069 (18)	0.0001 (18)
011	0.029 (2)	0.030 (2)	0.026 (2)	0.0036 (18)	0.0008 (17)	0.0003 (18)
012	0.036 (2)	0.036 (3)	0.031 (2)	0.005 (2)	0.0000 (19)	0.0067 (19)
013	0.028 (2)	0.039 (3)	0.033 (2)	-0.0030(19)	-0.0010 (18)	0.007 (2)
O14	0.032 (2)	0.025 (2)	0.027 (2)	-0.0009(17)	0.0009 (17)	0.0025 (17)
015	0.037 (2)	0.027(2)	0.023 (2)	-0.0008 (18)	-0.0034(18)	0.0044 (17)
O16	0.034 (2)	0.038 (3)	0.033 (2)	0.003 (2)	-0.0037 (19)	0.002 (2)
017	0.037 (2)	0.029 (2)	0.026 (2)	-0.0023 (19)	-0.0006 (18)	-0.0043 (18)
O18	0.036 (2)	0.024 (2)	0.035 (2)	0.0037 (18)	-0.0032(19)	-0.0040 (19)
N1	0.065 (4)	0.038 (3)	0.038 (3)	-0.005(3)	-0.006 (3)	0.002 (3)
N2	0.069 (4)	0.050 (4)	0.032 (3)	0.002 (3)	0.005 (3)	0.002 (3)
N3	0.039 (4)	0.101 (7)	0.064 (5)	-0.014 (4)	0.003 (3)	-0.023(5)
N4	0.090 (6)	0.063 (5)	0.056 (4)	0.021 (4)	-0.025(4)	0.006 (4)
C1	0.028 (3)	0.028 (3)	0.040 (3)	-0.001(3)	0.002 (3)	-0.005(3)
C2	0.040 (3)	0.030(3)	0.025 (3)	-0.004(3)	-0.005(3)	-0.002(3)
C3	0.040 (3)	0.027(3)	0.022(3)	-0.003(3)	0.003 (3)	-0.001(2)
C4	0.027 (3)	0.047 (4)	0.029(3)	0.005 (3)	-0.003(2)	-0.001(3)
C5	0.033 (3)	0.026 (3)	0.029(3)	-0.006(3)	0.002 (3)	-0.003(3)
C6	0.031 (3)	0.048(4)	0.020(3)	0.003 (3)	0.003(2)	0.000 (3)
C7	0.044 (4)	0.047(4)	0.020(3)	0.001 (3)	-0.011(3)	0.001(3)
C8	0.025 (3)	0.026(3)	0.039(3)	0.005(2)	-0.007(3)	-0.010(3)
C9	0.033 (3)	0.039(4)	0.023 (3)	-0.010(3)	0.004 (2)	0.003 (3)
C10	0.023 (3)	0.041 (4)	0.037(3)	0.001 (3)	0.006 (3)	0.007(3)
C11	0.037 (3)	0.029 (3)	0.030 (3)	0.002 (3)	-0.002(3)	0.003 (3)
C12	0.044 (4)	0.024 (3)	0.035 (3)	0.001 (3)	0.001 (3)	0.008 (3)
C13	0.027 (3)	0.045 (4)	0.037 (3)	0.001 (3)	-0.001(3)	-0.003(3)
C14	0.037(3)	0.043 (4)	0.022(3)	-0.002(3)	0.001 (3)	-0.007(3)
C15	0.035 (3)	0.026 (3)	0.032(3)	-0.004(3)	0.005 (3)	-0.004(3)
C16	0.031 (3)	0.045(4)	0.025(3)	0.008 (3)	0.005 (3)	-0.001(3)
C17	0.034(3)	0.044(4)	0.024(3)	-0.003(3)	-0.007(3)	-0.006(3)
C18	0.033(3)	0.038(4)	0.027(3)	0.004(3)	-0.004(3)	-0.012(3)
C19	0.045 (4)	0.043(4)	0.032(3)	0.012(3)	-0.006(3)	0.006(3)
C20	0.040 (4)	0.039(4)	0.032(3)	-0.012(3)	-0.005(3)	-0.001(3)
C21	0.044 (4)	0.029(3)	0.033(3)	-0.002(3)	-0.003(3)	0.006(3)
C22	0.027(3)	0.029(0)	0.032(3)	0.001(3)	0.003 (3)	-0.006(3)
C23	0.038(3)	0.035(4)	0.032(3)	-0.006(3)	0.003(3)	0.005(3)
C24	0.038(3)	0.029(3)	0.031(3)	0.005(3)	0.007(3)	0.009(3)
C25	0.034(3)	0.023(3)	0.026(3)	-0.001(3)	-0.007(3)	-0.002(3)
