organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[1-(3-Methylphenyl)-5-phenyl-4phenylsulfonyl-1H-pyrazol-3-yl]ethanone

Mohamed Ghazzali,^a Hatem A. Abdel-Aziz,^b Khalid Al-Farhan^d and Seik Weng Ng^{c,a}*

^aDepartment of Chemistry, Faculty of Science, King Saud University, PO 2455 Rivadh 11451, Saudi Arabia, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, King Saud University, PO Box 2457 Riyadh 11451, Saudi Arabia, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 leddah Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 4 October 2011; accepted 6 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.041; wR factor = 0.131; data-to-parameter ratio = 18.6.

Both the acetyl and phenyl substituents of the central pyrazole ring in the title compound, C₂₄H₂₀N₂O₃S, are twisted with respect to the pyrazole ring, with the twist involving the phenyl ring being greater [67.4 (1) and 29.6 (2) $^{\circ}$]. The tolyl substituent is disordered over two positions in a 1:1 ratio; the mean planes of the aromatic ring are aligned at 67.7 (3) and $69.4 (3)^{\circ}$ with respect to the pyrazole ring.

Related literature

For the synthesis of this class of pyrazoles, which have been tested as anti-inflammatory agents, see: Nasser et al. (2011).

Experimental

Crystal data

β

$C_{24}H_{20}N_2O_3S$	
$M_r = 416.48$	
Monoclinic, $P2_1/n$	
a = 10.5717 (4) Å	
b = 17.7004 (6) Å	
c = 12.8744 (4) Å	
$\beta = 115.945 (1)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) $T_{\min} = 0.933, T_{\max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.131$ S = 1.164951 reflections 266 parameters

 $V = 2166.30 (13) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.18 \text{ mm}^{-1}$ T = 293 K $0.40 \times 0.30 \times 0.20 \text{ mm}$

23603 measured reflections 4951 independent reflections 3490 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$

44 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.37$ e Å⁻³

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Deanship of Scientific Research of the College of Science Research Center, King Saud University, and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5108).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Nasser, E., Abdel-Aziz, H. A., Ibrahim, H. S. & Mansour, A. M. (2011). Sci. Pharm. 79, 507-524.

Rigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2922 [doi:10.1107/S1600536811041122]

1-[1-(3-Methylphenyl)-5-phenyl-4-phenylsulfonyl-1*H*-pyrazol-3-yl]ethanone

Mohamed Ghazzali, Hatem A. Abdel-Aziz, Khalid Al-Farhan and Seik Weng Ng

S1. Comment

1-[1-(3-Methylphenyl)-5-phenyl-4-(phenylsulfanyl)-1*H*-pyrazol-3-yl]ethanone (Scheme I) exhibited excellent activity compared with a standard drug, indomethacin, when tested as an anti-inflammatory chemical. The high activity has been rationalized by using molecular docking (Nasser *et al.*, 2011). Both the acetyl and phenyl substituents of the central pyrazole ring are twisted with respect to the pyrazole ring, with the twist involving the phenyl ring being greater (67.4 (1) $^{\circ}$ and 29.6 (2) $^{\circ}$). The tolyl substituent is disordered over two positions in a 1:1 ratio; the mean planes of the aromatic ring are aligned at 67.7 (3) $^{\circ}$ and 69.4 (3) $^{\circ}$ (Fig. 1).

S2. Experimental

We have recently reported the synthesis of the compound (Nasser *et al.*, 2011). Crystals were obtained upon recrystallization from ethanol suitable for X-ray structural analysis was obtained by slow evaporation from ethanolic solution at room temperature.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

The tolyl group is disordered over two positions; the occupancy could not be refined, and was assumed to be a 1:1 type of disorder. The benzene rings were refined as rigid hexagons of 1.39 Å sides. The temperature factors of the primed atoms were set to those of the unprimed ones, and all anisotropic temperature factors were restrained to be nearly isotropic. The pair of N-C_{tolyl} distances were restrained to within 0.01 Å of each other as were the pair of C_{methyl}-C_{phenylene} bonds.

