## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-Chloro-5-methyl-3-nitropyridine

#### Da-Tong Zhang\* and Ling-Yan Huo

School of Chemistry and Pharmaceutical Engineering, Shandong Polytechnic University, Jinan 250353, People's Republic of China Correspondence e-mail: datong\_zhang2006@yahoo.com.cn

Received 19 October 2011: accepted 23 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.093; data-to-parameter ratio = 10.6.

The title compound, C<sub>6</sub>H<sub>5</sub>ClN<sub>2</sub>O<sub>2</sub>, crystallizes with two independent molecules in the asymmetric unit. Intermolecular  $C-H \cdots O$  hydrogen bonds stabilize the crystal structure.

#### **Related literature**

For aplication of pyridines, see: Madsen-Duggan et al. (2010); Meurer et al. (2005); Liégeois et al. (1993); Kagabu et al. (2005). For related structures, see: Ng (2010). For standard bond lengths, see: Allen et al. (1987).



#### **Experimental**

Crystal data

C<sub>6</sub>H<sub>5</sub>ClN<sub>2</sub>O<sub>2</sub>  $M_r = 172.57$ Orthorhombic, Pna21 a = 21.435 (6) Å b = 8.151 (2) Å c = 8.494 (2) Å

V = 1484.0 (7) Å<sup>3</sup> Z = 8Mo  $K\alpha$  radiation  $\mu = 0.46 \text{ mm}^{-1}$ T = 298 K0.38  $\times$  0.24  $\times$  0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer 7071 measured reflections

2134 independent reflections 1749 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.023$ 

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.037$ | H-atom parameters constrained                             |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.093$               | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ |
| S = 1.06                        | $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$  |
| 2134 reflections                | Absolute structure: Flack (1983),                         |
| 201 parameters                  | 139 Friedel pairs                                         |
| 1 restraint                     | Flack parameter: $-0.08$ (8)                              |
|                                 |                                                           |

### Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$  $D \cdot \cdot \cdot A$  $D - H \cdots A$  $C9-H9A\cdots O2^{i}$ 0.93 2.51 3.243 (4) 136 Symmetry code: (i)  $-x + 1, -y + 1, z - \frac{1}{2}$ .

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5113).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kagabu, S., Ito, N., Imai, R., Hieta, Y. & Nishimura, K. (2005). J. Pestic. Sci. 30, 409-413.
- Liégeois, F. F., Bruhwyler, J., Damas, J., Nguyen, T. P., Chleide, E. M., Mercier, M. G., Rogister, F. A. & Delarge, J. E. (1993). J. Med. Chem. 36, 2107-2114.
- Madsen-Duggan, C. B., Debenham, J. S., Walsh, T. F., Yan, L., Huo, P., Wang, J., Tong, X., Lao, J., Fong, T. M., Xiao, J. C., Huang, C. R., Shen, C. P., Stribling, D. S., Shearman, L. P., Strack, A. M., Goulet, M. T. & Hale, J. J. (2010). Bioorg. Med. Chem. Lett. 20, 3750-3754.
- Meurer, L. C., Finke, P. E., Mills, S. G., Walsh, T. F., Toupence, R. B., Debenham, J. S., Goulet, M. T., Wang, J., Tong, X., Fong, T. M., Lao, J., Schaeffer, M. T., Chen, J., Shen, C. P., Sloan, S. D., Shearman, L. P., Strack, A. M. & Vander Ploeg, L. H. (2005). Bioorg. Med. Chem. Lett. 15, 645-651. Ng, S. W. (2010). Acta Cryst. E66, o1020.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2011). E67, o3134 [doi:10.1107/S160053681104400X]

## 2-Chloro-5-methyl-3-nitropyridine

## Da-Tong Zhang and Ling-Yan Huo

### S1. Comment

Substituted pyridines are often used as pharmacophores in medicinal chemistry (Madsen-Duggan *et al.*, 2010; Meurer *et al.*, 2005). 2-Chloro-5-methyl-3-nitropyridine (I) is important intermediate in the synthesis of some bioactive products (Liégeois, *et al.*, 1993; Kagabu, *et al.*, 2005). The title compound was prepared by the chlorination of 2-hydroxy-5-methyl-3-nitropyridine with thionyl chloride. We present here the crystal structure of (I).