C26	0.028 (3)	0.033(3)	0.026(3)	0.000(3)	-0.005(2)	0.001(3)
C27	0.035(3)	0.033(3)	0.020(0)	-0.001(3)	0.008(3)	0.002(3)
C28	0.039(3)	0.044(4)	0.022(3)	-0.001(3)	0.003(3)	-0.002(3)
C29	0.043(4)	0.029(3)	0.022(3)	0.008(3)	0.000(3)	0.002(3)
C30	0.031(3)	0.029(3) 0.038(4)	0.038(3)	-0.015(3)	-0.002(3)	0.002(3)
C31	0.021(3)	0.025(3)	0.032(3)	0.012(3)	0.002(3)	0.000(3)
UJ 1	0.011 (7)	0.040 (0)	0.054 (5)	0.002 (5)	0.002 (3)	0.000 (5)

supporting information

C32	0.035 (3)	0.036 (4)	0.030 (3)	-0.008 (3)	0.004 (3)	-0.007 (3)
C33	0.043 (4)	0.031 (4)	0.037 (3)	0.006 (3)	-0.001 (3)	0.003 (3)
C34	0.043 (4)	0.030 (4)	0.052 (4)	0.016 (3)	0.009 (3)	0.006 (3)
C35	0.025 (3)	0.035 (4)	0.043 (4)	0.002 (3)	0.001 (3)	-0.017 (3)
C36	0.055 (4)	0.036 (4)	0.041 (4)	0.012 (3)	0.015 (3)	-0.004 (3)

Geometric parameters (Å, °)

Sb1—Sb7	2.7647 (8)	N4—H4D	0.9100
Sb1—Sb3	2.8090 (8)	N4—H4E	0.9100
Sb1—Rb2	3.7411 (10)	C1—C18	1.502 (10)
Sb1—Rb3	3.8327 (11)	C1—H1A	0.9900
Sb2—Sb6	2.7477 (8)	C1—H1B	0.9900
Sb2—Sb5	2.8687 (8)	С2—С9	1.509 (10)
Sb2—Sb7	2.8790 (9)	C2—H2A	0.9900
Sb2—Rb3	4.2005 (13)	C2—H2B	0.9900
Sb2—Rb1	4.2703 (12)	C3—C5	1.518 (9)
Sb3—Sb6	2.7544 (9)	С3—НЗА	0.9900
Sb3—Sb4	2.8215 (8)	C3—H3B	0.9900
Sb4—Sb5	2.7587 (8)	C4—C13	1.503 (10)
Sb4—Rb1	3.8756 (12)	C4—H4A	0.9900
Sb4—Rb2	3.9161 (11)	C4—H4B	0.9900
Sb5—Sb7	2.9298 (10)	С5—Н5А	0.9900
Sb5—Rb1	4.3283 (10)	C5—H5B	0.9900
Sb6—Rb1	3.8465 (13)	C6—C16	1.492 (10)
Sb6—Rb3	3.8862 (13)	C6—H6A	0.9900
Sb7—Rb3	4.1688 (10)	C6—H6B	0.9900
Sb7—Rb2	4.3337 (11)	C7—C17	1.490 (10)
Rb1—O2	2.963 (4)	С7—Н7А	0.9900
Rb1—O6	2.982 (4)	C7—H7B	0.9900
Rb1—O5	2.988 (4)	C8—C35	1.505 (10)
Rb1—O1	3.100 (4)	C8—H8A	0.9900
Rb1—O3	3.103 (5)	C8—H8B	0.9900
Rb1—O4	3.115 (4)	С9—Н9А	0.9900
Rb1—C24	3.690 (6)	С9—Н9В	0.9900
Rb1—C15	3.717 (7)	C10—C22	1.488 (10)
Rb1—C28	3.728 (6)	C10—H10A	0.9900
Rb2—011	2.993 (4)	C10—H10B	0.9900
Rb2—O10	3.021 (5)	C11—C31	1.488 (9)
Rb2—O12	3.056 (5)	C11—H11A	0.9900
Rb2—O9	3.092 (5)	C11—H11B	0.9900
Rb2—08	3.139 (4)	C12—C19	1.483 (10)
Rb2—07	3.148 (4)	C12—H12A	0.9900
Rb2—C34	3.696 (8)	C12—H12B	0.9900
Rb2—C35	3.708 (7)	C13—H13A	0.9900
Rb3—O18	2.934 (4)	C13—H13B	0.9900
Rb3—O15	2.956 (4)	C14—C28	1.485 (10)
Rb3—013	3.047 (4)	C14—H14A	0.9900

Rb3—O14	3.082 (4)	C14—H14B	0.9900
Rb3—O17	3.119 (5)	C15—C32	1.518 (9)
Rb3—O16	3.160 (5)	C15—H15A	0.9900
Rb3—C33	3.679 (7)	C15—H15B	0.9900
Rb3—C5	3.696 (6)	C16—H16A	0.9900
Rb3—C26	3.704 (6)	C16—H16B	0.9900