Omitted because of bad agreement were (0 8 0), (-2 18 8) and (-8 10 13).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disordered tolyl component is not shown.

1-[1-(3-Methylphenyl)-5-phenyl-4-phenylsulfonyl-1*H*-pyrazol-3-yl]ethanone

Crystal data	
$C_{24}H_{20}N_2O_3S$	F(000) = 872
$M_r = 416.48$	$D_{\rm x} = 1.277 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 725 reflections
a = 10.5717 (4) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 17.7004 (6) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 12.8744 (4) Å	T = 293 K
$\beta = 115.945 \ (1)^{\circ}$	Block, yellow
$V = 2166.30 (13) \text{ Å}^3$	$0.40 \times 0.30 \times 0.20$ mm
Z = 4	
Data collection	
Rigaku R-AXIS RAPID	23603 measured reflections
diffractometer	4951 independent reflections
Radiation source: fine-focus sealed tube	3490 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
ωscans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(CrystalClear; Rigaku, 2007)	$k = -22 \rightarrow 22$
$T_{\min} = 0.933, \ T_{\max} = 0.966$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 0.3317P]$
S = 1.16	where $P = (F_o^2 + 2F_c^2)/3$
4951 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
266 parameters	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
44 restraints	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0235 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.54751 (5)	0.63143 (2)	0.45045 (4)	0.03997 (16)	
01	0.40174 (15)	0.64090 (7)	0.42277 (13)	0.0545 (4)	
02	0.64729 (16)	0.62701 (7)	0.56934 (11)	0.0534 (4)	
03	0.88191 (16)	0.55753 (8)	0.54515 (13)	0.0637 (4)	
N1	0.50448 (17)	0.45192 (8)	0.26398 (13)	0.0440 (4)	
N2	0.63866 (17)	0.43781 (9)	0.34261 (13)	0.0460 (4)	
C1	0.8879 (2)	0.42371 (13)	0.5538 (2)	0.0624 (6)	
H1A	0.9853	0.4310	0.6057	0.094*	
H1B	0.8804	0.3920	0.4909	0.094*	
H1C	0.8409	0.4001	0.5944	0.094*	
C2	0.8211 (2)	0.49846 (11)	0.50784 (17)	0.0452 (4)	
C3	0.67586 (19)	0.49709 (9)	0.41353 (15)	0.0405 (4)	
C4	0.56201 (19)	0.54928 (9)	0.38003 (14)	0.0382 (4)	
C5	0.45247 (19)	0.51785 (9)	0.28374 (15)	0.0388 (4)	
C6	0.3067 (2)	0.54191 (10)	0.21258 (15)	0.0431 (4)	
C7	0.1966 (2)	0.50136 (12)	0.21653 (18)	0.0551 (5)	
H7	0.2151	0.4584	0.2624	0.066*	
C8	0.0593 (2)	0.52496 (16)	0.1521 (2)	0.0722 (7)	
H8	-0.0146	0.4975	0.1542	0.087*	
С9	0.0319 (3)	0.58849 (17)	0.0853 (2)	0.0803 (7)	
H9	-0.0604	0.6048	0.0437	0.096*	
C10	0.1397 (3)	0.62815 (15)	0.0796 (2)	0.0822 (8)	
H10	0.1204	0.6708	0.0331	0.099*	
C11	0.2772 (3)	0.60493 (13)	0.14280 (19)	0.0631 (6)	
H11	0.3501	0.6319	0.1383	0.076*	
C12	0.4517 (7)	0.3942 (4)	0.1774 (6)	0.0362 (12)	0.50
C13	0.4027 (10)	0.3246 (6)	0.1945 (5)	0.0663 (7)	0.50
H13	0.4246	0.3081	0.2690	0.080*	0.50
C14	0.3208 (9)	0.2798 (4)	0.1002 (8)	0.0720 (15)	0.50
H14	0.2880	0.2333	0.1116	0.086*	0.50
C15	0.2879 (7)	0.3045 (4)	-0.0112 (6)	0.0686 (16)	0.50
H15	0.2331	0.2745	-0.0742	0.082*	0.50