The title compound,  $C_6H_5ClN_2O_2$ , crystallizes with two independent molecules in the asymmetric unit. All bond lengths in the molecular are normal (Allen *et al.*, 1987) and in a good agreement with those reported previously (Ng, 2010). C— H…O intermolecular hydrogen bonds stabilize the crystal structure.(Table 1).

### S2. Experimental

The title compound was synthesized by the reaction of 2-hydroxy-5-methyl-3-nitropyridine (0.01 mol) with thionyl chloride (15 ml) in the presence of a small amount of DMF at reflux (3 h). After evaporation, the reaction residue was diluted with water. The aqueous solution was extracted with dichloromethane, and the organic phase was dried and evaporated to afford the title product in 92% isolated yield. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of the title compound in a hexane/methylene chloride mixture (1:1 v/v) at room temperature over a period of one week.

#### **S3. Refinement**

All H atoms were found on difference maps, with C—H = 0.93–0.96 Å and included in the final cycles of refinement using a riding model, with  $U_{iso}(H) = 1.2U_{eq}(C)$  and  $1.5U_{eq}(C)$  for the methyl H atoms.



## Figure 1

Crystal data

View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

## 2-Chloro-5-methyl-3-nitropyridine

| $C_6H_5CIN_2O_2$                         | F(000) = 704                                                       |
|------------------------------------------|--------------------------------------------------------------------|
| $M_r = 172.57$                           | $D_{\rm x} = 1.545 {\rm ~Mg} {\rm ~m}^{-3}$                        |
| Orthorhombic, $Pna2_1$                   | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å              |
| Hall symbol: P 2c -2n                    | Cell parameters from 1564 reflections                              |
| a = 21.435 (6) Å                         | $\theta = 2.3 - 22.0^{\circ}$                                      |
| b = 8.151 (2)  Å                         | $\mu = 0.46 \text{ mm}^{-1}$                                       |
| c = 8.494 (2) Å                          | T = 298  K                                                         |
| V = 1484.0 (7) Å <sup>3</sup>            | Block, colorless                                                   |
| Z = 8                                    | $0.38 \times 0.24 \times 0.21 \text{ mm}$                          |
| Data collection                          |                                                                    |
| Bruker SMART CCD area-detector           | 7071 measured reflections                                          |
| diffractometer                           | 2134 independent reflections                                       |
| Radiation source: fine-focus sealed tube | 1749 reflections with $I > 2\sigma(I)$                             |
| Graphite monochromator                   | $R_{\rm int} = 0.023$                                              |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 25.0^{\circ},  \theta_{\rm min} = 1.9^{\circ}$ |