Rb3—C31	3.705 (7)	C17—H17A	0.9900
O1—C28	1.421 (8)	С17—Н17В	0.9900
O1—C24	1.426 (8)	C18—H18A	0.9900
O2—C32	1.413 (8)	C18—H18B	0.9900
O2—C14	1.455 (8)	C19—H19A	0.9900
O3—C15	1.407 (7)	С19—Н19В	0.9900
O3—C12	1.446 (8)	C20—C30	1.519 (10)
O4—C18	1.421 (8)	C20—H20A	0.9900
Q4—C17	1.437 (8)	C20—H20B	0.9900
05	1.413 (8)	C21—C23	1.513 (10)
05—C19	1 421 (8)	C21—H21A	0.9900
06—C1	1.414 (7)	C21—H21B	0.9900
06—C27	1 438 (8)	C22—H22A	0.9900
07-09	1 429 (8)	C22_H22B	0.9900
07	1.448 (8)	C23—H23A	0.9900
08-C35	1.420 (8)	C23—H23B	0.9900
08—C22	1.450 (8)	C24—C27	1.483 (9)
09-C23	1 420 (8)	C24—H24A	0.9900
09—C10	1.433 (8)	C24—H24B	0.9900
010-016	1.433 (8)	C25—C26	1.497 (9)
010-036	1.435 (9)	C25—H25A	0.9900
011-68	1.432 (7)	C25—H25B	0.9900
011-C2	1.432 (8)	C26—H26A	0.9900
012	1.435 (8)	C26—H26B	0.9900
012-021	1.440 (8)	C27—H27A	0.9900
013—C13	1.426 (8)	C27—H27B	0.9900
013-C30	1.437 (8)	C28—H28A	0.9900
O14—C26	1.432 (8)	C28—H28B	0.9900
O14—C5	1.432 (7)	C29—C33	1.481 (10)
015	1.422 (7)	C29—H29A	0.9900
O15—C11	1.422 (8)	C29—H29B	0.9900
016-033	1.423 (8)	C30—H30A	0.9900
O16—C4	1.426 (8)	C30—H30B	0.9900
O17—C20	1.401 (7)	C31—H31A	0.9900
O17—C31	1.442 (8)	C31—H31B	0.9900
O18—C3	1.406 (7)	C32—H32A	0.9900
O18—C29	1.426 (8)	C32—H32B	0.9900
N1—H1C	0.9100	С33—Н33А	0.9900
N1—H1D	0.9100	С33—Н33В	0.9900
N1—H1E	0.9100	C34—C36	1.496 (11)
N2—H2C	0.9100	С34—Н34А	0.9900
N2—H2D	0.9100	C34—H34B	0.9900

N2—H2E	0.9100	С35—Н35А	0.9900
N3—H3C	0.9100	С35—Н35В	0.9900
N3—H3D	0.9100	С36—Н36А	0.9900
N3—H3E	0.9100	С36—Н36В	0.9900
N4—H4C	0.9100		
Sb7—Sb1—Sb3	98.58 (2)	C31—O17—Rb3	102.3 (3)
Sb7—Sb1—Rb2	82.056 (19)	C3—O18—C29	111.5 (5)
Sb3—Sb1—Rb2	89.37 (3)	C3—O18—Rb3	122.6 (4)
Sb7—Sb1—Rb3	76.480 (17)	C29—O18—Rb3	122.4 (4)
Sb3—Sb1—Rb3	92.14 (3)	C29 ⁱ —N1—H1C	109.5
Rb2—Sb1—Rb3	158.469 (19)	C29 ⁱ —N1—H1D	109.5
Sb6—Sb2—Sb5	106.300 (18)	H1C—N1—H1D	109.5
Sb6—Sb2—Sb7	105.516 (18)	C29 ⁱ —N1—H1E	109.5
Sb5—Sb2—Sb7	61.29 (3)	H1C—N1—H1E	109.5
Sb6—Sb2—Rb3	64.078 (16)	H1D—N1—H1E	109.5
Sb5—Sb2—Rb3	124.67 (2)	C16—N2—H2C	109.5
Sb7—Sb2—Rb3	69.29 (2)	C16—N2—H2D	109.5
Sb6—Sb2—Rb1	62.076 (17)	H2C—N2—H2D	109.5
Sb5—Sb2—Rb1	71.61 (2)	C16—N2—H2E	109.5
Sb7—Sb2—Rb1	125.38 (2)	H2C—N2—H2E	109.5
Rb3—Sb2—Rb1	126.15 (2)	H2D—N2—H2E	109.5
Sb6—Sb3—Sb1	101.18 (2)	C19 ⁱⁱ —N3—H3C	109.5
Sb6—Sb3—Sb4	101.67 (2)	C19 ⁱⁱ —N3—H3D	109.5
Sb1—Sb3—Sb4	102.84 (3)	H3C—N3—H3D	109.5
Sb5—Sb4—Sb3	98.63 (2)	C19 ⁱⁱ —N3—H3E	109.5