C16	0.3369 (10)	0.3741 (6)	-0.0283 (5)	0.0685 (10)	0.50
C17	0.4188 (8)	0.4189 (4)	0.0660 (8)	0.0459 (12)	0.50
H17	0.4516	0.4654	0.0545	0.055*	0.50
C18	0.2992 (15)	0.3922 (5)	-0.1542 (5)	0.1145 (12)	0.50
H18A	0.2297	0.4315	-0.1807	0.172*	0.50
H18B	0.2623	0.3478	-0.2005	0.172*	0.50
H18C	0.3819	0.4087	-0.1608	0.172*	0.50
C12′	0.4183 (7)	0.4036 (4)	0.1680 (6)	0.0362 (12)	0.50
C13′	0.4065 (10)	0.3301 (6)	0.2006 (4)	0.0663 (7)	0.50
H13′	0.4309	0.3190	0.2776	0.080*	0.50
C14′	0.3584 (9)	0.2731 (4)	0.1180 (8)	0.0720 (15)	0.50
H14′	0.3505	0.2239	0.1398	0.086*	0.50
C15′	0.3219 (8)	0.2897 (4)	0.0029 (6)	0.0686 (16)	0.50
H15′	0.2897	0.2516	-0.0524	0.082*	0.50
C16′	0.3337 (10)	0.3633 (6)	-0.0297 (4)	0.0685 (10)	0.50
C17′	0.3819 (8)	0.4203 (4)	0.0529 (8)	0.0459 (12)	0.50
H17′	0.3898	0.4695	0.0312	0.055*	0.50
C18′	0.2985 (14)	0.3918 (2)	-0.1529 (2)	0.1145 (12)	0.50
H18D	0.2052	0.3758	-0.2049	0.172*	0.50
H18E	0.3648	0.3712	-0.1776	0.172*	0.50
H18F	0.3034	0.4459	-0.1527	0.172*	0.50
C19	0.59640 (16)	0.70713 (9)	0.38558 (12)	0.0420 (4)	
C20	0.73709 (16)	0.72002 (10)	0.41591 (12)	0.0567 (5)	
H20	0.8059	0.6889	0.4690	0.068*	
C21	0.7737 (3)	0.78024 (14)	0.3657 (2)	0.0777 (7)	
H21	0.8679	0.7898	0.3853	0.093*	
C22	0.6707 (4)	0.82612 (15)	0.2866 (2)	0.0850 (9)	
H22	0.6961	0.8661	0.2527	0.102*	
C23	0.5320 (3)	0.81318 (13)	0.2580 (2)	0.0755 (7)	
H23	0.4634	0.8446	0.2054	0.091*	
C24	0.4932 (2)	0.75312 (11)	0.30731 (17)	0.0562 (5)	
H24	0.3989	0.7440	0.2878	0.067*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0528 (3)	0.0324 (2)	0.0414 (3)	0.00075 (18)	0.0268 (2)	-0.00099 (17)
01	0.0550 (9)	0.0472 (8)	0.0739 (10)	0.0037 (6)	0.0399 (8)	-0.0035 (7)
O2	0.0773 (10)	0.0465 (8)	0.0364 (7)	0.0045 (7)	0.0249 (7)	-0.0011 (5)
03	0.0572 (10)	0.0547 (9)	0.0710 (10)	-0.0084 (7)	0.0205 (8)	-0.0132 (7)
N1	0.0500 (10)	0.0366 (8)	0.0474 (8)	-0.0036 (6)	0.0232 (8)	-0.0090 (6)
N2	0.0470 (9)	0.0415 (9)	0.0519 (9)	-0.0001 (7)	0.0239 (8)	-0.0062 (7)
C1	0.0521 (13)	0.0565 (13)	0.0761 (15)	0.0077 (10)	0.0259 (12)	0.0102 (11)
C2	0.0464 (11)	0.0466 (11)	0.0486 (10)	-0.0017 (8)	0.0264 (9)	-0.0043 (8)
C3	0.0470 (11)	0.0337 (9)	0.0464 (10)	-0.0019 (7)	0.0256 (9)	-0.0020 (7)
C4	0.0474 (10)	0.0319 (9)	0.0406 (9)	-0.0021 (7)	0.0242 (8)	-0.0010 (7)
C5	0.0473 (11)	0.0333 (9)	0.0408 (9)	-0.0027 (7)	0.0238 (8)	-0.0008 (7)
C6	0.0495 (11)	0.0381 (10)	0.0404 (9)	-0.0004 (8)	0.0184 (9)	-0.0012 (7)