| $h = -25 \rightarrow 25$<br>$k = -9 \rightarrow 9$                                                                                                                                                                                              | $l = -10 \rightarrow 6$                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                       |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.037$<br>$wR(F^2) = 0.093$<br>S = 1.06<br>2134 reflections<br>201 parameters<br>1 restraint<br>Primary atom site location: structure-invariant<br>direct methods | Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.20$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.13$ e Å <sup>-3</sup><br>Absolute structure: Flack (1983), 139 Friedel<br>pairs |
| Secondary atom site location: difference Fourier                                                                                                                                                                                                | Absolute structure parameter: -0.08 (8)                                                                                                                                                                                                                                                                                                                               |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|-------------|--------------|-----------------------------|--|
| Cl1 | 0.64412 (4)  | 0.34108 (9) | 0.69639 (8)  | 0.0705 (3)                  |  |
| Cl2 | 0.64313 (4)  | 0.85811 (9) | 0.70504 (10) | 0.0812 (3)                  |  |
| 01  | 0.50283 (10) | 0.0831 (3)  | 0.5349 (5)   | 0.1076 (10)                 |  |
| O2  | 0.51384 (10) | 0.3414 (3)  | 0.5424 (4)   | 0.0821 (7)                  |  |
| 03  | 0.48112 (10) | 0.7214 (3)  | 0.4606 (4)   | 0.0982 (9)                  |  |
| O4  | 0.52431 (11) | 0.6869 (3)  | 0.6857 (4)   | 0.0952 (8)                  |  |
| N1  | 0.70207 (10) | 0.2297 (3)  | 0.4520 (3)   | 0.0583 (6)                  |  |
| N2  | 0.53214 (10) | 0.2046 (3)  | 0.5159 (3)   | 0.0572 (6)                  |  |
| N3  | 0.69533 (11) | 0.7387 (3)  | 0.4591 (3)   | 0.0640 (6)                  |  |
| N4  | 0.52614 (12) | 0.7020 (3)  | 0.5437 (4)   | 0.0652 (7)                  |  |
| C1  | 0.64679 (12) | 0.2463 (3)  | 0.5147 (3)   | 0.0462 (6)                  |  |
| C2  | 0.59406 (10) | 0.1857 (3)  | 0.4440 (3)   | 0.0404 (6)                  |  |
| C3  | 0.59813 (12) | 0.1067 (3)  | 0.3021 (3)   | 0.0443 (6)                  |  |
| H3B | 0.5626       | 0.0632      | 0.2549       | 0.053*                      |  |
| C4  | 0.65528 (11) | 0.0926 (3)  | 0.2303 (3)   | 0.0467 (7)                  |  |
| C5  | 0.70548 (13) | 0.1550 (3)  | 0.3124 (4)   | 0.0591 (7)                  |  |
| H5A | 0.7447       | 0.1443      | 0.2670       | 0.071*                      |  |
| C6  | 0.66285 (14) | 0.0156 (4)  | 0.0719 (4)   | 0.0673 (8)                  |  |
| H6A | 0.6313       | -0.0665     | 0.0572       | 0.101*                      |  |