Sb5—Sb4—Rb1	79.500 (16)	H3C—N3—H3E	109.5
Sb3—Sb4—Rb1	89.56 (3)	H3D—N3—H3E	109.5
Sb5—Sb4—Rb2	81.462 (18)	C36—N4—H4C	109.5
Sb3—Sb4—Rb2	85.74 (3)	C36—N4—H4D	109.5
Rb1—Sb4—Rb2	159.462 (18)	H4C—N4—H4D	109.5
Sb4—Sb5—Sb2	104.337 (18)	C36—N4—H4E	109.5
Sb4—Sb5—Sb7	105.357 (19)	H4C—N4—H4E	109.5
Sb2—Sb5—Sb7	59.53 (2)	H4D—N4—H4E	109.5
Sb4—Sb5—Rb1	61.694 (18)	O6—C1—C18	108.9 (5)
Sb2—Sb5—Rb1	69.42 (3)	06—C1—H1A	109.9
Sb7—Sb5—Rb1	122.01 (2)	C18—C1—H1A	109.9
Sb2—Sb6—Sb3	98.62 (2)	O6—C1—H1B	109.9
Sb2—Sb6—Rb1	78.789 (16)	C18—C1—H1B	109.9
Sb3—Sb6—Rb1	91.16 (2)	H1A—C1—H1B	108.3
Sb2—Sb6—Rb3	76.436 (17)	O11—C2—C9	110.5 (5)
Sb3—Sb6—Rb3	91.86 (2)	O11—C2—H2A	109.5
Rb1—Sb6—Rb3	155.215 (19)	С9—С2—Н2А	109.5
Sb1—Sb7—Sb2	104.330 (18)	O11—C2—H2B	109.5
Sb1—Sb7—Sb5	105.546 (19)	C9—C2—H2B	109.5
Sb2—Sb7—Sb5	59.18 (2)	H2A—C2—H2B	108.1
Sb1—Sb7—Rb3	63.368 (18)	O18—C3—C5	108.0 (5)
Sb2—Sb7—Rb3	70.47 (3)	O18—C3—H3A	110.1

Sb5—Sb7—Rb3	123.89 (2)	С5—С3—НЗА	110.1
Sb1—Sb7—Rb2	58.758 (15)	O18—C3—H3B	110.1
Sb2—Sb7—Rb2	122.20 (3)	С5—С3—Н3В	110.1
Sb5—Sb7—Rb2	72.52 (2)	НЗА—СЗ—НЗВ	108.4
Rb3—Sb7—Rb2	122.10 (2)	O16—C4—C13	109.4 (5)
O2—Rb1—O6	112.49 (13)	O16—C4—H4A	109.8
O2—Rb1—O5	108.67 (12)	C13—C4—H4A	109.8
O6—Rb1—O5	108.84 (12)	O16—C4—H4B	109.8
O2—Rb1—O1	56.25 (12)	C13—C4—H4B	109.8
06—Rb1—01	56.68 (12)	H4A—C4—H4B	108.3
05—Rb1—01	131.47 (12)	Q14—C5—C3	107.7 (5)
Ω_2 —Rb1— Ω_3	54.70 (12)	014—C5—Rb3	54.1 (3)
06—Rb1— 03	136.97(12)	C_3 — C_5 — R_{b_3}	85 2 (3)
05 - Rb1 - 03	55 15 (12)	014— $C5$ —H5A	110.2
Ω_1 = Rb1 = Ω_3	101 42 (12)	C3—C5—H5A	110.2
$\Omega^2 = Rb1 = \Omega^4$	135.62(12)	Rb3—C5—H5A	161.8
06-Rb1-04	54 27 (12)	014—C5—H5B	110.2
05 - Rb1 - 04	55 45 (12)	C3-C5-H5B	110.2
O_1 Rb1 O_4	100.68(12)	Rb3 C5 H5R	73 /
$O_1 = RO_1 = O_4$ $O_2 = Rb_1 = O_4$	100.08(12) 103.28(11)	H5A C5 H5B	108 5
$O_2 Pb1 C_24$	76.34(14)	07 C6 C16	108.3
02 - R01 - C24	70.34 (14) 40.06 (13)	07 - 6 + 64	109.0 (3)
00 - R01 - C24	40.00(13) 120.61(14)	$C_1 \in C_2 \oplus H_2 $	109.9
03 - R01 - C24	139.01(14)	C10 - C0 - H0A	109.9
O1—R $b1$ — $C24$	22.14(13)	O = C = H O B	109.9
O_3 —Rb1—C24	123.46 (14)		109.9
O4—Rb1—C24	92.17 (14)	Н6А—С6—Н6В	108.3
02—Rb1—C15	39.89 (13)	05	110.4 (5)
06—Rb1—C15	145.70 (14)	O5—C7—H7A	109.6
O5—Rb1—C15	74.84 (13)	С17—С7—Н7А	109.6
O1—Rb1—C15	94.53 (13)	O5—C7—H7B	109.6
O3—Rb1—C15	21.48 (12)	С17—С7—Н7В	109.6
O4—Rb1—C15	124.72 (13)	H7A—C7—H7B	108.1
C24—Rb1—C15	115.80 (15)	O11—C8—C35	111.5 (5)