supporting information

C7	0.0516 (13)	0.0572 (13)	0.0562 (12)	0.0001 (9)	0.0234 (11)	0.0081 (9)
C8	0.0483 (14)	0.0915 (18)	0.0703 (15)	0.0003 (12)	0.0199 (12)	0.0094 (13)
C9	0.0616 (17)	0.091 (2)	0.0703 (16)	0.0187 (14)	0.0123 (13)	0.0107 (14)
C10	0.084 (2)	0.0708 (17)	0.0720 (16)	0.0151 (14)	0.0159 (15)	0.0280 (13)
C11	0.0649 (15)	0.0553 (13)	0.0619 (13)	-0.0018 (11)	0.0211 (12)	0.0165 (10)
C12	0.022 (3)	0.0355 (19)	0.0547 (14)	0.007 (2)	0.0206 (17)	-0.0108 (14)
C13	0.0873 (18)	0.0454 (16)	0.0844 (16)	-0.0160 (12)	0.0545 (15)	-0.0206 (12)
C14	0.063 (4)	0.0491 (16)	0.117 (3)	-0.016 (2)	0.051 (3)	-0.0338 (17)
C15	0.037 (4)	0.072 (3)	0.092 (2)	0.001 (3)	0.023 (2)	-0.046 (2)
C16	0.0551 (15)	0.085 (3)	0.0636 (14)	-0.0097 (16)	0.0246 (12)	-0.0338 (14)
C17	0.022 (4)	0.0633 (13)	0.049 (2)	-0.0071 (17)	0.012 (2)	-0.0137 (11)
C18	0.109 (3)	0.164 (3)	0.0582 (16)	-0.006 (2)	0.0247 (17)	-0.0346 (18)
C12′	0.022 (3)	0.0355 (19)	0.0547 (14)	0.007 (2)	0.0206 (17)	-0.0108 (14)
C13′	0.0873 (18)	0.0454 (16)	0.0844 (16)	-0.0160 (12)	0.0545 (15)	-0.0206 (12)
C14′	0.063 (4)	0.0491 (16)	0.117 (3)	-0.016 (2)	0.051 (3)	-0.0338 (17)
C15′	0.037 (4)	0.072 (3)	0.092 (2)	0.001 (3)	0.023 (2)	-0.046 (2)
C16′	0.0551 (15)	0.085 (3)	0.0636 (14)	-0.0097 (16)	0.0246 (12)	-0.0338 (14)
C17′	0.022 (4)	0.0633 (13)	0.049 (2)	-0.0071 (17)	0.012 (2)	-0.0137 (11)
C18′	0.109 (3)	0.164 (3)	0.0582 (16)	-0.006 (2)	0.0247 (17)	-0.0346 (18)
C19	0.0583 (12)	0.0319 (9)	0.0389 (9)	-0.0036 (8)	0.0241 (9)	-0.0048 (7)
C20	0.0614 (14)	0.0467 (11)	0.0677 (13)	-0.0072 (9)	0.0333 (11)	-0.0009 (10)
C21	0.0881 (19)	0.0641 (16)	0.0975 (19)	-0.0226 (14)	0.0560 (17)	-0.0040 (14)
C22	0.134 (3)	0.0551 (15)	0.0825 (18)	-0.0239 (16)	0.0628 (19)	0.0065 (13)
C23	0.112 (2)	0.0456 (13)	0.0597 (14)	-0.0017 (13)	0.0294 (15)	0.0126 (10)
C24	0.0689 (14)	0.0422 (11)	0.0514 (11)	0.0000 (9)	0.0208 (11)	0.0041 (9)