| H6B | 0.7033       | -0.0343     | 0.0647       | 0.101*                      |  |
| H6C | 0.6588       | 0.0982      | -0.0081      | 0.101*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C7   | 0.64127 (13) | 0.7526 (3) | 0.5297 (3) | 0.0513 (7) |  |
|------|--------------|------------|------------|------------|--|
| C8   | 0.58714 (12) | 0.6920 (3) | 0.4649 (3) | 0.0479 (7) |  |
| C9   | 0.58893 (12) | 0.6180 (3) | 0.3199 (3) | 0.0482 (7) |  |
| H9A  | 0.5525       | 0.5788     | 0.2740     | 0.058*     |  |
| C10  | 0.64506 (11) | 0.6021 (3) | 0.2429 (3) | 0.0500 (8) |  |
| C11  | 0.69626 (13) | 0.6619 (4) | 0.3200 (4) | 0.0634 (8) |  |
| H11A | 0.7349       | 0.6480     | 0.2717     | 0.076*     |  |
| C12  | 0.65035 (14) | 0.5240 (4) | 0.0832 (4) | 0.0687 (8) |  |
| H12A | 0.6920       | 0.4835     | 0.0684     | 0.103*     |  |
| H12B | 0.6411       | 0.6040     | 0.0035     | 0.103*     |  |
| H12C | 0.6213       | 0.4347     | 0.0755     | 0.103*     |  |
|      |              |            |            |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1 | 0.0895 (6)  | 0.0727 (5)  | 0.0492 (5)  | 0.0039 (4)   | -0.0117 (4)  | -0.0149 (5)  |
| Cl2 | 0.1138 (7)  | 0.0757 (6)  | 0.0542 (6)  | 0.0059 (4)   | -0.0185 (5)  | -0.0151 (6)  |
| 01  | 0.0742 (14) | 0.0879 (17) | 0.161 (3)   | -0.0239 (14) | 0.0468 (16)  | 0.006 (2)    |
| 02  | 0.0775 (14) | 0.0813 (15) | 0.0875 (18) | 0.0228 (11)  | 0.0239 (14)  | -0.0082 (13) |
| 03  | 0.0574 (14) | 0.118 (2)   | 0.119 (3)   | 0.0116 (14)  | -0.0001 (14) | -0.0181 (17) |
| 04  | 0.1076 (19) | 0.1013 (18) | 0.0766 (19) | 0.0100 (14)  | 0.0405 (16)  | -0.0110 (17) |
| N1  | 0.0416 (12) | 0.0721 (15) | 0.0613 (17) | -0.0080 (11) | -0.0047 (12) | -0.0035 (13) |
| N2  | 0.0503 (13) | 0.0667 (16) | 0.0547 (16) | 0.0012 (12)  | 0.0115 (12)  | 0.0037 (13)  |
| N3  | 0.0563 (14) | 0.0801 (16) | 0.0555 (16) | -0.0106 (12) | -0.0083 (14) | -0.0021 (14) |
| N4  | 0.0648 (18) | 0.0604 (16) | 0.071 (2)   | 0.0057 (13)  | 0.0145 (16)  | -0.0095 (15) |
| C1  | 0.0549 (15) | 0.0421 (13) | 0.0415 (16) | 0.0006 (11)  | -0.0035 (13) | 0.0015 (12)  |
| C2  | 0.0403 (13) | 0.0406 (13) | 0.0404 (16) | 0.0003 (10)  | 0.0005 (11)  | 0.0043 (11)  |
| C3  | 0.0434 (14) | 0.0413 (13) | 0.0483 (16) | -0.0016 (10) | -0.0047 (13) | 0.0013 (12)  |
| C4  | 0.0477 (14) | 0.0492 (13) | 0.0433 (19) | 0.0028 (11)  | 0.0002 (13)  | 0.0040 (12)  |
| C5  | 0.0425 (14) | 0.0787 (19) | 0.0563 (19) | 0.0001 (13)  | 0.0060 (14)  | 0.0006 (17)  |
| C6  | 0.0776 (18) | 0.074 (2)   | 0.0503 (18) | 0.0075 (16)  | 0.0082 (16)  | -0.0046 (16) |
| C7  | 0.0661 (17) | 0.0473 (15) | 0.0406 (16) | 0.0024 (12)  | -0.0097 (14) | 0.0052 (12)  |
| C8  | 0.0515 (15) | 0.0444 (14) | 0.0479 (17) | 0.0034 (11)  | 0.0037 (13)  | 0.0076 (13)  |
| C9  | 0.0498 (15) | 0.0443 (13) | 0.0505 (18) | -0.0049 (11) | -0.0076 (13) | 0.0049 (13)  |
| C10 | 0.0553 (17) | 0.0498 (15) | 0.0449 (19) | -0.0011 (12) | 0.0034 (13)  | 0.0076 (13)  |
| C11 | 0.0455 (15) | 0.084 (2)   | 0.061 (2)   | -0.0082 (14) | 0.0031 (15)  | 0.0033 (18)  |
| C12 | 0.0832 (19) | 0.076 (2)   | 0.0468 (18) | -0.0011 (17) | 0.0098 (16)  | -0.0015 (16) |