O2—Rb1—C28	39.92 (14)	O11—C8—H8A	109.3
O6—Rb1—C28	76.32 (14)	С35—С8—Н8А	109.3
O5—Rb1—C28	139.18 (14)	O11—C8—H8B	109.3
O1—Rb1—C28	21.61 (13)	C35—C8—H8B	109.3
O3—Rb1—C28	92.66 (14)	H8A—C8—H8B	108.0
O4—Rb1—C28	122.14 (14)	O7—C9—C2	108.3 (5)
C24—Rb1—C28	37.16 (15)	О7—С9—Н9А	110.0
C15—Rb1—C28	79.81 (15)	С2—С9—Н9А	110.0
O2—Rb1—Sb6	138.65 (9)	O7—C9—H9B	110.0
O6—Rb1—Sb6	101.61 (9)	С2—С9—Н9В	110.0
O5—Rb1—Sb6	80.09 (10)	H9A—C9—H9B	108.4
O1—Rb1—Sb6	144.18 (8)	O9—C10—C22	109.0 (5)
O3—Rb1—Sb6	112.34 (9)	O9-C10-H10A	109.9
O4—Rb1—Sb6	83.35 (9)	C22-C10-H10A	109.9
C24—Rb1—Sb6	123.41 (11)	O9—C10—H10B	109.9

C15—Rb1—Sb6	112.50 (10)	C22—C10—H10B	109.9
C28—Rb1—Sb6	139.90 (11)	H10A-C10-H10B	108.3
O2—Rb1—Sb4	84.49 (9)	O15—C11—C31	109.9 (5)
O6—Rb1—Sb4	97.44 (8)	O15—C11—H11A	109.7
O5—Rb1—Sb4	142.20 (10)	C31—C11—H11A	109.7
O1—Rb1—Sb4	85.63 (8)	O15—C11—H11B	109.7
O3—Rb1—Sb4	118.98 (8)	C31—C11—H11B	109.7
O4—Rb1—Sb4	135.22 (8)	H11A—C11—H11B	108.2
C24—Rb1—Sb4	77.24 (11)	O3—C12—C19	107.5 (6)
C15—Rb1—Sb4	98.44 (10)	O3—C12—H12A	110.2
C28—Rb1—Sb4	72.46 (11)	C19—C12—H12A	110.2
Sb6—Rb1—Sb4	68.09 (2)	O3—C12—H12B	110.2
O2—Rb1—Sb2	102.02 (9)	C19—C12—H12B	110.2
O6—Rb1—Sb2	140.18 (9)	H12A—C12—H12B	108.5
O5—Rb1—Sb2	76.56 (10)	O13—C13—C4	108.9 (6)
O1—Rb1—Sb2	146.73 (8)	O13—C13—H13A	109.9
O3—Rb1—Sb2	79.50 (9)	C4—C13—H13A	109.9
O4—Rb1—Sb2	111.56 (9)	O13—C13—H13B	109.9
C24—Rb1—Sb2	143.06 (11)	C4—C13—H13B	109.9
C15—Rb1—Sb2	74.11 (10)	H13A—C13—H13B	108.3
C28—Rb1—Sb2	126.03 (11)	O2—C14—C28	109.1 (5)
Sb6—Rb1—Sb2	39.136 (16)	O2—C14—H14A	109.9
Sb4—Rb1—Sb2	65.936 (18)	C28—C14—H14A	109.9
O11—Rb2—O10	109.50 (12)	O2—C14—H14B	109.9
O11—Rb2—O12	136.21 (11)	C28—C14—H14B	109.9
O10—Rb2—O12	55.84 (13)	H14A—C14—H14B	108.3
O11—Rb2—O9	110.55 (12)	O3—C15—C32	108.3 (5)
O10—Rb2—O9	110.66 (13)	O3—C15—Rb1	53.9 (3)
O12—Rb2—O9	55.83 (12)	C32—C15—Rb1	85.8 (4)
O11—Rb2—O8	56.94 (12)	O3—C15—H15A	110.0
O10—Rb2—O8	134.67 (12)	С32—С15—Н15А	110.0
O12—Rb2—O8	101.66 (12)	Rb1—C15—H15A	161.4
O9—Rb2—O8	54.31 (12)	O3—C15—H15B	110.0
O11—Rb2—O7	55.35 (12)	C32—C15—H15B	110.0
O10—Rb2—O7	54.71 (12)	Rb1—C15—H15B	73.4
O12—Rb2—O7	101.80 (12)	H15A—C15—H15B	108.4
O9—Rb2—O7	134.33 (11)	O10-C16-C6	108.7 (5)
O8—Rb2—O7	102.35 (11)	O10-C16-N2	76.7 (3)
O11—Rb2—C34	143.50 (14)	C6—C16—N2	96.0 (4)
O10—Rb2—C34	40.21 (15)	O10-C16-H16A	109.9
O12—Rb2—C34	22.03 (15)	C6—C16—H16A	109.9
O9—Rb2—C34	76.05 (15)	O10-C16-H16B	109.9
O8—Rb2—C34	123.60 (14)	C6—C16—H16B	109.9