Geometric parameters (Å, °)

S1—01	1.4316 (14)	C14—H14	0.9300
S1—O2	1.4314 (14)	C15—C16	1.3900
S1—C4	1.7554 (17)	С15—Н15	0.9300
S1—C19	1.7713 (15)	C16—C17	1.3900
O3—C2	1.211 (2)	C16—C18	1.525 (6)
N1—N2	1.358 (2)	C17—H17	0.9300
N1—C5	1.361 (2)	C18—H18A	0.9600
N1—C12	1.434 (5)	C18—H18B	0.9600
N1—C12′	1.450 (5)	C18—H18C	0.9600
N2—C3	1.332 (2)	C12'—C13'	1.3900
C1—C2	1.495 (3)	C12'—C17'	1.3900
C1—H1A	0.9600	C13'—C14'	1.3900
C1—H1B	0.9600	C13'—H13'	0.9300
C1—H1C	0.9600	C14'—C15'	1.3900
C2—C3	1.484 (3)	C14'—H14'	0.9300
C3—C4	1.426 (2)	C15'—C16'	1.3900
C4—C5	1.390 (2)	C15'—H15'	0.9300
C5—C6	1.469 (3)	C16'—C17'	1.3900
C6—C11	1.380 (3)	C16'—C18'	1.547 (5)
C6—C7	1.387 (3)	C17'—H17'	0.9300

С7—С8	1.385 (3)	C18'—H18D	0.9600
С7—Н7	0.9300	C18′—H18E	0.9600
C8—C9	1.367 (4)	C18′—H18F	0.9600
С8—Н8	0.9300	C19—C24	1.381 (2)
C9—C10	1.368 (4)	C19—C20	1.382 (3)
С9—Н9	0.9300	C20—C21	1.387(3)
C10—C11	1.381 (3)	C20—H20	0.9300
C10—H10	0.9300	$C_{21} - C_{22}$	1 382 (4)
C11—H11	0.9300	C21—H21	0.9300
C12-C13	1 3900	C^{22} C^{23}	1 366 (4)
C12 - C17	1 3900	C22_H22	0.9300
C13 - C14	1 3900	C^{23} C^{24}	1 389 (3)
C13—H13	0.9300	C23_H23	0.9300
C14-C15	1 3900	C24—H24	0.9300
	1.5900	024 1124	0.7500
O1—S1—O2	118.81 (9)	C13—C14—C15	120.0
O1—S1—C4	107.23 (8)	C13—C14—H14	120.0
O2—S1—C4	108.48 (8)	C15—C14—H14	120.0
O1—S1—C19	107.36 (8)	C16—C15—C14	120.0
O2—S1—C19	108.37 (8)	C16—C15—H15	120.0
C4—S1—C19	105.89 (7)	C14—C15—H15	120.0
N2—N1—C5	113.22 (14)	C15—C16—C17	120.0
N2—N1—C12	111.9 (3)	C15—C16—C18	114.4 (7)
C5—N1—C12	134.9 (3)	C17—C16—C18	125.6 (7)
N2—N1—C12′	126.1 (3)	C16—C17—C12	120.0
C5—N1—C12′	120.7 (3)	С16—С17—Н17	120.0
C3—N2—N1	105.36 (14)	С12—С17—Н17	120.0
C2—C1—H1A	109.5	C13'—C12'—C17'	120.0
C2—C1—H1B	109.5	C13'—C12'—N1	113.7 (7)
H1A—C1—H1B	109.5	C17'—C12'—N1	124.2 (7)
C2—C1—H1C	109.5	C12'—C13'—C14'	120.0
H1A—C1—H1C	109.5	C12'—C13'—H13'	120.0
H1B—C1—H1C	109.5	C14'—C13'—H13'	120.0
O3—C2—C3	121.22 (18)	C13'—C14'—C15'	120.0
O3—C2—C1	122.0 (2)	C13'—C14'—H14'	120.0
C3—C2—C1	116.76 (17)	C15'—C14'—H14'	120.0
N2—C3—C4	110.24 (16)	C14'—C15'—C16'	120.0
N2—C3—C2	117.59 (16)	C14′—C15′—H15′	120.0
C4—C3—C2	132.17 (16)	C16'—C15'—H15'	120.0
C5—C4—C3	105.91 (15)	C17'—C16'—C15'	120.0
C5—C4—S1	124.43 (14)	C17'—C16'—C18'	113.1 (7)
C3—C4—S1	129.29 (14)	C15'—C16'—C18'	126.9 (7)
N1C5C4	105.25 (16)	C16'—C17'—C12'	120.0
N1—C5—C6	122.09 (16)	C16'—C17'—H17'	120.0
C4—C5—C6	132.64 (16)	С12′—С17′—Н17′	120.0
C11—C6—C7	119.18 (19)	C16'—C18'—H18D	109.5
C11—C6—C5	121.16 (18)	C16'—C18'—H18E	109.5
C7—C6—C5	119.66 (16)	H18D—C18′—H18E	109.5