Geometric parameters (Å, °)

| Cl1—C1 | 1.727 (3) | C4—C5  | 1.380 (4) |
|--------|-----------|--------|-----------|
| Cl2—C7 | 1.720 (3) | C4—C6  | 1.494 (4) |
| O1—N2  | 1.184 (3) | C5—H5A | 0.9300    |
| O2—N2  | 1.203 (3) | C6—H6A | 0.9600    |
| O3—N4  | 1.206 (4) | C6—H6B | 0.9600    |
| O4—N4  | 1.213 (4) | C6—H6C | 0.9600    |
| N1-C1  | 1.306 (3) | C7—C8  | 1.376 (4) |
| N1—C5  | 1.335 (4) | C8—C9  | 1.372 (4) |
|        |           |        |           |

# supporting information

| N2—C2        | 1.469 (3)    | C9—C10        | 1.376 (4)   |
|--------------|--------------|---------------|-------------|
| N3—C7        | 1.310 (4)    | С9—Н9А        | 0.9300      |
| N3—C11       | 1.338 (4)    | C10-C11       | 1.368 (4)   |
| N4—C8        | 1.471 (4)    | C10—C12       | 1.502 (4)   |
| C1—C2        | 1.372 (3)    | C11—H11A      | 0.9300      |
| C2—C3        | 1.369 (4)    | C12—H12A      | 0.9600      |
| C3—C4        | 1.373 (4)    | C12—H12B      | 0.9600      |
| С3—Н3В       | 0.9300       | C12—H12C      | 0.9600      |
|              |              |               |             |
| C1—N1—C5     | 117.3 (2)    | H6A—C6—H6B    | 109.5       |
| O1—N2—O2     | 125.2 (3)    | C4—C6—H6C     | 109.5       |
| O1—N2—C2     | 116.6 (3)    | H6A—C6—H6C    | 109.5       |
| O2—N2—C2     | 118.0 (2)    | H6B—C6—H6C    | 109.5       |
| C7—N3—C11    | 117.3 (2)    | N3—C7—C8      | 122.1 (3)   |
| O3—N4—O4     | 124.7 (3)    | N3—C7—Cl2     | 114.8 (2)   |
| O3—N4—C8     | 116.9 (3)    | C8—C7—Cl2     | 123.1 (2)   |
| O4—N4—C8     | 118.4 (3)    | C9—C8—C7      | 119.6 (3)   |
| N1—C1—C2     | 122.1 (3)    | C9—C8—N4      | 117.2 (3)   |
| N1—C1—Cl1    | 116.2 (2)    | C7—C8—N4      | 123.2 (3)   |
| C2—C1—Cl1    | 121.7 (2)    | C8—C9—C10     | 119.5 (3)   |
| C3—C2—C1     | 120.1 (2)    | С8—С9—Н9А     | 120.2       |
| C3—C2—N2     | 118.2 (2)    | С10—С9—Н9А    | 120.2       |
| C1—C2—N2     | 121.6 (2)    | C11—C10—C9    | 116.1 (3)   |
| C2—C3—C4     | 119.2 (2)    | C11—C10—C12   | 121.5 (3)   |
| С2—С3—Н3В    | 120.4        | C9—C10—C12    | 122.4 (3)   |
| C4—C3—H3B    | 120.4        | N3—C11—C10    | 125.3 (3)   |
| C3—C4—C5     | 116.1 (3)    | N3—C11—H11A   | 117.3       |
| C3—C4—C6     | 122.2 (3)    | C10-C11-H11A  | 117.3       |
| C5—C4—C6     | 121.7 (3)    | C10-C12-H12A  | 109.5       |
| N1—C5—C4     | 125.1 (3)    | C10-C12-H12B  | 109.5       |
| N1—C5—H5A    | 117.5        | H12A—C12—H12B | 109.5       |
| C4—C5—H5A    | 117.5        | C10-C12-H12C  | 109.5       |
| C4—C6—H6A    | 109.5        | H12A—C12—H12C | 109.5       |
| C4—C6—H6B    | 109.5        | H12B—C12—H12C | 109.5       |
|              |              |               |             |
| C5—N1—C1—C2  | 2.0 (4)      | C11—N3—C7—C8  | -0.2 (4)    |
| C5—N1—C1—Cl1 | 179.2 (2)    | C11—N3—C7—Cl2 | -178.1 (2)  |
| N1—C1—C2—C3  | -0.9 (4)     | N3—C7—C8—C9   | -1.7 (4)    |
| Cl1—C1—C2—C3 | -177.95 (19) | Cl2—C7—C8—C9  | 176.00 (19) |
| N1-C1-C2-N2  | 179.7 (2)    | N3—C7—C8—N4   | 178.3 (3)   |
| Cl1—C1—C2—N2 | 2.7 (3)      | Cl2—C7—C8—N4  | -4.0 (4)    |
| O1—N2—C2—C3  | 55.0 (4)     | O3—N4—C8—C9   | -34.7 (4)   |
| O2—N2—C2—C3  | -120.8 (3)   | O4—N4—C8—C9   | 143.8 (3)   |
| O1—N2—C2—C1  | -125.7 (3)   | O3—N4—C8—C7   | 145.3 (3)   |
| O2—N2—C2—C1  | 58.5 (4)     | O4—N4—C8—C7   | -36.2 (4)   |
| C1—C2—C3—C4  | -1.5 (4)     | C7—C8—C9—C10  | 1.5 (4)     |
| N2—C2—C3—C4  | 177.8 (2)    | N4—C8—C9—C10  | -178.5 (2)  |
| C2—C3—C4—C5  | 2.6 (4)      | C8—C9—C10—C11 | 0.6 (4)     |
|              |              |               |             |

# supporting information

| C2—C3—C4—C6 | -176.9 (2) | C8—C9—C10—C12  | -179.3 (2) |
|-------------|------------|----------------|------------|
| C1—N1—C5—C4 | -0.8 (4)   | C7—N3—C11—C10  | 2.5 (5)    |
| C3—C4—C5—N1 | -1.6 (4)   | C9—C10—C11—N3  | -2.7 (5)   |
| C6—C4—C5—N1 | 177.9 (3)  | C12-C10-C11-N3 | 177.2 (3)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|------------------------|-------------|-------|--------------|------------|
| С9—Н9А…О2 <sup>і</sup> | 0.93        | 2.51  | 3.243 (4)    | 136        |

Symmetry code: (i) -*x*+1, -*y*+1, *z*-1/2.