O7—Rb2—C34	93.55 (14)	H16A—C16—H16B	108.3
O11—Rb2—C35	40.75 (14)	O4—C17—C7	107.1 (5)
O10—Rb2—C35	142.42 (14)	O4—C17—H17A	110.3
O12—Rb2—C35	123.54 (13)	С7—С17—Н17А	110.3
O9—Rb2—C35	74.45 (14)	O4—C17—H17B	110.3

O8—Rb2—C35	21.98 (13)	С7—С17—Н17В	110.3
O7—Rb2—C35	94.15 (14)	H17A—C17—H17B	108.5
C34—Rb2—C35	145.32 (15)	O4—C18—C1	107.3 (5)
O11—Rb2—Sb1	100.66 (8)	O4C18H18A	110.3
O10—Rb2—Sb1	138.52 (9)	C1C18H18A	110.3
O12—Rb2—Sb1	116.45 (8)	O4C18H18B	110.3
O9—Rb2—Sb1	83.27 (8)	C1C18H18B	110.3
O8—Rb2—Sb1	85.69 (8)	H18A—C18—H18B	108.5
O7—Rb2—Sb1	138.56 (8)	O5-C19-C12	110.1 (5)
C34—Rb2—Sb1	115.84 (12)	O5-C19-H19A	109.6
C35—Rb2—Sb1	78.27 (11)	C12—C19—H19A	109.6
O11—Rb2—Sb4	93.18 (8)	O5-C19-H19B	109.6
O10—Rb2—Sb4	80.19 (9)	C12—C19—H19B	109.6
O12—Rb2—Sb4	119.93 (9)	H19A—C19—H19B	108.2
O9—Rb2—Sb4	147.33 (8)	O17—C20—C30	108.0 (6)
O8—Rb2—Sb4	137.74 (8)	O17—C20—H20A	110.1
O7—Rb2—Sb4	77.55 (8)	C30—C20—H20A	110.1
C34—Rb2—Sb4	98.36 (12)	O17—C20—H20B	110.1
C35—Rb2—Sb4	116.32 (10)	C30—C20—H20B	110.1
Sb1—Rb2—Sb4	70.13 (3)	H20A—C20—H20B	108.4
O11—Rb2—Sb7	138.25 (8)	O12—C21—C23	109.2 (5)
O10—Rb2—Sb7	102.51 (9)	O12—C21—H21A	109.8
O12—Rb2—Sb7	84.18 (8)	C23—C21—H21A	109.8
O9—Rb2—Sb7	81.13 (8)	O12—C21—H21B	109.8
O8—Rb2—Sb7	114.54 (8)	C23—C21—H21B	109.8
O7—Rb2—Sb7	140.69 (8)	H21A—C21—H21B	108.3
C34—Rb2—Sb7	77.55 (12)	O8—C22—C10	109.3 (5)
C35—Rb2—Sb7	114.99 (11)	O8—C22—H22A	109.8
Sb1—Rb2—Sb7	39.186 (15)	C10-C22-H22A	109.8
Sb4—Rb2—Sb7	66.30 (2)	O8—C22—H22B	109.8
O18—Rb3—O15	112.22 (12)	C10—C22—H22B	109.8
O18—Rb3—O13	109.16 (13)	H22A—C22—H22B	108.3
O15—Rb3—O13	108.75 (12)	O9—C23—C21	109.2 (5)
O18—Rb3—O14	55.56 (11)	O9—C23—H23A	109.8
O15—Rb3—O14	57.05 (11)	C21—C23—H23A	109.8
O13—Rb3—O14	131.45 (12)	O9—C23—H23B	109.8
O18—Rb3—O17	136.49 (12)	C21—C23—H23B	109.8
O15—Rb3—O17	55.88 (11)	H23A—C23—H23B	108.3
O13—Rb3—O17	53.93 (12)	O1—C24—C27	110.9 (5)
O14—Rb3—O17	102.66 (11)	O1—C24—Rb1	55.0 (3)
O18—Rb3—O16	55.05 (12)	C27—C24—Rb1	86.6 (4)
O15—Rb3—O16	135.67 (12)	O1—C24—H24A	109.5
O13—Rb3—O16	55.02 (13)	C27—C24—H24A	109.5
O14—Rb3—O16	100.35 (12)	Rb1—C24—H24A	161.8
O17—Rb3—O16	101.68 (12)	O1—C24—H24B	109.5
O18—Rb3—C33	39.90 (14)	C27—C24—H24B	109.5
O15—Rb3—C33	145.38 (14)	Rb1—C24—H24B	72.9
O13—Rb3—C33	75.20 (15)	H24A—C24—H24B	108.1

O14—Rb3—C33	93.78 (13)	O15—C25—C26	109.1 (5)
O17—Rb3—C33	124.09 (15)	O15—C25—H25A	109.9
O16—Rb3—C33	22.41 (15)	С26—С25—Н25А	109.9