C8—C7—C6	1199(2)	C16'—C18'—H18F	109 5
C8-C7-H7	120.0	H18D— $C18'$ — $H18F$	109.5
C6-C7-H7	120.0	H18F— $C18'$ — $H18F$	109.5
$C_{0} - C_{8} - C_{7}$	120.0 120.2(2)	C_{24} C_{19} C_{20}	121 21 (13)
C_{0} C_{8} H_{8}	110.0	$C_{24} = C_{19} = C_{20}$	121.21(13) 110.32(14)
$C_7 = C_8 = H_8$	119.9	$C_{24} = C_{19} = S_{1}$	119.32(14)
$C^{*} = C^{*} = C^{*}$	119.9	$C_{20} = C_{19} = S_{1}$	119.40(0) 118.73(15)
$C_8 = C_9 = C_{10}$	120.2 (2)	$C_{10} = C_{20} = C_{21}$	120.6
C_{0}	119.9	C19 - C20 - H20	120.0
C10 - C9 - H9	119.9	$C_{21} = C_{20} = H_{20}$	120.0
	120.2 (2)	$C_{22} = C_{21} = C_{20}$	120.3 (2)
C9—C10—H10	119.9	C22—C21—H21	119.8
C11—C10—H10	119.9	C20—C21—H21	119.8
C6—C11—C10	120.3 (2)	C23—C22—C21	120.4 (2)
C6—C11—H11	119.9	C23—C22—H22	119.8
C10—C11—H11	119.9	C21—C22—H22	119.8
C13—C12—C17	120.0	C22—C23—C24	120.1 (2)
C13—C12—N1	123.6 (7)	С22—С23—Н23	119.9
C17—C12—N1	114.5 (7)	C24—C23—H23	119.9
C14—C13—C12	120.0	C19—C24—C23	119.2 (2)
C14—C13—H13	120.0	C19—C24—H24	120.4
C12—C13—H13	120.0	C23—C24—H24	120.4
C5—N1—N2—C3	-1.55 (19)	N2—N1—C12—C17	-116.8 (4)
C12—N1—N2—C3	177.1 (5)	C5—N1—C12—C17	61.4 (7)
C12′—N1—N2—C3	179.6 (5)	C12'—N1—C12—C17	71 (3)
N1—N2—C3—C4	0.88 (19)	C17—C12—C13—C14	0.0
N1—N2—C3—C2	-178.29 (14)	N1—C12—C13—C14	163.3 (5)
O3—C2—C3—N2	150.22 (18)	C12—C13—C14—C15	0.0
C1—C2—C3—N2	-29.7 (2)	C13—C14—C15—C16	0.0
O3—C2—C3—C4	-28.7(3)	C14—C15—C16—C17	0.0
C1-C2-C3-C4	151.39 (19)	C14-C15-C16-C18	177.0 (10)
N2-C3-C4-C5	0.03 (19)	C15—C16—C17—C12	0.0
C_{2} C_{3} C_{4} C_{5}	179 04 (18)	C18 - C16 - C17 - C12	-1767(11)
N_{2} C3 C4 S1	173 15 (13)	C_{13} C_{12} C_{17} C_{16}	0.0
$C_2 - C_3 - C_4 - S_1$	-78(3)	N1 - C12 - C17 - C16	-164.8(5)
01 - S1 - C4 - C5	22.34(17)	$N_{2} N_{1} C_{12} C_{13}$	54 4 (6)
02 - 51 - C4 - C5	$151 \ 81 \ (14)$	$C_{2} = N_{1} = C_{12} = C_{13}$	-1245(3)
$C_{10} = S_{1} - C_{1} - C_{2}$	-02.06(15)	$C_{12} = N_1 - C_{12} - C_{13}$	124.3(3)
$C_{1} = C_{1} = C_{1} = C_{1} = C_{1}$	-140.62(15)	$N_2 = N_1 = C_{12} = C_{13}$	-108.7(6)
01 - 51 - 04 - 03	-149.03(10) -20.16(18)	$N_2 - N_1 - C_{12} - C_{17}$	-108.7(0)
02 - 51 - 04 - 03	-20.10(18)	$C_{12} = N_{1} = C_{12} = C_{17}$	/2.4 (0)
C19 = S1 = C4 = C3	95.97 (10)	C12— $N1$ — $C12$ — $C17$	-99 (3)
N2 - N1 - C5 - C4	1.5/(19)	C17 - C12' - C13' - C14'	0.0
U12-N1-U3-U4	-1/6.6(6)	N1 - C12' - C13' - C14'	-163.9 (6)
C12'—N1—C5—C4	-179.5 (5)	C12'-C13'-C14'-C15'	0.0
N2—N1—C5—C6	-176.67 (15)	C13'—C14'—C15'—C16'	0.0
C12—N1—C5—C6	5.1 (7)	C14'-C15'-C16'-C17'	0.0
C12'—N1—C5—C6	2.3 (5)	C14'—C15'—C16'—C18'	179.9 (11)
C3—C4—C5—N1	-0.93 (18)	C15'—C16'—C17'—C12'	0.0