O18—Rb3—C5	39.78 (13)	O15—C25—H25B	109.9
015—Rb3—C5	76.65 (13)	C26—C25—H25B	109.9
013—Rb3—C5	140 34 (14)	H25A - C25 - H25B	108.3
014—Rb3—C5	22.10(12)	014-C26-C25	108.4(5)
017 Rb3 -05	124.71(12)	$014-C_{26}-B_{b_{3}}$	537(2)
016 Rb3 05	92.90(13)	C_{25} C_{26} R_{b3}	83.9 (3)
C_{33} _Rb3_C5	79.66 (15)	014-C26-H264	110.0
018 Bb3 026	75.80 (13)	C_{25} C_{26} H_{26A}	110.0
015 Pb3 C26	75.80(13) 30.80(13)	Pb3 C26 H26A	75.2
013 - R03 - C20	39.09(13)	R03 - C20 - H20A	110.0
013 - R03 - C20	130.03(13)	$C_{25} = C_{26} = H_{26} B$	110.0
014 - R03 - C20	22.00(13)	C25-C20-H20B	110.0
O1/-Rb3-C26	93.47 (13)	R03—C26—H26B	162.3
016—Rb3—C26	122.08 (13)	H26A—C26—H26B	108.4
C33—Rb3—C26	115.15 (15)	O6—C27—C24	109.1 (5)
C5—Rb3—C26	37.26 (14)	O6—C27—H27A	109.9
O18—Rb3—C31	145.24 (13)	С24—С27—Н27А	109.9
O15—Rb3—C31	39.95 (13)	O6—C27—H27B	109.9
O13—Rb3—C31	74.57 (14)	C24—C27—H27B	109.9
O14—Rb3—C31	95.20 (12)	H27A—C27—H27B	108.3
O17—Rb3—C31	22.34 (14)	O1—C28—C14	110.4 (5)
O16—Rb3—C31	123.96 (14)	O1—C28—Rb1	53.5 (3)
C33—Rb3—C31	146.35 (16)	C14—C28—Rb1	85.7 (4)
C5—Rb3—C31	116.17 (14)	O1—C28—H28A	109.6
C26—Rb3—C31	79.84 (14)	C14—C28—H28A	109.6
O18—Rb3—Sb1	97.27 (8)	Rb1—C28—H28A	75.0
O15—Rb3—Sb1	142.00 (9)	O1—C28—H28B	109.6
O13—Rb3—Sb1	81.83 (8)	C14—C28—H28B	109.6
O14—Rb3—Sb1	140.25 (8)	Rb1—C28—H28B	161.4
O17—Rb3—Sb1	116.13 (7)	H28A—C28—H28B	108.1
Q16—Rb3—Sb1	80.79 (8)	Q18—C29—C33	108.7 (6)
C_{33} Rb3 Sb1	72 17 (11)	$018 - C^{29} - H^{29A}$	110.0
C5—Rb3—Sb1	118 78 (10)	C_{33} C_{29} H_{29A}	110.0
C_{26} Rb3 Sb1	139 12 (10)	018-C29-H29B	110.0
C_{20} Rb3 Sb1	117 30 (10)	C_{23} C_{29} H_{29B}	110.0
O_{18} Pb3 Sb6	80.04 (10)	$H_{20A} = C_{20} = H_{20B}$	108.3
015 Pb2 Sb6	89.94 (10) 88.22 (0)	1129A - C29 - 1129B	108.3
013 - R03 - 300	146,00,(0)	013 - 020 - 020	107.0 (3)
013 - R03 - S00	140.00(9)	C_{20} C_{20} H_{20A}	110.2
017 D12 S16	82.54 (8)	C20-C30-H30A	110.2
O1/-Rb3-Sb6	127.22 (9)	013—C30—H30B	110.2
016—Rb3—Sb6	129.42 (9)	С20—С30—Н30В	110.2
C33—Rb3—Sb6	107.56 (12)	H30A—C30—H30B	108.5
C5—Rb3—Sb6	71.16 (10)	017—C31—C11	107.2 (5)
C26—Rb3—Sb6	72.02 (10)	O17—C31—Rb3	55.3 (3)
C31—Rb3—Sb6	105.73 (11)	C11—C31—Rb3	85.0 (4)
Sb1—Rb3—Sb6	67.68 (2)	O17—C31—H31A	110.3

C28-01-C24	112.2 (5)	C11—C31—H31A	110.3
C28—O1—Rb1	104.9 (4)	Rb3—C31—H31A	162.6
C_24 — O_1 — R_{b1}	102.9 (3)	017—C31—H31B	110.3
$C_{32} = 0^2 = C_{14}$	112.3(5)	C11—C31—H31B	110.3
$C_{32} = O_2 = Bh_1$	122.6(3)	Rb3—C31—H31B	72.0
$C_{14} = 02 = Rb1$	122.0(3) 120.5(4)	H31A_C31_H31B	108.5
C14 - O2 - R01 C15 - O3 - C12	120.5(4) 110.7(5)	02-C32-C15	108.9
C15 - 03 - C12	10.7(3) 104.6(4)	02 - C32 - C13	108.9 (5)
C12 = 03 = Rb1	104.0(4) 105.2(4)	$C_{15} C_{22} H_{22}$	109.9
C12 - 03 - K01	103.2(4)	C13 - C32 - H32A	109.9
C10 - 04 - C17	112.2(3)	02 - 032 - 032B	109.9
C10 - 04 - R01	105.5(3)	U13—U32—П32В	109.9
CI/O4KDI	100.0 (3)	H32A—C32—H32B	108.5
C/05C19	113.3 (5)	016 - 033 - 029	109.6 (5)
C/-O5-Rb1	120.2 (4)	O16 - C33 - Rb3	57.8 (3)
C19—O5—Rb1	120.9 (3)	C29—C33—Rb3	86.8 (4)
C1—O6—C27	112.0 (5)	O16—C33—H33A	109.8
C1	122.6 (4)	С29—С33—Н33А	109.8
C27—O6—Rb1	119.3 (4)	Rb3—C33—H33A	69.1
С9—О7—С6	112.2 (5)	O16—C33—H33B	109.8
C9—O7—Rb2	105.5 (3)	С29—С33—Н33В	109.8
C6—O7—Rb2	107.2 (3)	Rb3—C33—H33B	162.6
C35—O8—C22	112.7 (5)	H33A—C33—H33B	108.2
C35—O8—Rb2	102.2 (3)	O12—C34—C36	110.4 (6)
C22—O8—Rb2	107.3 (3)	O12—C34—Rb2	53.0 (3)
C23—O9—C10	112.2 (5)	C36—C34—Rb2	87.8 (4)
C23—O9—Rb2	118.0 (4)	O12—C34—H34A	109.6
C10-09-Rb2	120.9 (4)	C36—C34—H34A	109.6
C16-010-C36	112.9 (5)	Rb2—C34—H34A	73.7
C16-010-Rb2	122.4 (4)	O12—C34—H34B	109.6
C36—O10—Rb2	119.6 (4)	C36—C34—H34B	109.6
C8-011-C2	114.3 (5)	Rb2—C34—H34B	159.9
C8—O11—Rb2	118.0 (4)	H34A—C34—H34B	108.1
C2—O11—Rb2	121.2 (4)	O8—C35—C8	109.6 (5)
C34—O12—C21	113.3 (5)	O8—C35—Rb2	55.8 (3)
C34—O12—Rb2	104.9 (4)	C8—C35—Rb2	85.0 (4)
C21—O12—Rb2	108.9 (4)	08—C35—H35A	109.7
C13—O13—C30	111.8 (5)	C8—C35—H35A	109.7
C13-013-Rb3	120.7 (4)	Rb2—C35—H35A	163.1
C30-013-Rb3	120.7(1) 121.8(3)	08-C35-H35B	109.7
$C_{26} - 014 - C_{5}$	121.0(5)	C8-C35-H35B	109.7
$C_{26} = 014 = B_{26}$	1043(3)	Bb2—C35—H35B	72.8
$C_{5} = 014 = Rb_{3}$	1038(3)	H35A_C35_H35B	108.2
$C_{25} = 0.15 = C_{11}$	103.0(3) 112 1 (4)	010-036-034	109.5 (6)
$C_{25} = 015 = 011$ $C_{25} = 015 = Rh^3$	112.1(7) 118 7 (4)	010 - C36 - N4	107.3(0) 107.7(4)
C11015Rb3	120.7(7)	C_{34} C_{36} N_{4}	120.6 (5)
$C_{11} = 0_{13} = 10_{15}$	120.2(3) 112 8(5)	$\begin{array}{c} \bigcirc \neg \neg \bigcirc \neg \bigcirc \neg \neg \frown \neg \neg$	129.0 (3)
$C_{33} = 010 = 04$ $C_{33} = 016 = 0h^2$	112.0(3)	$C_{34} C_{26} H_{264}$	109.0
$C_{10} = C_{10} = C_{10}$	77.0 (4) 105 5 (4)	$O_{10} C_{26} U_{26}$	107.0
C4-010-K03	103.3 (4)	010-030-030B	109.8

C20—O17—C31	111.4 (5)	С34—С36—Н36В	109.8
C20—O17—Rb3	107.5 (4)	H36A—C36—H36B	108.2

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) x+1, y, z.