S1-C4-C5-N1 $C3-C4-C5-C6$ $S1-C4-C5-C6$ $N1-C5-C6-C11$ $C4-C5-C6-C11$ $N1-C5-C6-C7$ $C4-C5-C6-C7$ $C11-C6-C7-C8$ $C5-C6-C7-C8$ $C6-C7-C8-C9$	-174.47 (12) 177.05 (17) 3.5 (3) -113.8 (2) 68.5 (3) 67.2 (2) -110.5 (2) -0.9 (3) 178.2 (2) -0.6 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.9 (9) 0.0 162.1 (6) -10.71 (16) -140.20 (14) 103.59 (15) 167.98 (11) 38.50 (12) -77.71 (12) -0.3 (2)
C6-C7-C8-C9 C7-C8-C9-C10 C8-C9-C10-C11 C7-C6-C11-C10 C5-C6-C11-C10 C9-C10-C11-C6 N2-N1-C12-C13 C5-N1-C12-C13 C12'-N1-C12-C13	$\begin{array}{c} -0.6 (4) \\ 1.6 (4) \\ -1.1 (4) \\ 1.4 (3) \\ -177.7 (2) \\ -0.4 (4) \\ 79.0 (4) \\ -102.8 (6) \\ -93 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.3 (2) \\ -178.99 (16) \\ -0.2 (3) \\ 0.7 (4) \\ -0.7 (4) \\ 0.3 (3) \\ 178.96 (16) \\ 0.2 (3) \end{array}$